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patients without AATD, a defect corrected by augmentation therapy http://bit.ly/3balrrT
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ABSTRACT Obstructive pulmonary disease in patients with α1 antitrypsin (AAT) deficiency (AATD)
occurs earlier in life compared with patients without AATD. To understand this further, the aim of this
study was to investigate whether AATD presents with altered neutrophil characteristics, due to the specific
lack of plasma AAT, compared with non-AATD COPD.

This study focussed on the neutrophil plasma membrane and, by use of label-free tandem mass
spectrometry, the proteome of the neutrophil membrane was compared in forced expiratory volume in 1 s
(FEV1)-matched AATD, non-AATD COPD and in AATD patients receiving weekly AAT augmentation
therapy (n=6 patients per cohort). Altered protein expression in AATD was confirmed by Western blot,
ELISA and fluorescence resonance energy transfer analysis.

The neutrophil membrane proteome in AATD differed significantly from that of COPD as
demonstrated by increased abundance and activity of primary granule proteins including neutrophil
elastase on the cell surface in AATD. The signalling mechanism underlying increased degranulation
involved Rac2 activation, subsequently resulting in proteinase-activated receptor 2 activation by serine
proteinases and enhanced reactive oxygen species production. In vitro and ex vivo, AAT reduced primary
granule release and the described plasma membrane variance was resolved post-AAT augmentation
therapy in vivo, the effects of which significantly altered the AATD neutrophil membrane proteome to that
of a non-AATD COPD cell.

These results provide strong insight into the mechanism of neutrophil driven airways disease associated
with AATD. Therapeutic AAT augmentation modified the membrane proteome to that of a typical COPD
cell, with implications for clinical practice.
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Introduction
α1 Antitrypsin (AAT) is recognised as a potent inhibitor of serine proteinases, primarily neutrophil
elastase [1]. AAT is produced mainly by hepatocytes and is released into the circulation, yielding a plasma
concentration of approximately 1.5 g·L−1. AAT deficiency (AATD) gives rise to reduced levels of AAT and
is a genetic risk factor for the development of chronic obstructive pulmonary disease (COPD).
Emphysema, routinely characterised by computed tomography (CT) [2], is an important feature of AATD,
classically panacinar in nature, in contrast to the mainly centrilobular disease seen in non-AATD COPD.
AAT augmentation therapy, which involves intravenous infusion of plasma purified human AAT,
demonstrated a reduced rate of lung density loss [3, 4]. Moreover, improved biochemical effects of double
AAT dosing (120 mg·kg−1·week−1) in AATD was recently described [5].

Although lung disease in AATD patients typically starts at an earlier stage in life compared to patients
with COPD without AATD, wide-ranging studies have been performed to discriminate between AATD
and non-AATD COPD phenotypes. Such studies include evaluating complications and survival post-lung
transplant [6], plasma and urine biomarkers [7, 8], pulmonary rehabilitation [2], quality of life [9] and
differences in adjusting to illness [10]. Airway neutrophilia is a feature of COPD with and without AATD,
with increased neutrophil numbers reported in epithelial lining fluid of non-smoking AATD individuals
compared with healthy controls, and are implicated in many of the pathological features associated with
the disease, including unopposed neutrophil elastolytic activity [11]. In addition, airway neutrophilia has
been described in AATD subjects even with mild functional lung impairment [12]. A possible explanation
for increased neutrophil responsiveness in AATD is put forward by studies demonstrating that AAT
possesses key anti-inflammatory properties independent of anti-protease activity. This is particularly
relevant in regards to modifying essential neutrophil functions including leukotriene (LT) B4-induced
adhesion [13], chemotaxis in response to interleukin (IL)-8 [14], degranulation of secondary and tertiary
granules via tumour necrosis factor (TNF)-α signalling [15], oxidative activation [16] and the ability of
AAT to normalise proapoptotic signals in circulating neutrophils [17]. It has previously been shown that
AAT binds neutrophil plasma membranes, localised to membrane lipid rafts [14]. This raised the question
of whether AAT augmentation therapy in AATD–COPD patients could bind the circulating AATD cell in
vivoand modify the AATD neutrophil to that of a non-AATD COPD type cell. For this analysis, we chose
to examine the neutrophil plasma membrane, which represents the interface between the cell and its
environment and in large part determines a cell’s response to stimuli. The aim of this study was to
perform the first proteomic analysis of plasma membranes of neutrophils from AATD–COPD compared
with non-AATD COPD individuals, and to elucidate the impact of AAT augmentation therapy. Finally,
our objective was to identify the consequence of altered membrane protein expression on neutrophil
function.

Materials and methods
Study design
Ethical approval from Beaumont Hospital Institutional Review Board was acquired and written informed
consent obtained from all study participants (approval number 18/52). Healthy control volunteers (table 1)

TABLE 1 Characteristics of healthy controls and patient groups

Experiment Phenotype/patient group Age years FEV1 % predicted

Proteomic analysis AATD-COPD, n=6 63±6 40.5±14.2
Non-AATD COPD, n=4 71.5±8 41±11.6

Neutrophil assays AATD-COPD, n=25 47.8±5 49.68±14.37
HC, n=30 36.9±4 97.48±2.48

Superoxide and degranulation Non-AATD COPD, n=7 62.4±6 58.2±11
AATD, n=6 49.2±6 111.7±4
AATD-COPD n=7 65.1±3 37.9±4
HC, n=12 35.5±8 109±10.84

Proteomic analysis of augmentation AAT augmentation therapy
day 0 and day 2, n=6

63±6.2 40.5±14.2

Ex vivo neutrophil assays
post-augmentation

AAT augmentation therapy
day 0 and day 2, n=12

59.36±7.83 42.9±13.46

Data are presented as mean±SEM. AATD: α1 antitrypsin deficiency; COPD: chronic obstructive pulmonary
disease; HC: healthy control; AAT: α1 antitrypsin; FEV1: forced expiratory volume in 1 s.
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showed no evidence of any disease and had no respiratory symptoms; none were taking medication, all
non-smokers and all proven MM phenotype with serum AAT concentrations within the normal range
(1.5 g·L-1). AATD patients (homozygous for the Z-allele, non-smokers) were recruited from the Irish
Alpha-1 Antitrypsin Deficiency Registry (table 1) and were classified as healthy AATD individuals (forced
expiratory volume in 1 s (FEV1) >80% predicted), AATD individuals with airway obstruction (FEV1<80%
predicted with obstructive pattern on spirometry (i.e. FEV1/forced vital capacity (FVC) ratio <0.7) and
emphysema on CT), or AATD patients on augmentation therapy receiving plasma purified AAT from CSL
Behring (Zemaira) administered intravenously at a dosage of 60 mg·kg−1 body weight weekly.
Non-smoking COPD patients (FEV1 <80% predicted, with obstructive pattern i.e. FEV1/FVC ratio <0.7
and emphysema on CT) with serum AAT concentrations within the normal range were recruited from
Beaumont Hospital (table 1). In the 6 weeks prior to obtaining blood samples, all patients were
exacerbation free.

Neutrophil isolation and cell assays
The methods for blood sampling for plasma and neutrophil isolation, along with plasma membrane
isolation, quantitative label-free liquid chromatography–tandem mass spectrometry LC-MS/MS, Western
blot analyses and ELISA are outlined in the supplementary materials and methods. Fluorescence resonance
energy transfer (FRET) analysis [18] and cytochrome c reduction assays [19] are described in detail in the
supplementary materials and methods section.

Statistical analysis
Results are expressed as mean±SEM of biological replicates or independent experiments as stated in each
figure legend. Data analysis was performed using GraphPad PRISM 8.0 (San Diego, CA, USA). Student’s
paired t-test was used where distribution was normal and when comparisons were being made between
two matched groups. One-way or two-way ANOVA was used for independent group comparisons,
followed post hoc by Tukey’s multiple comparison test where appropriate. Non-parametric Wilcoxon
signed rank testing was employed where data were not normal (by Shapiro–Wilk test). Results were
considered significant when p<0.05. Proteomics results were analysed using Progenesis software. One-way
repeated measures (within-subject) ANOVA was used for dependent group comparisons. The p-values
were adjusted using Benjamini–Hochberg false discovery rate (FDR) for every protein identified.
Differential protein expression was defined as ⩾1.5-fold change in expression with a p-value of <0.05.

Results
The proteome of the circulating neutrophil plasma membrane is altered in AATD compared with
COPD
We sought to identify differences in the neutrophil plasma membrane proteome in people with AATD
compared with non-AATD COPD (table 1). At the time of referral, all AATD patients had chest imaging
that revealed emphysema and obstructive spirometry (mean FEV1 40.5±14.2% predicted) with a reduced
diffusing capacity for carbon monoxide (mean DLCO 38.3±7.01% predicted). Circulating plasma AAT levels
were determined by routine nephelometry, and were in the low range for all six AATD patients
(0.29 g·L−1). Moreover, AAT phenotype testing by isoelectric focussing (IEF) revealed the characteristic
Z-AAT protein as three IEF bands, Z2, Z4, Z6, with the classic cathodal shift (fig. 1a). FEV1-matched
COPD individuals without potentially confounding comorbidities were also recruited (n=6). By IEF, two
of these individuals were determined to be MZ heterozygotes and thus excluded from further analysis
(n=4, mean FEV1 41±11.6% predicted). The neutrophil plasma membrane fraction was isolated by sucrose
gradient ultracentrifugation with the purity of isolated fractions confirmed by Western blotting for CD16b
(fig. 1b). Label free tandem MS/MS proteomic analysis was performed following digestion of proteins by
trypsin. The average yield was 860 proteins (range 765 to 1013), with identified proteins ranging in size
from 5 kDa to 434 kDa. Proteomic analysis of plasma membranes of COPD neutrophils compared to
AATD demonstrated 15 proteins that were differentially expressed (>1.5-fold change; ANOVA p<0.05).
Unsupervised Pearson hierarchical cluster analysis of differentially expressed proteins demonstrated
increased abundance in plasma membrane fractions of AATD patients (fig. 1c). Notably, of the 15
differentially expressed proteins, eight were identified as constituents of neutrophil granules
(supplementary table S1) [20]. Of particular interest, the neutrophil plasma membrane fraction from
AATD individuals demonstrated an increased abundance of the key primary granule constituents
myeloperoxidase (MPO, fold change 3.3; p=0.03) and bactericidal/permeability increasing protein (BPI,
fold change 8.4; p=0.02) (fig. 1d). Collectively, these results indicate changes in the levels of
membrane-associated proteins of circulating neutrophils from individuals with AATD with respect to
COPD counterparts, with evidence of increased levels of proteins from primary granules.
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Increased release of primary granule enzymes in AATD
Following the finding of increased levels of granule proteins associated with the plasma membrane of
AATD neutrophils, the process of primary granule degranulation was compared between AATD and
healthy control (HC) cells. Although MPO, a marker of primary granules, is equally expressed in whole cell
lysates (supplementary figure S1), basal unstimulated and TNF/N-Formylmethionyl-leucyl-phenylalanine
(fMLP) stimulated levels of released MPO and BPI, and the additional primary granule marker proteinase 3
(PR3) appeared increased in supernatants of AATD neutrophils (fig. 2a). As Western blotting is only
semi-quantitative, ensuing experiments evaluated levels of MPO and neutrophil elastase release by ELISA.
For this analysis, neutrophils of healthy controls, AATD (FEV1 >80%), AATD (FEV1 <80%) and
non-AATD COPD patients matched for FEV1 were compared. Post-10 min stimulation and relative to
unstimulated cells, results revealed significantly increased levels of degranulated extracellular MPO in cell
supernatants of AATD (FEV1 <80%) compared with healthy controls (p=0.04) or AATD (FEV1 >80%)
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FIGURE 1 The proteome of the circulating neutrophil plasma membrane is altered in α1 antitrypsin (AAT) deficiency (AATD) compared with normal
chronic obstructive pulmonary disease (COPD). a) Isoelectric focussing patterns of AAT phenotypes. Healthy control MM AAT glycoforms (M2-M8)
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(p=0.03) (fig. 2b). Moreover, significantly increased levels of degranulated neutrophil elastase was detected
in cell supernatants of AATD (FEV1 <80%) compared with healthy controls (p=0.0006) or non-AATD
COPD (FEV1 <80%) (p=0.006) (fig. 2c). In addition, by investigating membrane-bound neutrophil elastase
levels by FRET analysis, compared to healthy control cells, results revealed a significant increase in plasma
membrane bound neutrophil elastase activity on AATD (FEV1 <80%) cells at rest (p=0.01) and after
10 min TNF/fMLP stimulation (p=0.01) (fig. 2d).

A central role of Rac2 in primary granule exocytosis has been described [21], with peak GTP-bound Rac2
activity occurring between 30 s and 5 min of stimulation [22]. In the current study, TNF/fMLP stimulated
levels of active GTP-bound Rac2 were increased in neutrophil lysates of AATD (FEV1 <80%) individuals
compared with healthy controls (p=0.02) (fig. 3a). Moreover, by inclusion of the Rac inhibitor, NSC23766
(50 μM) and quantification of extracellular MPO or neutrophil elastase by ELISA, MPO and neutrophil
elastase degranulation by AATD cells was significantly reduced (p=0.01 and p=0.001, respectively) (fig. 3b).
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FIGURE 2 Increased primary granule release from α1 antitrypsin (AAT) deficiency (AATD) neutrophils. a)
Neutrophils (1×107) isolated from healthy controls (HC) or AATD (forced expiratory volume in 1 s (FEV1) <80%
predicted) individuals were incubated at 37°C and were either untreated (Un) or stimulated with tumour
necrosis factor (TNF) (10 nM)/fMLP (100 nM) (St). Cell-free supernatants were collected and Western blotted
for markers of primary granule release including myeloperoxidase (MPO), BPI and PR3. Representative blots
of n=6 subjects per group. Western blot of unstimulated and stimulated neutrophil whole cell lysates for
GAPDH demonstrated equal protein loading indicative of equal cell numbers used per reaction. b and c) a
comparison of stimulated levels of MPO (b) and neutrophil elastase (c) release by healthy control (HC), AATD
cells from individuals with FEV1 >80% predicted, AATD cells from patients with FEV1 <80% and matched
non-AATD chronic obstructive pulmonary disease COPD patients, FEV1 <80% predicted. Significance was
tested by one-way ANOVA, followed by Tukey’s post hoc multiple comparison test. d) Increased neutrophil
elastase activity was recorded on the outer plasma membrane of resting AATD (FEV1 <80%) neutrophils
compared with resting HC cells (p=0.01 by unpaired t-test; n=3 subjects per group), with a significant
increase observed in both groups in response to stimulation (St) with tumour necrosis factor (TNF)α/
N-Formylmethionyl-leucyl-phenylalanine (fMLP) for 10 min (p=0.01, p=0.02, respectively). Measurements are
mean±SEM.

https://doi.org/10.1183/13993003.01678-2019 5

COPD AND BASIC SCIENCE | M.P. MURPHY ET AL.



Collectively, these results demonstrate that Rac2 activation is altered in AATD neutrophils, which may
contribute significantly to increased degranulation of primary granules.

Neutrophil elastase induced superoxide anion production
We sought to explore the consequence of increased primary granule exocytosis in AATD, with focus on
neutrophil elastase mediated NADPH oxidase activation and enhanced O2

− production. By use of a
cytochrome c reduction assay, and when analysed with respect to the presence of airway obstruction, there
was no difference in O2

− production by unstimulated neutrophils of healthy control, healthy AATD
individuals (FEV1 >80% predicted) or AATD with established airways disease (FEV1 <80% predicted)
(fig. 4a). Moreover, fMLP (100 nM) only poorly activated the NADPH oxidase of healthy control or
healthy AATD neutrophils, confirming the un-primed status of these cells (fig. 4a). In contrast, however,
fMLP induced a significant 1.8-fold increase in O2

− production by cells of AATD patients with established
airways disease, when compared with unobstructed AATD cells (2.1±0.2 nmol O2

− versus 1.2±0.3 nmol O2
−

per 106 cells, respectively; p=0.015) (fig. 4a). Moreover, when analysed with respect to TNF/fMLP
stimulated activation, there was no difference observed in levels of O2

− produced by healthy control
compared with AATD cells from individuals with FEV1 >80% or non-AATD COPD patients (FEV1 <80%)
(fig. 4b). In contrast, however, a significant difference was observed in O2

− production by AATD cells from
individuals with FEV1 <80% compared with healthy control cells (3.0±0.3 nmol O2

− versus 2.1±0.2 nmol
O2
− per 106 cells, respectively; p=0.01) (fig. 4b).

It has been shown that the presence of neutrophil elastase increases reactive oxygen species (ROS)
production via cleavage of protease activated receptor 2 (PAR2) [23]. We hypothesised that the presence of
neutrophil elastase on AATD neutrophils would result in increased production of ROS via cleavage of
PAR2 from the cell surface. To confirm that neutrophil elastase could activate PAR2 on neutrophils, cells
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(1×106) were treated with neutrophil elastase (250 nM) and the level of PAR2 assessed by flow cytometry
(supplementary figure S2). Neutrophil elastase treated neutrophils demonstrated a significant three-fold
reduction in the presence of PAR2 on the cell surface (p=0.01) (fig. 4c), indicative of PAR2 activation
[23]. To understand whether neutrophil elastase:PAR2 activation triggered ROS production, neutrophils of
healthy control, non-AATD COPD patients (FEV1 <80%), AATD individuals with FEV1 >80% or AATD
individuals with FEV1 <80% were challenged with TNF/fMLP, neutrophil elastase, neutrophil elastase in
combination with AAT (5 or 27.5 µM) or a PAR2 blocking antibody (10 μg·mL−1) (fig. 4d). Healthy
control neutrophils challenged with neutrophil elastase demonstrated a significant 2.1-fold increase in O2

−

production compared with untreated cells (p<0.0001), an effect inhibited by inclusion of 5 µM (p=0.05) or
27.5 µM AAT (p=0.0001) or the PAR2 blocking Ab (p<0.0001) (fig. 4d). Furthermore, neutrophils of
AATD individuals with FEV1 <80% demonstrated significantly increased levels of O2

− production in
response to neutrophil elastase compared to healthy control cells (p=0.0005) or neutrophils of non-AATD
COPD patients with matched FEV1 (p=0.03). The increased level of O2

− production by cells of AATD
individuals with airway obstruction was significantly inhibited by AAT (5 µM, p<0.0001; 27.5 µM,
p<0.0001) and the PAR2 blocking Ab (p<0.0001) (fig. 4d). Collectively, these results corroborate
neutrophil elastase mediated PAR2 activation and O2

− production, highlighting a further dimension to the
benefits of circulating plasma AAT.
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>80% predicted, AATD cells from patients with FEV1 <80% and non-AATD chronic obstructive pulmonary disease (COPD) patients with FEV1 <80%
predicted (106 cells per patient group). Cells remained untreated (Un) or treated with N-Formylmethionyl-leucyl-phenylalanine (fMLP) (100 nM)
(a), or stimulated with tumour necrosis (TNF) (10 nM)/fMLP (100 nM) (b). AATD neutrophils (FEV1 <80%) produced significantly more O2

−.
Significance was tested using two-way ANOVA followed by Tukey’s multiple comparison test. c) Flow cytometry analysis using a FITC-labelled
anti-PAR2-antibody demonstrates significantly reduced levels of plasma membrane PAR2 post neutrophil elastase exposure (100 nM, 15 min)
compared to untreated cells (p=0.01, Student’s t-test, n=3). d) Cytochrome c assay of O2

− production by HC neutrophils stimulated with neutrophil
elastase (250 nM), neutrophil elastase plus AAT (5 or 27.5 µM) or neutrophil elastase following pre-treatment with PAR2 blocking Ab (Anti-PAR2;
10 µg·mL−1). Significance was tested using two-way ANOVA followed by Tukey’s multiple comparison test. Bars are the mean±SEM. *: p<0.05;
**: p<0.01; ***: p<0.001; ****: p<0.0001
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The in vitro effect of exogenous AAT on dysregulated primary granule release by AATD
neutrophils
We next investigated the effects of AAT in vitro on neutrophil degranulation. By immunoblot analysis of
cell-free extracellular supernatants, levels of released MPO in response to TNF/fMLP stimulation were
found to be significantly reduced in the presence of increasing concentrations of AAT. Over a
concentration gradient of 2 µM to 27.5 µM, AAT exerted an inhibitory effect on TNF/fMLP mediated
MPO release with a 50% decrease observed for 6.8 µM AAT, whilst 27.5 µM AAT further reduced MPO
release by approximately 75% (p=0.02) (fig. 5a). The impact of exogenous AAT (2 or 27.5 μM) on TNF/
fMLP induced primary granule degranulation of AATD cells was next examined. The increased
degranulation of MPO after 5 min stimulation was significantly inhibited in healthy control and AATD
cells by 27.5 μM AAT (p=0.02 and p=0.002, respectively) (fig. 5b). Collectively, these experiments
demonstrate the ability of physiological levels of AAT to impact upon TNF/fMLP induced neutrophil
degranulation processes, an immunomodulatory property compromised in AATD, and potentially
impacted upon by AAT augmentation therapy, which was next explored.

AAT augmentation therapy in vivo modifies the neutrophil plasma membrane proteome
Ensuing experiments investigated whether AAT augmentation therapy resulted in an altered neutrophil
plasma membrane proteome in vivo, and specifically, whether results indicating modification of primary
granule release by exogenous AAT in vitro, could be confirmed in vivo. Plasma and neutrophils were
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FIGURE 5 Exogenous α1 antitrypsin (AAT) modifies neutrophil primary granule release in vitro. a) Neutrophils
(1×107 cells·mL−1) isolated from healthy controls (HC) were stimulated with tumour necrosis factor (TNF)
(10 nM)/N-Formylmethionyl-leucyl-phenylalanine (fMLP) (100 nM) in the absence or presence of increasing
concentrations of AAT (2–27.5 µM). Cell-free supernatants were collected at 5 min and analysed by Western
blotting for AAT or myeloperoxidase (MPO). Exogenous AAT reduced the degranulation of MPO in a
concentration-dependent manner (p=0.02 by one-way ANOVA with Geisser–Greenhouse correction of
densitometric units (DU)). Western blot of corresponding neutrophil whole-cell lysates for GAPDH
demonstrated equal cell numbers used per reaction indicative of equal protein loading. b) Neutrophils of HC
or AAT disease (AATD) patients were stimulated in the absence or presence of AAT (2 or 27.5 μM). Supernatants
were analysed by Western blotting to determine the neutrophil degranulation pattern. AAT (27.5 μM) significantly
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All results are expressed as relative densitometry units. All measurements are mean±SEM.
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isolated from AATD patients on augmentation therapy (FEV1 42.9±13% predicted). 2 days post infusion,
the circulating plasma levels of AAT were significantly increased, in comparison with levels at the nadir of
prior treatment (∼1.4 g·L−1 and ∼0.8 g·L−1, respectively; p<0.0001) (fig. 6a). To understand whether
infused AAT binds to circulating neutrophil plasma membrane, the membrane AAT expression profile of
AATD neutrophils was assessed by flow cytometry (fig. 6b). Results revealed a significant increase in the
level of membrane bound AAT detected on day 2 post therapy (mean fluorescence=39) compared with
day 0 pre-therapy (mean fluorescence=10.2; p<0.001). We performed proteomic analysis of the plasma
membrane fraction of neutrophils isolated from the circulation of AATD individuals receiving AAT
augmentation therapy at their nadir AAT levels (day 0) and paired samples on day 2 following treatment
(n=6). Tandem MS/MS proteomic analysis identified 66 intrinsic neutrophil proteins that were
differentially expressed between day 0 and day 2 of AAT augmentation therapy (fold change >1.5; within
subject ANOVA p⩽0.05). Of these, 65 were increased in abundance on day 0. Hierarchical cluster analysis
was performed on differentially expressed proteins and presented by heat map (fig. 6c). This visual
representation demonstrates the differences seen in the neutrophil plasma membrane proteome at these
time-points of AAT augmentation therapy.

Gene ontology biological process cluster analysis was performed on differentially expressed proteins using
the online gene ontology tool GORILLA [24]. Gene ontology cluster analysis commonly results in
redundant terms and thus the online REVIGO (Reduce and Visualise Gene Ontology) tool was used to
summarise and visualise results [25]. REVIGO was used to generate a network graph of enriched
biological process clusters (supplementary figure S3). Of most significance to the current study, the
differentially expressed group was enriched for proteins involved in exocytosis (gene ontology term
0006887, enrichment score 1.64; p=0.0008, FDR adjusted q=0.03). 31 of the 65 differentially expressed
intrinsic neutrophil proteins were associated with this gene ontology term (supplementary table S2).
Individual proteins are represented by their UniProtKB number, with MPO and proteinase-3 (PR3)
highlighted as representative primary granule proteins. Most notably, the archetypal constituents of
primary granules MPO and PR3 were increased on day 0 compared to day 2 of AAT augmentation
therapy (p⩽0.05, fold change 2.6 and 2.7 respectively) (fig. 6d).

We next aimed to validate proteomic results by Western blot. Neutrophil membranes were isolated on day
0 and day 2 of AAT augmentation therapy (n=6 per group). Immunoblot densitometry demonstrated
significantly decreased abundance of MPO (p=0.02) and PR3 (p=0.02) in membrane fractions of AATD
patients on day 2 compared with day 0 of AAT augmentation therapy (fig. 7a). In concurrence, results of
FRET analysis revealed that AATD neutrophils illustrated significantly reduced levels of membrane
associated neutrophil elastase activity on day 2 post treatment when compared with neutrophils of patients
not on therapy (p=0.007) (fig. 7b). In addition, there was a significant decrease in levels of active
GTP-bound Rac2 on day 2 post-augmentation therapy when compared with day 0 pre-treatment (p=0.04)
(fig. 7c). Moreover, upon TNF/fMLP activation of purified neutrophils from AATD individuals on day 0
and day 2 of AAT augmentation therapy, significantly reduced levels of MPO were degranulated to the
extracellular milieu on day 2 of AAT augmentation therapy (p=0.007) (fig. 7d). Of note, the level recorded
in the augmentation therapy group was not statistically different when compared to the level released by
healthy control cells, suggesting normalisation of the degranulation process post-therapy (fig. 7d).

To investigate whether AAT augmentation therapy converted the AATD neutrophil membrane proteome
to that of an AAT sufficient COPD cell, thereby confirming the effect of AAT augmentation in vivo, we
next compared the plasma membrane proteome of neutrophils isolated from COPD to that of AATD
individuals (n=6) 2 days post-intravenous augmentation therapy (day 2) (fig. 7e). Only one protein was
significantly differentially expressed in this analysis (EH domain-containing protein 1, fold change 2.9;
p=0.03), suggesting that AAT augmentation therapy caused reversion of the PM proteome to a state more
analogous to that of the AAT sufficient COPD neutrophil (fig. 7e). Furthermore, granule constituent
proteins were not differentially expressed in this comparison. Collectively, these results illustrate the effect
of weekly AAT infusions on Rac2 activation and degranulation in vivo, both of which are clearly related to
the levels of AAT in plasma.

Discussion
This study demonstrates the ability of AAT augmentation therapy to impact on the membrane proteome
of AATD–COPD neutrophils, and elucidates the mechanism by which its deficiency leads to increased
primary granule release, resulting in PAR2 activation and ROS generation.

By use of tandem MS analysis, we demonstrated that the membrane proteome of circulating neutrophils
differs between AATD–COPD and FEV1-matched non-AATD COPD individuals. Proteomic results
indicated increased primary granule proteins including MPO and BPI, interacting with the neutrophil
plasma membrane. Accordingly, we show that at baseline and also in response to stimulation, neutrophil
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primary granule degranulation capacity was significantly higher in AATD patient neutrophils, with
elevated levels of MPO, BPI, PR3 and neutrophil elastase released compared with control cells. In line with
this result, significantly increased levels of MPO and neutrophil elastase were detected in AATD–COPD
patient sputum compared with AAT-sufficient COPD individuals [26]. The clinical implications of
increased MPO release have been demonstrated by the use of an MPO inhibitor, which reduced
progression of emphysema and small airway remodelling while partially protecting against pulmonary
hypertension, suggesting a potential therapeutic role for MPO inhibitors in the management of obstructive
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airways disease [27]. The current study also demonstrated increased neutrophil elastase activity on the
surface of AATD–COPD neutrophils compared with healthy controls. Dysregulated neutrophil elastase
activity has previously been shown to induce secretion of proinflammatory stimuli including LTB4 and
IL-8 [11], thus generating a cycle of inflammation.

It has previously been documented that neutrophils from patients with cystic fibrosis (CF) release greater
levels of neutrophil elastase compared with healthy control cells [28]. Results of the present study further
expands this field, and demonstrates that this phenomenon is not specific to CF, and that AATD–COPD
cells also release significant levels of primary granules, with increased levels of MPO, BPI and neutrophil
elastase detected on membranes of AATD cells, underscoring the assertion that inflammation rather than
intrinsic cellular defects may be the cause. Degranulation of MPO and neutrophil elastase by neutrophils
from obstructed AATD individuals was elevated, to a proportionately greater extent than healthy control
cells, congruent with elevated levels of circulating pro-inflammatory mediators recorded in AATD [5]. It is
recognised that granule proteins remain bound to the cell surface of neutrophils when granules fuse with
the plasma membrane during exocytosis. Indeed, it has been shown that MPO binds membranes via a
CD11b/CD18 integrin-dependent mechanism [29], and neutrophil elastase can rebind membranes and
exosomes derived from neutrophils [30]. Of note however, although neutrophil elastase was found
associated with neutrophil plasma membranes by FRET analysis, proteomic examination did not identify a
difference in neutrophil elastase. This anomaly may possibly arise due to neutrophil elastase autolysis
during protein sample preparation for mass spectrometry. Neutrophil degranulation of primary granules is
regulated by Rac2 and in the present study measurements of GTP-bound Rac2 illustrated significantly
increased activity in AATD neutrophils. Interestingly, although both CF [28, 31] and AATD–COPD
neutrophils secrete increased levels of primary granules, no such similarity exists for secondary and tertiary
granule release; compared with healthy control cells, AATD [15] and CF cells [32] release significantly
more and less, respectively. In CF, it was demonstrated that decreased Rab27a activation lead to decreased
secondary and tertiary granule release, highlighting the different roles that Ras proteins play in the
regulation of neutrophil degranulation and the need for further studies exploring their regulation and
involvement in airways disease.

The observed excessive neutrophil degranulation by AATD–COPD cells prompted us to question the
consequence and possible impact on disease progression. This is not a straightforward concept, however,
as not all AATD patients suffer from emphysema or COPD and even in those with severe AAT deficiency,
the development of lung disease is variable and most likely involves environmental, occupational or
genetic modifiers. Nonetheless, airway oxidative stress has been associated with air trapping, bronchitic
symptoms and loss of lung function [33]. Based on previous findings of ROS generation following
neutrophil elastase activation of PAR2 on nociceptive neurons [23], we explored neutrophil elastase
activation of PAR2 on neutrophils with results demonstrating significant superoxide anion production.
The described signalling axis was inhibited by inclusion of a PAR2 blocking antibody and implies that
PAR2 antagonists may be used as a novel anti-oxidant therapy in obstructive airways disease where PAR2
plays a role [34]. Alternatively, a second approach could involve modulation of neutrophil primary granule
release, thereby removing the source of the PAR2 stimulant. Consistent with the results indicating an
exaggerated degranulation response by AATD–COPD neutrophils in the current study, physiological levels
of AAT significantly reduced the level of primary granule exocytosis in vitro, as demonstrated by reduced
detectable levels of released MPO. The effect of AAT on neutrophil O2

− production was expanded to a
midpoint of 5 μM. However, whilst this concentration of AAT inhibited superoxide production in vitro,
this may not be the case in vivo, as mutant Z-AAT of AATD patients may polymerise, and possess
reduced anti-elastase capacity [35]. The benefits of the immune-regulatory capacity of AAT in modulating
primary granule release may extend beyond prevention of PAR2 activation, as AATD is linked to
development of autoimmunity and anti-neutrophil cytoplasmic antibodies (ANCA) [36, 37]. The main
antigenic targets for ANCA include components of neutrophil primary granules including exocytosed
MPO, PR3 [38] and more infrequently, neutrophil elastase [39].

To support in vitro results demonstrating the ability of AAT to modulate primary granule release, we
isolated plasma and neutrophils from AATD–COPD patients who were receiving AAT augmentation
therapy. Results revealed that 2 days post-augmentation therapy levels of circulating AAT were within the
healthy control normal range (27.5 μM), and significantly increased levels of infused AAT were detected
bound to membranes of the circulating AATD neutrophil. Neutrophil plasma membrane proteome and
gene ontology cluster analysis of differences between day 0 and day 2 of AAT augmentation therapy
revealed decreased plasma membrane expression of MPO and PR3, indicative of reduced primary granule
release. Proteomic results were confirmed by Western blotting, with AAT therapy shown to reduce
exuberant Rac2 activation, as shown by the decreased level of bound GTP. In our study, AAT treatment
equalised the AATD-COPD neutrophil plasma membrane proteome to that of COPD cells, as indicated by
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aligned expression of all but one protein initially shown differentially expressed in the day 0 comparison.
The conclusion of the results is clear, and demonstrate that the neutrophil membrane in AATD patients
compared with non-AATD deficient COPD patients with matched FEV1 is altered, most probably due to a
lack of circulating AAT. One further point to emphasise is that the effects of AAT were most prominent at
day 2 of therapy and almost all worn off by day 0. Moreover, findings from the RAPID (Randomized,
Placebo-controlled Trial of Augmentation Therapy in Alpha-1 Proteinase Inhibitor Deficiency) clinical
trial confirmed the benefits of 60 mg·kg−1·week−1 AAT therapy in slowing progression of emphysema
radiologically, however augmentation therapy does not halt the decline in lung function. This suggests the
possible need to re-evaluate the set dose of 60 mg·kg−1, and that increased AAT dosing than currently
exercised may lead to enhanced clinical benefits, as recently suggested [5].

A number of limitations to this study should be discussed. Firstly, the significance of mid-level AAT
plasma levels and mutated forms of the human AAT protein, as observed in MZ- and SZ-AATD
phenotypes, on neutrophil primary granule degranulation has not been fully addressed, though our in
vitro data suggest a titratable phenotype that improves with increasing AAT. The prevalence of the MZ
and SZ phenotypes of AATD are considerably greater than the ZZ phenotype assessed in this study. Thus,
additional research is needed to clarify alterations in the neutrophil plasma membrane, considering the
high number of individuals who are heterozygous for AATD [40]. In addition, due to the recruitment
criteria a second limitation of this study is the participation of a relatively small number of AATD patients
receiving augmentation therapy. Despite this drawback, however, this study provides evidence of the
impact of infused AAT on the plasma membrane proteome and degranulation process of the circulating
neutrophil.

In summary, neutrophils from people with AATD with the most severe ZZ mutation illustrate an altered
membrane protein profile caused by increased Rac2 activation, imparting excessive primary granule
degranulation. This defect was corrected by treatment with AAT augmentation therapy, the effects of
which significantly altered the membrane proteome to that of a non-AATD COPD cell. These results
highlight the important role that AAT plays in regulating neutrophil biology and the importance of AAT
augmentation therapy in management of patients with AATD.
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