Supplementary material

Eight novel variants in the SLC34A2 gene in pulmonary alveolar microlithiasis

Åsa Lina M. Jönsson, Elisabeth Bendstrup, Susie Mogensen, Elizabeth J. Kopras, Francis X. McCormack, Ilaria Campo, Francesca Mariani, Amparo Escribano-Montaner, Are M. Holm, Maria del Mar Martinez-Colls, Guillem Pintos-Morell, Camille Taillé, Bruno Crestani, Ole Hilberg, Jane Hvarregaard Christensen^{*}, and Ulf Simonsen^{*}

*Shared senior authorship

<u>Text</u>

Genetic analyses

Eleven pairs of PCR primers (table E1) were designed to amplify the coding exons and the intronexon boundaries of *SLC34A2*. Exons 2-3 and exons 11-12 were each amplified as part of a single PCR product. Exon 13 was amplified as two overlapping fragments. The amplifications started with an initial step of denaturation of 2 min at 95°C, followed by 35-40 cycles of 12 seconds denaturation at 95°C, 40 seconds of annealing at 55-66°C (specific temperatures are given in table E1), and 30-40 seconds of extension at 70°C, and a final prolonged extension step of 4 min at 72°C. After amplification, the PCR products were run on Agarose TBE gels to verify the specificity of the amplifications. Subsequently, after purification using Jetquick PCR product purification spin kit (Genomed, Löhne, Germany), the PCR products were subjected to bi-directional direct DNA sequencing (Eurofins Genomics, Ebersberg, Germany) using the same primers as used for PCR amplification. Repeated sequence analysis of an independently generated PCR product containing the variant was performed in all patients not previously genetically tested.

Classification of the variants

Variants were scored on the basis of their predicted effect on NaPi-2b function based on the variant type and localisation within the protein; missense or nonsense/frameshift and the localisation in critical domains or areas (figure 4 in the print version). The domains/areas considered critical were the transmembrane domains (TMDs) 3-4 and 8-9 (green color), which form the substrate coordination site. In addition, important areas for electrogenicity, regulation and targeting are located in the area between TMDs 4-5, 10-11, and at the C-terminal region [E1]. Thus, variants causing premature truncation (frameshift and nonsense variants) or having localisation within a key functional domain or area of the predicted protein scored one point each. Missense variants and

small in frame deletions scored zero points. Maximum score was two. Human Genome Variation Society (HGVS) guidelines were used for sequence variant nomenclature [E2].

Six of 10 of the expected disease-causing allelic variants were present in very low frequency in Genome Aggregation Database (GnomAD) [E3], Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP) [E4], 1000Genomes Project [E5], and Database of single nucleotide polymorphisms (dbSNP) [E6] databases. The variants p.Gly106Arg (rs137853142) with an allele count of four (4:246252), p.Trp413Ter (rs766735856) with an allele count of three (3:246254), p.Leu443Ter (rs775513338) with an allele count of one (1:246270), p.? (c.1333+1G>A) with an allele count of one (1:246268), p.Gly464Arg (rs115151720) with an allele count of six (6:246266), and p.Thr468del (rs765046299) with an allele count of one (1:246264) were all present in these public databases of known genetic variation, however all only reported in heterozygous state. The stated allele counts are based on the largest populations investigated.

Tables

Exon	Primer sequences	Annealing temperature (°C)	Predicted length of amplicons (nucleotides)
2+3	Forward: 5'-GAAATCTTTCCCTTCCTTTTACTGC- 3' Reverse: 5'-GATGATGACACCGTGAACCAC- 3'	66	553
4	Forward: 5'-TCCCAAACGCAAATCCTTTAGA- 3' Reverse: 5'-CTCTCGGAACCACATTTCAAGATAA- 3'	56	449
5	Forward: 5'-CTGTTTACTCAGTGCCCACCTAATC- 3' Reverse: 5'-CACCCTCAGATAGACAGGAGAGTGT- 3'	62	281
6	Forward: 5'-GCATAGGTAACTTTAGCCTGC- 3' Reverse: 5'-CTGAGTCTAATCAGCTGGTGAGTA- 3'	55	363
7	Forward: 5'-GAGGGTGGCAGATGATACAGGTAAT- 3' Reverse: 5'-CAGGCCCAGAATAGTGTTGTAGACA- 3'	62	391
8	Forward: 5'-GGCTCACAGTCACATTTATCTCCT- 3' Reverse: 5'-TTCAGGGACTCCCAATATTTCTTT- 3'	55	331
9	Forward: 5'-GTGGTGTCTGCGCCTGTTCA- 3' Reverse: 5'-TGGCAAAGGAAATGGACTTCAAGTT- 3'	56	458
10	Forward: 5'-AAGGAGGCTGAGAAGGGCTGTC- 3' Reverse: 5'-ATGCCAAGAACATTTCCAGGTGAAT- 3'	66	491
11+12	Forward: 5'-GAGTGGTTACTTGGGTGGGTTCAC- 3' Reverse: 5'-TGGCTCTTGTTAGAGACCAGTTTGC- 3'	62	692
13A	Forward: 5'-TGTCAAGAAATAATGGTTGCCACTC- 3' Reverse: 5'-CAGCCGGTGAACTTGGAGAC- 3'	63	647
13B	Forward: 5'-GCCGTCTTCTACCTGATCATC- 3' Reverse: 5'-AGCCAAAGGGAATCGAGTTAG- 3'	66	644

Table E1. Primers and conditions used for PCR amplification of SLC34A2

Parameters	Points						
1. FVC (% pred.)							
>70	0						
50-70	1						
<50	2						
2. DLCO (% pred.)							
> 60	0						
35-60	1						
< 35	2						
3. Pulmonary hypertension							
No	0						
Yes	1						
4. Dyspnoea							
MRC 1	0						
MRC 2-3	1						
MRC 4-5	2						
5. Chest pain							
No	0						
Yes	1						
6. Fatigue							
No	0						
Yes	1						
7. Clinical progression							
No	0						
Yes	1						
8. Limitations of daily activities							
No	0						
Yes	1						
9. Incapability to work							
No	0						
Yes	1						

 Table E2. Clinical disease severity parameters

FVC: forced vital capacity; DLCO: carbon monoxide diffusing capacity; % pred.: % of predicted. Clinical progression was defined as progression in symptoms, pulmonary function tests, and/or radiographical appearance. Clinical disease severity score was calculated for each patient based on these nine parameters. The value for each parameter was summed and divided by the total number of parameters.

Table E.S. Fatients demographics and chincar characteristics								
Id.	Country	Consanguinity (Relatives with PAM)	Smoking	Extrapulmonary calcifications (Co-morbidity)	Clubbing	Auscultation (Oxygen saturation)	Blood levels calcium and phosphate	
1*	USA	Yes, NS (ND)	No	No (MM)	No	Normal (Normal)	Ca: normal Pho: ND	
2*	SPA	Yes, parents first-degree cousins (No)	No	No (DM type 1)	No	Normal (Normal)	Normal	
3 ^{*,‡}	ITA	ND (Yes, NS)	No	Gallbladder stones (PH)	ND	Crackles (Abnormal)	Ca: normal Pho: ND	
4^{\dagger}	FRA [§]	No (2 siblings)	No	No (No)	No	Crackles (Normal)	Ca: normal Pho: slightly low	
5*	ΙΤΑ	No (ND)	No	No (No)	No	Crackles (Normal)	Ca: slightly low Pho: ND	
6*	USA	Yes, NS (ND)	ND	ND (ND)	ND	ND (ND)	ND	
7 ^{*, 11}	NOR	No (Sister)	ES (20 PY)	No (PH)	Yes	Crackles (Abnormal)	Normal	
8 *	NOR	No (Sister)	ES (30 PY)	No (No)	Yes	Crackles (Abnormal)	Normal	
9 *	USA	ND (No)	ES (NS)	No (AS, PH, IHD, AA)	No	ND (Normal)	ND	
10 [*]	SPA	No (Sister)	No	No (No)	No	Normal (Normal)	Normal	
11*	SPA	No (Brother)	No	No (No)	No	Normal (Normal)	Normal	
12 [*]	USA	ND (Yes ^{**})	ES (6 PY)	Kidney stone (PH, MVP, AH)	Yes	Crackles (Abnormal)	Normal	
13*	DEN	ND (No)	Yes (16 PY)	Kidney- and gallbladder stones, gastric wall calcifications (AS)	No	Crackles (Normal)	Normal	
14 [*]	DEN	No (No)	Yes (37 PY)	No (IHD)	Yes	Crackles (Normal)	Normal	

Table E3. Patients demographics and clinical characteristics

AA: aortic aneurism; AH: arterial hypertension; AS: aortic valve stenosis; Ca: calcium; DEN: Denmark; DM: diabetes mellitus; ES: ex-smoker; FRA: France; Id.: patient identification; IHD: ischemic heart disease; ITA: Italy; MM: mitochondrial myopathy; MVP: mitral valve prolapse; ND: no data; NOR: Norway; NS: not specified; PH: pulmonary hypertension (based on echocardiography and/or right heart catheterisation); Pho: phosphate; PY: pack years; SPA: Spain. *: Caucasian. †: Arabic. ‡: Lost to follow-up. §: Originated from Morocco. ^{II}: Deceased. **: Patient is a part of a cluster of PAM patients in Castellana, Italy.

Table E4. Clinical disease severity score						
Patient	Clinical disease severity score	Clinical disease severity [*]				
1	0.11	Mild				
2	0.00	Mild				
3	1.11	Severe				
4	0.44	Mild				
5	0.22	Mild				
6	NA^\dagger	NA^\dagger				
7	1.11	Severe				
8	1.11	Severe				
9	0.57	Moderate				
10	0.00	Mild				
11	0.11	Mild				
12	1.22	Severe				
13	1.00	Severe				
14	0.67	Moderate				

NA: not applicable. ^{*}: Based on the clinical disease severity score, which was based on a composite measure of the patient's symptoms, lung function, limitation of daily life due to PAM, signs of advanced disease, and disease course (nine parameters in total). Each parameter was scored 0-1 point or 0-2 points. Max average score 12/9 = 1.33. Mild: 0-0.44, Moderate: 0.45-0.88, Severe: 0.89-1.33. [†]: Clinical disease severity score was not calculated due to missing data.

Clinical disease	Smokin	g status [†]	-	
severity [*]	No	Yes	Total	
Mild	6	0	6	
Moderate	0	2	2	
Severe	1	4	5	
Total	7	6	13	

 Table E5. Correlation between clinical disease severity and smoking in adults and children

*: Clinical disease severity in each patient was categorised as mild, moderate or severe. The grade of severity was stated as a clinical disease severity score, which was based on a composite measure of the patient's symptoms, lung function, limitation of daily life due to PAM, signs of advanced disease, and disease course (nine parameters in total). [†]: Smoking status was categorised into two groups; No (never smoker) and Yes (former or current smoker). *Children were included in the calculations*.

H0 = Phenotype and smoking status are independent. Spearman rank correlation coefficient = 0.762, p = 0.003. STATA (version 11.2, StataCorp 2009, College Station, TX, USA).

Clinical disease	Smokin	g status [†]					
severity [*]	No	Yes	Total				
Mild	3	0	3				
Moderate	0	2	2				
Severe	1	4	5				
Total	4	6	10				

Table E6. Correlation between clinical disease severity and smoking in adults

*: Clinical disease severity in each patient was categorised as mild, moderate or severe. The grade of severity was stated as a clinical disease severity score, which was based on a composite measure of the patient's symptoms, lung function, limitation of daily life due to PAM, signs of advanced disease, and disease course (nine parameters in total). [†]: Smoking status was categorised into two groups; No (never smoker) and Yes (former or current smoker). *Only adults (>18 years) were included in the calculations.*

H0 = Phenotype and smoking status are independent. Spearman rank correlation coefficient = 0.617, p = 0.057. STATA (version 11.2, StataCorp 2009, College Station, TX, USA).

Lau	The Life Clussification of t	ne variants baset	i on type and localisation	
ы	Nucleotide	Protein	Type and localisation	Variant
10.	change	change	scoring	severity [*]
1	c.316G>A	p.Gly106Arg	Type: Missense: 0, Localisation: 0	Madarata
I	c.1238G>A	p.Trp413Ter	Type: Nonsense: 1, Localisation: 0	Moderate
2	c.560G>A	p.Gly187Glu	Type: Missense: 0, Localisation: 1	Moderate
3	c.646G>T	p.Gly216Ter	Type: Nonsense: 1, Localisation: 1	Severe
4	c.906G>A	p.Trp302Ter	Type: Nonsense: 1, Localisation: 0	Moderate
5	c.1136G>A	p.Cys379Tyr	Type: Missense: 0, Localisation: 0	Mild
6	c.1238G>A	p.Trp413Ter	Type: Nonsense: 1, Localisation: 0	Moderate
7	c.1327delC	p.Leu443Ter	Type: Nonsense: 1, Localisation: 1	Severe
8	c.1327delC	p.Leu443Ter	Type: Nonsense: 1, Localisation: 1	Severe
9	c.1333+1G>A	p.?	Type: Considered nonsense: 1, Localisation: 1	Severe
10	c.1390G>C	p.Gly464Arg	Type: Missense: 0, Localisation: 1	Moderate
11	c.1390G>C	p.Gly464Arg	Type: Missense: 0, Localisation: 1	Moderate
12	c.1402_1404delACC	p.Thr468del	Type: Considered missense: 0, Localisation: 1	Moderate
13	c.1402_1404delACC	p.Thr468del	Type: Considered missense: 0, Localisation: 1	Moderate
14	c.1402_1404delACC	p.Thr468del	Type: Considered missense: 0, Localisation: 1	Moderate

Table E7. Classification of the variants based on type and localisation

Id.: patient identification. ^{*}: Variant severity on the basis of the predicted effect on NaPi-2b function based on the variant type and localisation within the protein. Variants causing premature truncation (frameshift/nonsense) or had a presumed crucial localisation within the protein (transmembrane domains (TMDs) 3-4, 8-9 and the area between TMDs 4-5, 10-11) scored one point each. Missense variants and small deletions scored zero point. Mild (0 point), moderate (1 point), and severe (2 points). *SLC34A2* DNA reference sequence: Ensembl Transcript ID ENST00000382051.7 (GRCh38.p12 assembly).

Table E8	Table E8. Variant properties and in silico predictions of pathogenicity							
Id.	Nucleotide	Protein	Exon	Localisation in	Result s <i>in silico</i> tools [†]			
	change	change		protein [*]				
1	c.316G>A	p.Gly106Arg	4	TMD 1	MutationTaster: Disease causing PANTHER: Probably damaging Polyphen-2: Probably damaging PROVEAN: Deleterious			
2	c.560G>A	p.Gly187Glu	6	1st pore, TMD 4	MutationTaster: Disease causing PANTHER: Probably damaging Polyphen-2: Probably damaging PROVEAN: Deleterious			
3	c.646G>T	p.Gly216Ter	7	Critical area for electrogenicity, small IC-Loop between TMDs 4 and 5	MutationTaster: Disease causing PANTHER: Probably damaging Polyphen-2: NA, PROVEAN: NA			
4	c.906G>A	p.Trp302Ter	8	Long EC-Loop	MutationTaster: Disease causing PANTHER: Probably damaging Polyphen-2: NA, PROVEAN: NA			
5	c.1136G>A	p.Cys379Tyr	10	TMD 6	MutationTaster: Disease causing PANTHER: Probably damaging Polyphen-2: Probably damaging PROVEAN: Deleterious			
1,6	c.1238G>A	p.Trp413Ter	11	TMD 7	MutationTaster: Disease causing PANTHER: Probably damaging Polyphen-2: NA, PROVEAN: NA			
7-8	c.1327delC	p.Leu443Ter	11	2nd pore, TMD 8	MutationTaster: Disease causing PANTHER: Probably damaging Polyphen-2: NA, PROVEAN: NA			
9	c.1333+1G>A	p.?	Int. 11	2nd pore, TMD 8, donor-splice site immediately after the 3' end of exon 11	Human Splicing Finder: Alteration of the donor site, most probably affecting splicing. MutationTaster: Disease causing			
10-11	c.1390G>C	p.Gly464Arg	12	2nd pore, TMD 9	MutationTaster: Disease causing PANTHER: Probably damaging Polyphen-2: Probably damaging PROVEAN: Deleterious			

12-14	c.1402_1404delACC	p.Thr468del	12	2nd pore, TMD 9	MutationTaster: Disease causing
					PANTHER: NA, Polyphen-2: NA
					PROVEAN: Deleterious
Id.: pat	tient identification; Int.:	intron; TMD: tran	smembra	ne domain; NA: not app	blicable. [*] : A model of NaPi-2b,
made b	by superimposing human	NaPi-2b on rat N	laPi-2a pr	edicted topology and m	odified from Forster et al. 2013 (E1)
and Vi	rkki et al. 2007 (E7), wa	s used to predict t	he locatio	ons of the variants in the	protein (figure 4 in the print
versior	n). The protein sequences	s used for alignme	ent in Clu	stal Omega version 1.2.4	4 (E8): Ensembl Transcript ID
ENST(00000382051.7, release 9	92 (Human (GRC	h38.p12)	assembly) and Ensembl	Transcript ID

ENSRNOT0000033749.5 (Rat (Rnor_6.0) assembly)). [†]: Human Splicing Finder (E9), Mutation Taster (E10), PANTHER (E11), Polyphen-2 (E12), and PROVEAN (E13). *SLC34A2* DNA reference sequence: Ensembl Transcript

ID ENST00000382051.7 (GRCh38.p12 assembly).

Clinical disease	Variant severity score †				
severity [*]	0	1	2	Total	
Mild	1	5	0	6	
Moderate	0	1	1	2	
Severe	0	2	3	5	
Total	1	8	4	13	

Table E9. Correlation between clinical disease severity and variant severity score

*: Clinical disease severity in each patient was categorised as mild, moderate or severe. The grade of severity was stated as a clinical disease severity score, which was based on a composite measure of the patient's symptoms, lung function, limitation of daily life due to PAM, signs of advanced disease, and disease course (nine parameters in total). [†]: Variant severity score: variants were scored on the basis of their predicted effect on NaPi-2b function based on variant type and localisation within the protein.

H0 = Phenotype and localisation and variant type are independent. Spearman rank correlation coefficient = 0.629, p = 0.021, STATA (version 11.2, StataCorp 2009, College Station, TX, USA).

<u>References</u>

E1. Forster IC, Hernando N, Biber J, Murer H. Phosphate transporters of the SLC20 and SLC34 families. *Mol Aspects Med* 2013: 34(2-3): 386-395.

E2. den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, Roux AF, Smith T, Antonarakis SE, Taschner PE. HGVS Recommendations for the Description of Sequence Variants: 2016 Update. *Hum Mutat* 2016: 37(6): 564-569.

E3. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won HH, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG, Exome Aggregation C. Analysis of protein-coding genetic variation in 60,706 humans. *Nature* 2016: 536(7616): 285-291.

E4. Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP), Seattle, WA (URL: http://evs.gs.washington.edu/EVS/) [date (03, 2019) accessed].

E5. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR. A global reference for human genetic variation. *Nature* 2015: 526(7571): 68-74.

E6. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI database of genetic variation. *Nucleic Acids Res* 2001: 29(1): 308-311.

E7. Virkki LV, Biber J, Murer H, Forster IC. Phosphate transporters: a tale of two solute carrier families. *Am J Physiol Renal Physiol* 2007: 293(3): F643-654.

E8. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol Syst Biol* 2011: 7: 539.

E9. Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C. HumanSplicing Finder: an online bioinformatics tool to predict splicing signals. *Nucleic Acids Res* 2009: 37(9): e67.

E10. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. *Nat Methods* 2014: 11(4): 361-362.

E11. Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. *Nucleic Acids Res* 2017: 45(D1): D183-D189.

E12. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS,Sunyaev SR. A method and server for predicting damaging missense mutations. *Nat Methods* 2010: 7(4): 248-249.

E13. Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. *Bioinformatics* 2015: 31(16): 2745-2747.