

Performance of immune-based and microbiological tests in children with tuberculosis meningitis in Europe: a multicentre Paediatric Tuberculosis Network European Trials Group (ptbnet) study

Robindra Basu Roy^{1,21}, Stephanie Thee^{2,21}, Daniel Blázquez-Gamero³, Lola Falcón-Neyra⁴, Olaf Neth⁴, Antoni Noguera-Julian^{5,6,7,8}, Cristina Lillo³, Luisa Galli^{9,10}, Elisabetta Venturini^{9,10}, Danilo Buonsenso ¹¹, Florian Götzinger¹², Nuria Martinez-Alier¹³, Svetlana Velizarova¹⁴, Folke Brinkmann¹⁵, Steven B. Welch¹⁶, Maria Tsolia¹⁷, Begoña Santiago-Garcia¹⁸, Renate Krüger² and Marc Tebruegge^{13,19,20}, on behalf of the ptbnet TB Meningitis Study Group²²

Affiliations: ¹Clinical Research Dept, London School of Hygiene and Tropical Medicine, London, UK. ²Dept of Pediatric Pneumology, Immunology and Intensive Care, Charité–Universitätsmedizin Berlin, Berlin, Germany. ³Paediatric Infectious Diseases Unit, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Instituto de Investigación Hospital Universitario 12 de Octubre (Imas12), RITIP, Madrid, Spain. ⁴Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine, Seville, Spain. ⁵Malalties Infeccioses i Resposta Inflamatòria Sistèmica en Pediatria, Institut de Recerca Pediàtrica; Hospital Sant Joan de Déu, Barcelona, Spain. ⁶Departament de Pediatria, Universitat de Barcelona, Barcelona, Spain. ⁷CIBER de Epidemiología y Salud Pública, CIBERESP, Madrid, Spain. ⁸Red de Investigación Translacional en Infectología Pediátrica, RITIP, Madrid, Spain. ⁹Dept of Health Sciences, University of Florence, Florence, Italy. ¹⁰Paediatric Infectious Disease Unit, Meyer Children's University Hospital, Florence, Italy. ¹¹Dept of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy. ¹²Dept of Paediatrics and Adolescent Medicine, Wilhelminenspital, Vienna, Austria. ¹³Dept of Paediatric Infectious Diseases and Immunology, Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK. ¹⁴Dept of Pulmonary Diseases, Medical University Bochum, Bochum, Germany. ¹⁶Birmingham Chest Clinic and Heartlands Hospital, University of Athens, School of Medicine, P. and A. Kyriakou Children's Hospital, Athens, Greece. ¹⁸Dept of Paediatrics, National Birmingham, UK. ¹⁷Second Dept of Paediatrics, National and Kapodistrian University of Athens, School of Medicine, P. and A. Kyriakou Children's Hospital, Athens, Greece. ¹⁹Dept of Paediatrics, Royal Children's Hospital Melbourne, University of Melbourne, Melbourne, Australia. ²⁰Dept of Infection, I

Correspondence: Marc Tebruegge, Dept of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guildford Street, London WC1N 1EH, UK. E-mail: m.tebruegge@ucl.ac.uk

@ERSpublications

All existing immunological and microbiological TB tests have suboptimal sensitivity in children with TBM. Combining immune-based tests with CSF culture and PCR results in far higher positive diagnostic yields, and should therefore be standard practice. http://bit.ly/2TSAArl

Cite this article as: Basu Roy R, Thee S, Blázquez-Gamero D, *et al.* Performance of immune-based and microbiological tests in children with tuberculosis meningitis in Europe: a multicentre Paediatric Tuberculosis Network European Trials Group (ptbnet) study. *Eur Respir J* 2020; 56: 1902004 [https://doi. org/10.1183/13993003.02004-2019].

Copyright ©ERS 2020. This version is distributed under the terms of the Creative Commons Attribution Licence 4.0.

This single-page version can be shared freely online.

ABSTRACT

Introduction: Tuberculous meningitis (TBM) is often diagnostically challenging. Only limited data exist on the performance of interferon- γ release assays (IGRA) and molecular assays in children with TBM in routine clinical practice, particularly in the European setting.

Methods: Multicentre, retrospective study involving 27 healthcare institutions providing care for children with tuberculosis (TB) in nine European countries.

Results: Of 118 children included, 54 (45.8%) had definite, 38 (32.2%) probable and 26 (22.0%) possible TBM; 39 (33.1%) had TBM grade 1, 68 (57.6%) grade 2 and 11 (9.3%) grade 3. Of 108 patients who underwent cranial imaging 90 (83.3%) had at least one abnormal finding consistent with TBM. At the 5-mm cut-off the tuberculin skin test had a sensitivity of 61.9% (95% CI 51.2–71.6%) and at the 10-mm cut-off 50.0% (95% CI 40.0–60.0%). The test sensitivities of QuantiFERON-TB and T-SPOT.TB assays were 71.7% (95% CI 58.4–82.1%) and 82.5% (95% CI 58.2–94.6%), respectively (p=0.53). Indeterminate results were common, occurring in 17.0% of QuantiFERON-TB assays performed. Cerebrospinal fluid (CSF) cultures were positive in 50.0% (95% CI 40.1–59.9%) of cases, and CSF PCR in 34.8% (95% CI 22.9–43.7%). In the subgroup of children who underwent tuberculin skin test, IGRA, CSF culture and CSF PCR simultaneously, 84.4% had at least one positive test result (95% CI 67.8%–93.6%).

Conclusions: Existing immunological and microbiological TB tests have suboptimal sensitivity in children with TBM, with each test producing false-negative results in a substantial proportion of patients. Combining immune-based tests with CSF culture and CSF PCR results in considerably higher positive diagnostic yields, and should therefore be standard clinical practice in high-resource settings.