

Can circular RNAs be used as prenatal biomarkers for congenital diaphragmatic hernia?

Richard Wagner $0^{1,2,3,4}$, Aruni Jha^{2,3}, Lojine Ayoub^{1,2,3}, Shana Kahnamoui^{1,2,3}, Daywin Patel^{1,3}, Thomas H. Mahood^{2,3}, Andrew J. Halayko^{2,3}, Martin Lacher⁴, Christopher D. Pascoe $0^{2,3}$ and Richard Keijzer $0^{1,2,3}$

Affiliations: ¹Depts of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba, Winnipeg, MB, Canada. ²Dept of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada. ³Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada. ⁴Dept of Pediatric Surgery, University Hospital Leipzig, Leipzig, Germany.

Correspondence: Richard Keijzer, Dept of Surgery, Division of Pediatric Surgery, University of Manitoba and Children's Hospital Research Institute of Manitoba, AE402-840 Sherbrook Street Winnipeg, Manitoba, Canada, R3A 1R9. E-mail: richard.keijzer@umanitoba.ca

@ERSpublications

Circular RNAs are dysregulated in lungs of congenital diaphragmatic hernia patients, a malformation of the lung and diaphragm. These results suggest that they can serve as prenatal biomarkers to improve prognostication and diagnostic accuracy. http://bit.ly/2Cz7Bzm

Cite this article as: Wagner R, Jha A, Ayoub L, *et al.* Can circular RNAs be used as prenatal biomarkers for congenital diaphragmatic hernia?. *Eur Respir J* 2020; 55: 1900514 [https://doi.org/10.1183/13993003.00514-2019].

This single-page version can be shared freely online.

To the Editor:

Since 2000, more than 400 000 babies worldwide have died of congenital diaphragmatic hernia (CDH), a condition that is occurring as frequently as cystic fibrosis and characterised by underdeveloped lungs (pulmonary hypoplasia), persistent pulmonary hypertension and a diaphragmatic defect [1]. CDH can be diagnosed prenatally with ultrasound and fetal MRI, but outcome prediction and diagnostic accuracy remain imperfect [2]. The observed over expected lung-to-head (O/E LHR) ratio at 22–23 and 32–33 weeks of gestation is currently used to predict CDH outcomes [3]. A prenatal biomarker for the assessment of disease severity and prognostication has not been established yet. In contrast to cystic fibrosis, a common genetic cause has not been identified for CDH, suggesting that epigenetic and environmental factors are involved in the pathogenesis. We have previously discovered that microRNA 200b (miR-200b) is highly dysregulated in hypoplastic human CDH lungs and that miR-200b administration can serve as a prenatal therapy in an animal model for CDH [4, 5].