

Upregulation of smooth muscle Rho-kinase protein expression in human asthma

Lu Wang ^{1,2}, Pasquale Chitano^{2,3}, Peter D. Paré^{1,2} and Chun Y. Seow^{2,3}

Affiliations: ¹Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada. ²Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada. ³Dept of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.

Correspondence: Lu Wang, UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Rm 166, Vancouver, BC, Canada, V6Z 1Y6. E-mail: lu.wang@hli.ubc.ca

@ERSpublications

An important phenotypic change is associated with human asthma: the protein expression of both isoforms of Rho-kinase, ROCK1 and ROCK2, is increased in the smooth muscles of intra-parenchymal airways and in the pulmonary blood vessels http://bit.ly/2pPfyxH

Cite this article as: Wang L, Chitano P, Paré PD, *et al.* Upregulation of smooth muscle Rho-kinase protein expression in human asthma. *Eur Respir J* 2020; 55: 1901785 [https://doi.org/10.1183/13993003.01785-2019].

This single-page version can be shared freely online.

To the Editor:

The lack of bronchodilatory response to deep inspiration in asthmatics is thought to be partially due to reduced airway distensibility [1, 2], possibly caused by an increase in airway smooth muscle (ASM) tone and stiffness [3]. Rho-kinase (ROCK) is known to play a role in regulating ASM tone [4] and ASM cytoskeletal stiffness [5].

Copyright ©ERS 2020