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Introduction
Despite highly effective antibiotics and intensive care support, the mortality associated with pneumonia
has not substantially decreased since the 1960s [1]. Hence, there remains a major requirement for
improved treatment and preventative strategies, which will need new knowledge on the pathogenesis of
pneumonia. Animal models have obvious high value when investigating the molecular mechanisms
involved in pneumonia pathogenesis, but they are also directly relevant for clinically orientated research
into new therapies and vaccines, complications of pneumonia, and identifying high risk groups. In this
article we describe how research using animal models will be essential if we are to reduce the immense
morbidity and mortality associated with pneumonia.

Background on animal models
Animal models are low cost, broadly available, and can be used for invasive protocols, facilitating detailed
mechanistic studies to inform the clinical approach. Issues involving work with animals are summarised
below and addressed in detail by MIZGERD and SKERRETT[2] and in a European Respiratory Society
statement “Optimising experimental research in respiratory diseases” [3]. A wide variety of animal models
of pneumonia exist, and which model is the most appropriate will depend on the research question(s)
being addressed. Non-mammalian species (insects, roundworms and zebra fish) are inexpensive and
powerful tools that recapitulate many aspects of human innate immunity and host cell signalling. They
have been used to identify virulence determinants [4–9], and their lack of high-order sentience makes
them attractive from an ethical perspective. However, they are limited by the lack of a mammalian
respiratory system or an adaptive immune response. Non-human primates are the opposite extreme,
closely recapitulating human physiology, immunology and pathology, and generally susceptible to human
pathogens, but their use raises major ethical concerns. Hence, non-human primates models are generally
restricted to testing the pharmacokinetics, toxicology and efficacy of vaccines or potential therapeutics [10]
prior to testing in humans, or the validation of key results obtained with other animal models [11, 12].
Rodent models are a compromise that accurately model most aspects of human innate and adaptive
immunity, and are also susceptible to the majority of human pneumonia pathogens [13–16]. There are
some important anatomical differences between rodents and humans [17, 18], and animal models of
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pneumonia frequently require forced aspiration of high numbers of bacteria (often >106) [19] rather than
inhalation [20, 21] or aspiration from the upper airway (figure 1a). Additionally, most investigators use
healthy young adult rodents, whereas in humans, pneumonia largely affects infants, the immunodeficient
or the elderly. Despite these issues the overlap in anatomy, physiology, immunology and cell biology
means animal models still replicate many important parameters of human infection.

The major advantage of animal models is the number of ways they can be manipulated to answer very
precise research questions. Infection models can be combined with genetic manipulation of the pathogen
to define the specific microbial processes required for pneumonia to develop [22, 23]. Comparing different
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FIGURE 1 a) Main differences in anatomical and biochemical characteristics between human and mouse
lungs that influence interpretation and the use of animal models of pneumonia including the mode of
infection, the horizontal position of mouse lungs, lung anatomy, and distinct cell surface glyconjugates due to
mutation in the cmah gene in humans. b) The different roles for which animal models of pneumonia can be
used when developing novel preventative and therapeutic interventions against pneumonia in humans. NHP:
non-human primate.
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strains of the same pathogen can elucidate why some strains dominate the clinical picture [24, 25], and
dual infection models provide important insights into why respiratory viral infection often leads to a
secondary bacterial infection [26–28]. The host can be manipulated using therapeutic or genetic depletion
of immune effectors [29], including tissue specific targeting to precisely define how a host factor influences
disease development [30]. Host and pathogen responses in infection models can be characterised using all
the “omic” techniques (including single cell sequencing and dual-species RNA seq), flow cytometry, and
in vivo imaging, collectively providing a detailed level of information that is impossible for human studies
to replicate and at considerable less cost. Hence, animal models are of immense benefit for therapeutic
testing of immune modulators, antibiotics, ventilation/oxygenation regimens, vaccination, or countering
immunosenescence (figure 1b). Thus, animal models can identify whether a new intervention is likely to
succeed in a much shorter period of time, at a considerably lower cost and with a reduced risk compared
to human studies.

Alternatives to animal models
What about the experimental alternatives to animal models, such as tissue culture models, organoids, ex
vivo human material models, and pathogen challenge of human volunteers? Can these replace animal
models? The short answer is no; pneumonia develops through multiple stages of infection involving a
complex interplay between lung-resident and recruited immune cells, a rapidly changing microbial
population, different anatomical compartments, and requiring extensive crosstalk between cell types. This
is far too complex to be adequately replaced by tissue culture systems or even an organoid model. Ex vivo
models such as precision-cut lung slice or human whole lung perfusion/ventilation models [31] are limited
by their expense and the small number of biological replicates possible. Human models of infection are
largely restricted to investigating mucosal host/pathogen interactions during milder infections [32, 33, 34],
rather than the mechanisms involved during alveolar infection.

Research areas where animal models have made important contributions
Specific areas where animal models have produced important data on pneumonia that could not have
readily been obtained using other methodologies are discussed below (examples are listed in table 1 and
illustrated in figure 2).

Defining who is at risk of pneumonia
A clear understanding of who is at risk of pneumonia is required, but can only be obtained by
epidemiology studies if the risk factor is common (e.g. age, smoking, comorbidities) or has particularly
strong effects (e.g. complement deficiencies). In contrast, animal studies can identify weaker or less
common predispositions to pneumonia, and also define the underlying molecular mechanisms involved.
For example, the exponential increased risk of Streptococcus pneumoniae pneumonia in the elderly [35, 36]
has multifactorial causes which are hard to define using epidemiology alone. Animal model research has
linked age-related changes in DNA integrity and the gut microbiome to increased background
inflammation that impairs immunity to S. pneumoniae by increasing expression of epithelial ligands for
bacterial adhesion, impairing monocyte function, and reducing TLR2 expression [37–39]. Without animal
models we would not have identified these mechanisms and the potential for modulating the gut
microbiome to prevent pneumonia. Animal model data can identify mechanistic links between different
subgroups susceptible to pneumonia; for example, exposure to welding fumes, cigarette smoke, air
pollution, and aging all increase the risk of S. pneumoniae pneumonia, partly through increased epithelial
expression of platelet activating factor receptor [40–42]. Animal model data can also predict groups that
might have increased susceptibility to particular infections that can then be looked for in clinical practice,
e.g. tyrosine kinase inhibitors were shown to impair immunity to Aspergillus fumigatus in mice, and
clinical data have confirmed this is the case in patients [43, 44].

Defining mechanisms underlying differences in pathogen virulence potential
As pathogen and host can both be clonal, animal model research allows investigators to exclude unselected
pathogen and host variability in order to identify molecular explanations for disease phenotypes. For
example, using deletion mutants, site-specific roles were identified for pneumococcal virulence
determinants, which helps explain why pneumococcal strains vary in their ability to cause disease at
different anatomical sites [45, 46]. Similarly, dual infection animal models have characterised how host
and pathogen factors affect influenza-induced transmission of S. pneumoniae and the efficacy of
vaccination in blocking this key event [47, 48].

Pathogenesis of the complications of pneumonia
The complications of pneumonia such as empyema, bacteraemia, the impact of sepsis on airway
immunity, spread of infection to the heart or central nervous system, and inflammation-mediated lung
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damage including alveolar–capillary barrier breakdown, all involve multiple cell types interacting with
progressive states of bacterial invasion, and are influenced by multiple host factors including sex, age,
underlying comorbidities, genetics and environmental exposures. Animal models have helped our
understanding why many of these complications develop, including the identification of S. pneumoniae
myocardial invasion in pneumonia [49], how bacteria translocates through mesothelial cells to cause
empyema [50], and why Staphylococcus aureus induces an excessive inflammatory response to cause a
destructive pneumonia [51].

Identifying new therapeutic approaches
The lung inflammatory response to microbial challenge are similar in animal models and humans,
including the pattern of early recruited neutrophils for pathogen elimination followed by exudate
macrophage recruitment to facilitate resolution of lung inflammation. Growth factors such as
granulocyte-macrophage colony-stimulating factor (GM-CSF), G-CSF and M-CSF also exhibit a high
degree of structural and functional similarities between rodents and humans [52, 53]. This allows the roles
of these common molecular traits to be characterised in animal pneumonia models to inform on adjuvant
therapies for pneumonia. For example, GM-CSF regulates terminal macrophage differentiation [54, 55]
and protects against pneumonia in mouse models [56, 57], whereas GM-CSF deficiency is a critical risk
factor for bacterial pneumonia [58]. Intrapulmonary overexpression of GM-CSF provided a high degree of
protection to mice from S. pneumoniae pneumonia, suggesting GM-CSF could be a future adjuvant
therapy. Indeed, inhaled recombinant GM-CSF (Sargramostim, Leukine) improved oxygenation and
outcome in patients with pneumonia-associated acute respiratory distress syndrome [59], demonstrating
that preclinical animal models aid the development of adjuvant therapies against infectious lung diseases.
Human pluripotent stem cell-derived macrophages prevent early Pseudomonas aeruginosa respiratory tract
infections in mice [60]; this and other examples [61, 62] may help develop antibiotic-independent cellular
immunotherapies for use in humans. Antibiotic compound screening in animal models can identify novel

TABLE 1 Specific research areas where animal models have been/are important for the answer with selected exemplar studies

Category Research areas Selected example with potential clinical relevance Reference

Pathogen Identifying pathogen mechanisms of
pathogenesis

Demonstration of the importance of bacterial iron acquisition for the
development of Acinetobacter baumannii pneumonia

[85]

Comparative virulence of pathogen
strains

Characterisation of the additional effects of Panton-Valentine leukocidin
toxin during S. aureus pneumonia

[86]

Investigating the effects of dual
infection

Demonstration that prior influenza infection impairs TLR-mediated innate
responses to subsequent S. pneumoniae pneumonia

[87]

Host Characterising natural mechanisms of
innate immunity

Identification of the importance of the classical complement pathway for
innate immunity to S. pneumoniae

[88]

Characterising natural mechanisms of
adaptive immunity

Demonstration that Th17 CD4 cells are required for lung immunity [72]
Demonstration that human natural adaptive immunity to S. pneumoniae is
dependent on antibody to protein antigens

[77]

Defining effects of age or comorbidity
on pathogenesis

Demonstration that cellular senescence increases expression of host
ligands for bacterial adhesins in the lungs

[40]

Characterising effects of environmental
exposures

Welding fumes increases expression of PAFr, resulting in increased
S. pneumoniae adhesion to respiratory epithelium

[42]

Defining protective inflammatory
responses

Identification of an important role for CXCL1 mediated crosstalk between
macrophages and neutrophils for immunity to P. aeruginosa

[89]

Defining harmful inflammatory
responses

Identification that S. aureus stimulate the TNF receptor to cause
destructive pneumonia

[51]

Identifying complications and their
pathogenesis

Identification of foci of S. pneumoniae in the myocardium in pneumonia [90]

Therapies Identifying and testing novel vaccine
approaches and antigens

Identification of Th17 antigens that protect against S. pneumoniae [91]
Confirmation that vaccination with a recombinant glycoconjugate is as
efficacious as Prevnar vaccination against S. pneumoniae

[92]

Assessing efficacy of
immunomodulation

Demonstration that intrapulmonary overexpression of GM-CSF protects
mice against S. pneumoniae pneumonia

[56, 57]

Assessing efficacy of antibiotic
therapies

Multiple studies (routine pharmaceutical company practice)

Pharmokinetics and toxicology Multiple studies (routine pharmaceutical company practice)

TLR: Toll-like receptor; PAFr: platelet activating factor receptor; TNF: tumour necrosis factor; GM-CSF: granulocyte-macrophage
colony-stimulating factor.
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antibacterial therapies for human pneumonia, and newer techniques such as bioluminescence and
biophotonic imaging of bacterial pathogens provide powerful tools for monitoring real-time progression of
pneumonia and assessing drug efficacy [63–68].

Novel preventative approaches
There are no vaccines available for the majority of respiratory pathogens, including most respiratory
viruses, S. aureus, the Gram-negative pneumonia pathogens, Pneumocystis jirovecii and Aspergillus
fumigatus. Furthermore, the existing vaccines all have major limitations; the Haemophilus influenzae
vaccine does not protect against the non-typeable strains that cause adult infections, and the existing
influenza and S. pneumoniae vaccines have restricted strain coverage and reduced efficacy in the elderly,
precisely the population they are most needed for. Hence new vaccines against pneumonia pathogens are
needed, yet inducing protective pulmonary immunity is harder to achieve than immunity to bacteraemia
[69, 70]. Animal models will be essential for defining the adaptive immune mechanisms that prevent lung
infection, identifying the most protective antigens, and improving adjuvants and methods of antigen
delivery [71]. Animal models identified the key role for CD4 Th17 responses in protecting the respiratory
mucosa from pathogens such as Klebsiella pneumoniae and S. pneumoniae [70, 72] that is dependent on
specific dendritic cell subsets [73], and an unexpected role for Tregs in protecting against S. pneumoniae
[74]. These data suggest vaccine approaches against extracellular pathogens could induce cellular rather
than humoral immunity. Novel vaccine delivery systems and adjuvants developed using animal models are
now reaching clinical use [75], and should hopefully improve targeting of vaccine-induced immunity to
the lung in the future. Animal models can also identify new vaccine antigen candidates by screening for
genes highly expressed during infection, or identifying antigens recognised by naturally acquired protective
immune responses [76, 77]. Overall, it is difficult to see how pre-clinical studies of new vaccines can be
performed without using animal models.

Strategies for reducing weaknesses of animal model data
Despite their strengths, animal models do not fully recapitulate human conditions. This can be partially
alleviated by combining the data obtained with tissue culture, organoids, or ex vivo lung experiments data.
How accurately murine responses to inflammatory stimuli reflect human responses is debated [78–80], but
exposure of laboratory mice to petshop or wild mice ensures the mouse inflammatory response more
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closely mimics human responses [81, 82]. This provides a potentially simple method for improving the
utility of mouse models of infection. Genetic modification of the animal model can also improve their
utility. For example, deleting either cytidine monophosphate N-acetylneuraminic hydroxylase (CMAH,
converts N-acetylneuraminic acid to N-glycolylneuraminic acid on airway epithelium sialylated
glyconjugates) or ApoB-100 lipoprotein (a potent inhibitor of the S. pneumoniae toxin pneumolysin)
increased mouse susceptibility to S. pneumoniae infection [83, 84].

Concluding remarks
Only animal models intrinsically allow the study of complex multicellular systems in anatomical context
over time. The tractability of the mouse to genetic manipulation, combined with the application of new
‘omics technologies and in vivo imaging has increased our ability to determine the impact of host or
pathogen factors on pneumonia susceptibility, pathogenesis and resolution. The animal model remains the
only method for testing the efficacy of novel vaccines or antimicrobial approaches. Thus, animal models
are likely to remain essential for the successful development of novel therapeutic advances for pneumonia.

Conflict of interest: None declared.
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