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Section E1. Estimation of impedance from flow and pressure raw data 

There are several approaches for estimating Zrs from flow and pressure signals[1-5]. The 

most common one is based on the calculation of Zrs as the ratio between the estimated cross-

spectrum between flow and pressure signals and the estimated auto-spectrum of the flow 

signal[6]. With this method, the entire recording of pressure and flow signals is divided into 

smaller data segments made of a predefined number of data points. Each segment is 

eventually multiplied by a function that varies from 0 at the beginning of the segment, 

increases to 1 in the center, and gets back to 0 at the end of the segment (a procedure called 

windowing). The estimation of Zrs spectra can then be obtained by averaging periodograms 

computed by using the Fast Fourier Transform (FFT) algorithm on each data segment. 

 

Using this approach, the estimated impedance corresponds to the average value of the 

mechanical properties over the entire recording, implying the hidden assumption of 

stationarity of the mechanical properties of the respiratory system over this time. Impedance 

may change within a breath even in healthy subjects[7] but it may change markedly within a 

breath due to the presence of tidal expiratory flow limitation[8, 9]. There may also be large 

intra-tidal differences in Zrs between breaths because of fluctuations in end-expiratory lung 

volume[10] and/or breathing pattern[11]. Therefore, different approaches for data processing 
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and interpretation are required in presence of these conditions. The so-called “within-breath 

analysis” uses data processing algorithms able to estimate Zrs over very short time periods 

(i.e. over one or two oscillations), addresses this issue. This approach relies on forcing signals 

composed of fewer frequencies, which improves signal-to-noise ratio compared to signals 

with many frequency components, for the same total power of the signal[12]. In this case the 

impedance can be obtained from algorithms based on cross-correlation[11, 13], FFT [14, 15], 

or least squares[16] and their output is a time course of Rrs and Xrs over time (i.e. R(t) and 

X(t), respectively) for one[11] or more[17] frequencies.  

 

It has been demonstrated that these mathematical approaches are theoretically equivalent and 

that the choice of the algorithm used per se, does not affect the results[13]. Alternatively, 

implementation of such algorithms in the computer software may lead to different results due 

to variations in numerical processing and round-off errors across different hardware 

platforms. Therefore, these algorithms require extensive validation to establish the accuracy 

of the estimated impedance regardless of the mathematical approach used. The results of 

validations should also be transparent and freely available.  

 

E1.1 Derivation of mean impedance parameters   

Once the Zrs is derived from the raw pressure and flow data, it may be reported as either 

spectra of Rrs and Xrs, or that of modulus and phase as functions of frequency, or as 

functions of time at each specified frequency when the within-breath approaches are used. 

Even if these data are reported graphically, it is necessary to report specific indices to 

quantitatively characterize the results of the test. 
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When the analysis is in the frequency domain (spectra), the values should include at least the 

values of Rrs and Xrs at a frequency representative of the low-frequency spectra (typically 4 

to 6Hz), of mid-frequency spectra (typically between 8 to 12Hz) and of higher frequency 

spectra (typically 18-30 Hz or higher). Resonant frequency is identified by interpolating 

Xrs(f) from oscillation frequencies adjacent to the ones at which Xrs changes from negative 

to positive values. In some systems, the area under the Xrs(f) curve from the lowest 

frequency to Fres, termed AX[18], is also reported. This index increases with disease[19-28],  

and is attractive since it  uses all the reactance data from the lowest frequency to resonance. 

However, a but a standardized approach for measurement (starting frequency, frequency 

resolution and numerical integration method) is still lacking. Also, in some children or in 

severely obstructed patients, Xrs(f) may not cross zero in the frequency range employed by 

the device, in which case AX cannot be measured since the values of Xrs at higher 

frequencies cannot be reliably extrapolated.  The methods of AX derivation should be 

described in reports/publications.  

 

E1.2 Derivation of Intra-breath impedance parameters 

When within breath analysis is implemented, Rrs(t) and Xrs(t) can be divided into inspiratory 

and expiratory portions.  Several parameters can be derived for both Rrs and Xrs, separately 

for inspiratory and expiratory phases of breathing. The parameters include the minimum, 

maximum, average, end-inspiratory and end-expiratory values of Rrs and of Xrs. Also, the 

differences between inspiratory and expiratory parameters have been described[8, 29, 30]. 

More recently, Rrs(t) and Xrs(t) were plotted against volume and against flow, and values 

such as the area of the Rrs or Xrs vs. volume loops were reported[9, 29, 31]. Intra-breath 

analysis therefore, allows measurement of the lung’s dynamic behavior in relation to flow-

dependence and volume-dependence. The rationale behind intra-breath analyses is that 
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airways diseases may affect Rrs and Xrs differently in inspiration and expiration, due to 

physiological asymmetry of lung mechanics. This asymmetry leads to phenomena happening 

during only specific breathing phases, such as expiratory flow limitation or airway closure. 

These differential mechanical responses during different parts of the respiratory cycle are 

exaggerated in disease due to for example, airway remodeling and alveolar dilation and 

destruction. More importantly, separation of Rrs and Xrs parameters into the inspiratory and 

expiratory phases potentially provides clinically useful information, over that of mean values, 

with potential for detailed characterization and phenotyping of airways and other lung 

diseases. This needs to be tested in clinical studies.  

 

Different approaches for calculating impedance indices may result in different Rrs and Xrs 

values. To improve repeatability of results when the impedance is calculated over several 

breaths, a number of full breaths should be used i.e. data obtained from the start of inspiration 

to the end of expiration, instead of a constant time window, which could include partial tidal 

breaths[32].  This is because if the within-breath variations of Rrs and Xrs are large, inclusion 

of partial breaths at the start and end of the measurements may lead to variable results. For 

example, if the time window includes an extra inspiration in one test and an extra expiration 

in another, the number of inspiratory or expiratory segments within the recording will differ 

and may bias the results. 

 

When within-breath approaches are used, manufacturers and users should specify the 

averaging process that is used. Averaging Rrs and Xrs data points from inspirations or 

expirations from all breaths is not equivalent to averaging data points from inspiration and 

expiration of each single breath and then averaging these for all breaths, as the duration of 

each breath is variable. Also, the different methods used to detect the beginning and the end 
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of a breath may lead to differences in results and therefore, the method used should be 

disclosed by manufacturers and users.    

 

 

 

 

 

Tables 

Table E1.  Published reference values for Rrs and Zrs for children and adults.  

 Authors year n ethnicity age 
range 
(yrs) 

setup 

Children      

 preschool 

 Hellinckx [33] 1998 247 Cau 2-6 IOS 

 Malmberg [34] 2002 109 Cau 2-7 IOS 

 Shackleton [35] 2013 584 Mex 3-5 i2M 

 school 

 Frei [36] 2005 222 Cau 2-10 IOS 

 Ducharme [37] 2005 197 Cau 3-17 Custovit 

 Dencker [38] 2006 360 Cau 2-11 IOS 

 Amra  [39] 2008 509 Iranian 5-19 IOS 

 Vu  [40] 2008 175 Viet 6-11 In-house 

 Nowowiejska [41] 2008 626 Cau 3-18 IOS 

 Hagiwara [42] 2013 537 Jpn 6-15 IOS 

 Calogero [43] 2013 760 Cau 2-13 I2M 
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n: 

num

ber 

of 

parti

cipa

nts; 

Cau: 

Cauc

asian

s; Mex: Mexicans; Jpn: Japanese; Viet: Vietnamese; UAE: United Arab Emarati. *: IOS, 

I2M, Oscilink, 2 home-build setups. IOS: Impulse Oscillometry System.  

 

Table E2. Threshold values for bronchodilator response derived from healthy children. 

Study Age (yrs) n* Drug (dose) Cut-off 

Helinckx 1998 [33] 3-7 228 Salbutamol 

(200 g) 

Rrs5: -41%  

Nielsen 2001 [53] 2-6 37 Terbutaline 

(500 g) 

Rrs5: -29%, Xrs5: +42% 

Malmberg 2002 

[34] 

2-7 89 Salbutamol 

(300 g) 

Rrs5: -37% 

Thamrin 2007 [54] 4-5 78 Salbutamol 

(600 g) 

Rrs6: -42%, Xrs6: +61% 

Oostveen 2010 [55] 4 144 Salbutamol 

(200 g) 

Rrs4: -43%, AX: +81%  

Calogero 2013 [43] 2-13 508 Salbutamol Rrs6: -32%, Xrs8: +50%, AX: -

 Gochiocoa-Rangel [44] 2015 283 Mex 2-15 IOS 

 Kanokporn [45] 2017 233 Thai 3-7 i2M 

 AlBlooshi  2018 291 UAE 4-12 tremeFlo 

Adults      

 Landser [46] 1982 407 Cau - In-house 

 Pasker [47] 1996 140 Cau 21-81 In-house 

 Guo [48] 2005 223 Cau 65-100 Oscilink 

 Brown [49] 2007 904 Cau 18-92 In-house 

 Oostveen [50] 2013 368 Cau 18-84 multi*  

 Schulz [51] 2013 397 Cau 45-91 IOS 

 Ribeiro [52] 2018 288 Braz 20-86 In-house 
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(200 g) 81% 

* n: the number of children who received bronchodilator 

Bronchodilator response is defined as ((post-pre)/pre)*100.  

 

Table E3. Threshold values for bronchodilator response derived from healthy adults. 

 

* n: the number of healthy adults who received bronchodilator 

Bronchodilator response is defined as ((post-pre)/pre)*100.  

 

 

 

Table E4. Studies comparing cut-offs during bronchial challenge testing using FOT vs 

spirometry.  

Reference Population FOT device FOT cut-off 

Paediatric studies 

Lebecque 1987 

[58] 

17 children with 

AHR & 14 non-

AHR 

Oscillaire 50% increase R6 

with histamine 

Bouaziz 1996 

[59] 

38 asthmatic 

children 

Pulmosfor 4-

32Hz or 6 & 

70% change R12 and 

1 hPa.s.L
-1

 decrease 

Study n* Drug (dose) Cut-off 

Houghton 2004 (salbutamol 

800μg) [56] 

12 Salbutamol 

(800 g) 

Rrs5: -16%, Xrs5: +27% 

Houghton 2005 (ipratropium) 

[57] 

12 Ipratropium 

(200 g) 

Rrs5: -23%, Xrs5: +19% 

Oostveen 2013 [50] 368 Salbutamol 

(400 g) 

Rrs5: -32%, Xrs: +44%, 

AX: -65% 
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12Hz in X12 with 

methacholine 

Jee 2010 [60] 50 asthmatic pre-

school children & 41 

children with cough 

IOS 80% decrease in X5 

with methacholine 

Bailly 2011[61] 227 children with 

suspected asthma 

IOS 50% decrease X5 

with methacholine 

Schulze 2012 

[62] 

48 children IOS 45% increase in R5 

or 0.69 kPa.s.L
-1

 

decrease in X5 to 

methacholine 

Adult studies 

van Noord 1989 

[63] 

53 adults Custom 

device 

47% increase in R5 

detecting 15% 

decrease in FEV1 to 

histamine 

Hsuie 1993 [64] 141 adults (asthma, 

cough, psychogenic 

dyspnoea and 

healthy) 

? ? 

J. Pairon 1994 

[65] 

119 adults with 

normal FEV1 from 

occupational 

screening.  

Custom 

device 

65% increase in R0 

with methacholine 

A.B. Bohadana 

1999 [66] 

71 adults with 

suspected asthma 

Pulmosfor 4-

32Hz 

0.060 %rise 

Rmean(4-32Hz)/μg 

carbachol (DRS) or 

0.066 %rise R10/ μg 

carbachol 

M. McClean 

2011 [67] 

52 asthmatic and 15 

healthy adults 

Custom 

device 

27% decrease in 

Grs6 or 0.93 cm 

H2O.s.L
-1

 decrease in 

X6 with mannitol 

IOS – impulse oscillometry system; R0, R5, R6, R10, R12, X5, X12 – respiratory system 

resistance at a specified oscillation frequency. 
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Figures 

Figure E1. Oscillometry traces showing examples of artefacts caused by (A) obstruction of 

the mouthpiece by the tongue, (B) swallows and (C) mouth leaks due to the lips not sealing 

around the mouth piece. Obstructions cause obvious changes in flow, perhaps with 

accompanying changes in the volume-time curves during breathing.  Changes in flow and 

volume-time curves when leaks occur may be more subtle and difficult to detect by visual 

inspection.  

 

Figure E2. Prediction equations of Rrs (left panel) and Xrs (right panel) at 5 or 6 Hz as a 

function of height from studies of preschool-age to adolescent children. The shaded grey 

panel in the right panel are the upper and lower limits of normal values of Rrs5 and Xrs5 in 

young adults according to Oostveen et al [50]. 
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