



## Normative data for multiple breath washout outcomes in school-aged Caucasian children

Pinelopi Anagnostopoulou <sup>(1,2,3)</sup>, Philipp Latzin <sup>(1)</sup>, Renee Jensen<sup>4</sup>, Mirjam Stahl <sup>(1)</sup>, Alana Harper<sup>7</sup>, Sophie Yammine<sup>1</sup>, Jakob Usemann <sup>(1)</sup>, Rachel E. Foong<sup>7,9</sup>, Ben Spycher<sup>10</sup>, Graham L. Hall<sup>7,9</sup>, Florian Singer <sup>(1)</sup>, Sanja Stanojevic<sup>4</sup>, Marcus A. Mall <sup>(1)</sup>, Felix Ratjen<sup>4,13</sup> and Kathryn A. Ramsey<sup>1,7,13</sup>

Affiliations: <sup>1</sup>Division of Respiratory Medicine, Dept of Pediatrics, Inselspital, University of Bern, Bern, Switzerland. <sup>2</sup>Insitute of Anatomy, University of Bern, Bern, Switzerland. <sup>3</sup>Medical School, University of Cyprus, Nicosia, Cyprus (current affiliation). <sup>4</sup>Division of Respiratory Medicine, The Hospital for Sick Children and Translational Medicine, SickKids Research Institute, University of Toronto, Toronto, ON, Canada. <sup>5</sup>Dept of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany. <sup>6</sup>Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Dept of Pediatrics, University of Heidelberg, Heidelberg, Germany. <sup>7</sup>Telethon Kids Institute, Perth, Australia. <sup>8</sup>University of Basel Children's Hospital (UKBB), Basel, Switzerland. <sup>9</sup>School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia. <sup>10</sup>Institute of Social and Preventive Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany. <sup>12</sup>Berlin Institute of Health (BIH), Berlin, Germany. <sup>13</sup>F. Ratjen and K.A. Ramsey contributed equally as last authors.

**Correspondence**: Felix Ratjen, Research Institute, The Hospital for Sick Children, Division of Respiratory Medicine, Department of Pediatrics, 555 University Avenue, ON M5G 1X8, Toronto, Canada. E-mail: felix. ratjen@sickkids.ca

## @ERSpublications

This study provides reference values for nitrogen multiple breath washout outcomes in healthy Caucasian children from 6 to 18 years old, measured with a commercially available device http://bit.ly/ 2rsab8v

Cite this article as: Anagnostopoulou P, Latzin P, Jensen R, et al. Normative data for multiple breath washout outcomes in school-aged Caucasian children. Eur Respir J 2020; 55: 1901302 [https://doi.org/ 10.1183/13993003.01302-2019].

This single-page version can be shared freely online.

## ABSTRACT

**Background:** The multiple breath nitrogen washout ( $N_2MBW$ ) technique is increasingly used to assess the degree of ventilation inhomogeneity in school-aged children with lung disease. However, reference values for healthy children are currently not available. The aim of this study was to generate reference values for  $N_2MBW$  outcomes in a cohort of healthy Caucasian school-aged children.

**Methods:** N<sub>2</sub>MBW data from healthy Caucasian school-age children between 6 and 18 years old were collected from four experienced centres. Measurements were performed using an ultrasonic flowmeter (Exhalyzer D, Eco Medics AG, Duernten, Switzerland) and were analysed with commercial software (Spiroware version 3.2.1, Eco Medics AG). Normative values and upper limits of normal (ULN) were generated for lung clearance index (LCI) at 2.5% (LCI<sub>2.5%</sub>) and at 5% (LCI<sub>5%</sub>) of the initial nitrogen concentration and for moment ratios ( $M_1/M_0$  and  $M_2/M_0$ ). A prediction equation was generated for functional residual capacity (FRC).

Results: Analysis used 485 trials from 180 healthy Caucasian children aged from 6 to 18 years old. While

Copyright ©ERS 2020

LCI increased with age, this increase was negligible (0.04 units-year<sup>-1</sup> for  $LCI_{2.5\%}$ ) and therefore fixed ULN were defined for this age group. These limits were 7.91 for  $LCI_{2.5\%}$ , 5.73 for  $LCI_{5\%}$ , 1.75 for  $M_1/M_0$  and 6.15 for  $M_2/M_0$ , respectively. Height and weight were found to be independent predictors of FRC.

**Conclusion:** We report reference values for  $N_2MBW$  outcomes measured on a commercially available ultrasonic flowmeter device (Exhalyzer D, Eco Medics AG) in healthy school-aged children to allow accurate interpretation of ventilation distribution outcomes and FRC in children with lung disease.