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The clinical utility of exhaled breath sampling contrasts the complexity required for VOC analysis.
Modern studies are now starting to apply robust methodological standards demonstrating breathomics
to be sensitive to underlying inflammation. http://bit.ly/2WS1Sfx
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ABSTRACT The search for biomarkers that can guide precision medicine in asthma, particularly those
that can be translated to the clinic, has seen recent interest in exhaled volatile organic compounds (VOCs).
Given the number of studies reporting “breathomics” findings and its growing integration in clinical trials,
we performed a systematic review of the literature to summarise current evidence and understanding of
breathomics technology in asthma.

A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-oriented systematic
search was performed (CRD42017084145) of MEDLINE, Embase and the Cochrane databases to search
for any reports that assessed exhaled VOCs in adult asthma patients, using the following terms (asthma
AND (volatile organic compounds AND exhaled) OR breathomics).

Two authors independently determined the eligibility of 2957 unique records, of which 66 underwent
full-text review. Data extraction and risk of bias assessment was performed on the 22 studies deemed to
fulfil the search criteria. The studies are described in terms of methodology and the evidence narratively
summarised under the following clinical headings: diagnostics, phenotyping, treatment stratification,
treatment monitoring and exacerbation prediction/assessment.

Our review found that most studies were designed to assess diagnostic potential rather than focus on
underlying biology or treatable traits. Results are generally limited by a lack of methodological
standardisation and external validation and by insufficiently powered studies, but there is consistency
across the literature that exhaled VOCs are sensitive to underlying inflammation. Modern studies are
applying robust breath analysis workflows to large multi-centre study designs, which should unlock the full
potential of measurement of exhaled volatile organic compounds in airways diseases such as asthma.

This article has supplementary material available from erj.ersjournals.com

Received: 08 Jan 2019 | Accepted after revision: 13 June 2019

Copyright ©ERS 2019

https://doi.org/10.1183/13993003.00056-2019 Eur Respir J 2019; 54: 1900056

ORIGINAL ARTICLE
ASTHMA

https://orcid.org/0000-0001-5960-1159
https://orcid.org/0000-0001-5335-5129
mailto:a.azim@soton.ac.uk
http://bit.ly/2WS1Sfx
http://bit.ly/2WS1Sfx
https://doi.org/10.1183/13993003.00056-2019
erj.ersjournals.com
https://crossmark.crossref.org/dialog/?doi=10.1183/13993003.00056-2019&domain=pdf&date_stamp=


Introduction
In observing the phenotypic heterogeneity of the asthma population [1, 2] and its varied response to
currently available treatments [3–5], it is clear that asthma describes a spectrum of biological complexity.
Rather than diagnostics, the challenge for clinicians and researchers is the accurate stratification of patients
based upon their underlying physiology/pathophysiology and the identification of treatable traits [6, 7].
Critical to this ambition of precision medicine is the identification of biomarkers. Those biomarkers that
can be easily sampled at the point of care have the highest translational potential [8]. In this regard, the
clinical adoption of carbon-13/14 urea for Helicobacter pylori [9] and exhaled nitric oxide fraction (FeNO)
for airway inflammation [10] demonstrates the utility of exhaled breath: this medium can be sampled
safely, non-invasively and repeatedly, almost without exhaustion (e.g. capnography [11]). Moreover,
through contact with the airways, exhaled breath measurements can potentially offer a direct insight into
the organ of interest [12].

Although primarily composed of water vapour and inert gases, exhaled breath also contains thousands of
volatile organic compounds (VOCs) [13]. VOCs are the main molecular substrate triggering our sense of
smell, and characteristic breath odours have been used to identify illnesses since Hippocrates [14]. The
medical applications of this strategy were transformed in 1971 by the demonstration that exhaled breath
contained >250 VOCs [15]. We now recognise that changes in exhaled VOC concentrations can reflect
different disease states [16, 17], suggesting a role for exhaled VOC analysis in non-invasive and early
diagnostics [14].

Modern VOC analysis can be considered under one of two broad methodological headings: pattern
recognition based sensors or chemical analytical techniques [18]. Pattern recognition based sensors,
synonymous with electronic noses, are modelled on the mammalian nose. These e-noses contain an array
of cross-reactive sensors, which react promiscuously and non-selectively to VOCs. The final “breathprint”
reflects the differential signalling of multiple sensors to partially overlapping VOCs [19, 20]. These
breathprints then require analysis by pattern recognition algorithms [21, 22], similar to how our brain
would interpret smells. Chemical analytical techniques typically refer to mass spectrometry (MS) [23] or
MS hybrid techniques [24–26], in which ions created by VOCs can be measured based upon their
mass/charge (m/z) ratio.

In asthma, exhaled VOC analysis has demonstrated excellent accuracy for discriminating patients from
healthy controls and other respiratory conditions [27]. The purpose of this systematic review is to describe
the evidence for exhaled VOCs as a biomarker not only for diagnostics, but also other major clinical
dilemmas faced by adult asthma clinicians: phenotyping, treatment stratification, treatment monitoring
and exacerbation prediction/assessment [28]. We discuss these findings as well as methodologies
surrounding breath sampling and VOC analysis; the challenges faced by this technology and future
directions for research.

Methods
Search strategy and information sources
A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-oriented systematic
search (CRD42017084145) (the full protocol can be accessed at www.crd.york.ac.uk/PROSPERO/) was
performed until December 5, 2018 in Embase, MEDLINE and Cochrane Libraries. The search was
conducted using keywords for “asthma”, “volatile organic compounds”, “exhaled” and “breathomics” and
full Boolean operator terms (described in detail in the supplementary material). English-language
peer-reviewed full-text articles were assessed for eligibility.

Eligibility
The ideal study for our review would prospectively recruit patients with asthma, diagnosed according to
internationally recognised guidelines [29] and measure exhaled VOCs consistent with recently defined
recommendations [30] including well-defined cut-off values against adequate reference standards.
However, this would be difficult to define due to clinical and technological evolution over the timespan of
the review. Similarly, the ideal study design for the detection and validation of exhaled VOC markers
would be different for each of the clinical dilemmas that we wished to explore (diagnostics, phenotyping,
treatment stratification, treatment monitoring and exacerbation prediction/assessment); thus, we used
liberal inclusion criteria.

Studies were therefore included if 1) they measured exhaled breath VOC(s) in 2) a distinct group or
patients with asthma defined by a trained physician or according to Global Initiative for Asthma or the
American Thoracic Society/European Respiratory Society guidelines. Studies were excluded if they looked
at non-adult (i.e. age <18 years) asthma patients; due to differences in diagnostic criteria between children
and adults, as well as an attempt not to overlap with a recent review in paediatric populations [31].
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Study selection
The titles and abstracts of all the records returned by the literature search were independently reviewed by
two reviewers, to identify potentially relevant studies. The reviewers used the web-based software platform
Rayyan (https://rayyan.qcri.org/) for screening and reviewing. Searches of study bibliographies were
conducted to identify additional studies. Using the prespecified inclusion/exclusion criteria, these two
reviewers then independently reviewed the full texts of potentially relevant studies to select trials for
inclusion in the review. Disagreement was resolved by discussion, but in the event of non-consensus, it
was planned that a third reviewer would be involved.

Data extraction
We extracted information from each study regarding 1) study design, 2) population, 3) breath collection
methodology, 4) statistical analysis and 5) results.

Risk of bias
Risk of bias for each included study was assessed using the quality assessment of diagnostic accuracy
studies (QUADAS)-2 tool [32]. The tool assesses the risk of bias across four domains: 1) patient selection,
2) index test, 3) reference standard and 4) flow/timing. Applicability is assessed across the first three
domains.

Method of analysis
Studies were qualitatively assessed according to their methodology and results.

Results
Search results
Our search strategy yielded 2955 unique titles from Embase, MEDLINE and the Cochrane Library and two
further titles through correspondence with authors in the field. Of these, 2891 were excluded after title and
abstract review, leaving 66 full-text articles for screening (full-text exclusions are listed in the
supplementary material). Reference list searching yielded no new studies. 22 articles were deemed to fulfil
the inclusion/exclusion criteria (figure 1). All articles were assessed for risk of bias using the QUADAS-2
scoring system.

Study characteristics
Across these 22 studies, 1409 patients with asthma were investigated. The majority were recruited from
European centres with just four studies recruiting from the USA [33], Australia [34, 35] and New Zealand [36].

Almost two-thirds (61.0%) came from three studies [21, 37, 38]: the median sample size of studies was 25.
As per the inclusion criteria, five studies only required a physician diagnosis of asthma while the other 18
specifically met recognised international diagnostic guidelines. Six studies used oral corticosteroid use as
an exclusion criterion and 10 used smoking history.

The broad inclusion criteria of our search meant that several study designs were observed. Most studies
employed a cross-sectional design with six including a longitudinal component. One study was purely
correlational [39], but the remaining offered comparisons between groups (table 1). Many of these studies
address more than one of the aforementioned clinical dilemmas (e.g. diagnosis and phenotyping) (table 1).

Diagnosis
In this review, we identified 14 studies which used VOC signals to discriminate asthma from other disease
states; most often healthy controls, although four studies compared to a chronic obstructive pulmonary
disease (COPD) group and one to lung cancer. One further study specifically compared asthma with
allergic rhinitis to allergic rhinitis alone [44]. Notably, a study of 27 mild asthma patients found e-nose to
outperform FeNO and simple spirometry in distinguishing asthma from healthy controls [42].

Phenotype
Six studies investigated the relationship between exhaled VOCs and airway inflammation in patients with
asthma. Exhaled VOCs, identified using gas chromatography-mass spectrometry (GCMS), that were
discriminatory between baseline and loss of control (following steroid withdrawal) [50] and which
contributed to classification (of sputum cellular phenotype) models were found to correlate with sputum
eosinophils [45]. Two studies used e-nose VOC profiles to correlate to bronchoalveolar lavage (BAL) and
sputum eosinophil percentages finding an R of 0.76 [39] and 0.60 [36], respectively. As both studies of
mild asthma patients used similar breath collection methodologies, these results might suggest that the
e-nose profile better relates to small airway events, as represented by BAL sampling, but could be
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confounded by the fact that patients withheld steroid therapy before sputum, but not bronchoscopy
sampling.

Three further studies assessed the ability of exhaled VOCs to discriminate inflammatory phenotype,
defined by sputum granulocyte percentages. The e-nose discriminated sputum eosinophilia (3% cut-off )
from paucigranular disease, with an area under the receiver operating characteristic curve (AUC) of 0.79
[46]. GCMS analysis discriminated eosinophilic (2% cut-off ) from non-eosinophilic sputum with an AUC
of 0.98 [45]. A more extensive GCMS study was able to discriminate eosinophilic (3% cut-off ) from
paucigranulocytic and neutrophilic (76% cut-off ) with an AUC of 0.99 and 0.92, respectively [38].
Hoverer, it is not possible to reliably compare e-nose with GCMS approaches from these studies, due to
separate breath-collection strategies and statistical analytical approaches. Critically, the Belgian study was
able to test its model in a replication cohort demonstrating AUCs of 0.68 and 0.71 for eosinophilic versus
paucigranulocytic and neutrophilic, respectively [38].

The ability of exhaled VOCs to discriminate patients by their inflammatory profile is further supported by
unbiased cluster analysis of e-nose profiles of the U-BIOPRED cohort [47]. These clusters differed by
systemic inflammatory profiles and anti-inflammatory medication profile use. They did not differ by
sputum eosinophils or neutrophil percentages, but a change in sputum eosinophil percentages was seen in
those patients that migrated clusters at 18 months. Using a different set of e-nose derived principal
components, this study was also able to discriminate sputum transcriptomic associated clusters [54] in a
small pilot analysis (n=28) [47].

Treatment stratification
In patients who had been withdrawn from their regular inhaled corticosteroid therapy, the e-nose
breathprint was found to be accurate in predicting who would respond to an oral corticosteroid course
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FIGURE 1 Flow diagram of PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses)-oriented systematic search. VOC: volatile organic compound.
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TABLE 1 Summary of titles included, organised by clinical dilemma

First author (year)
[reference]

Design Methodology Brief summary of main findings

Diagnosis
DRAGONIERI (2007) [40] Cross-sectional e-nose (Cyranose 320)

GCMS
e-nose breathprints accurately discriminate asthma from

age-matched controls
Less successful at discriminating mild and severe asthma
Explorative GCMS analysis identified compounds in asthma

FENS (2009) [41] Cross-sectional e-nose (Cyranose 320) e-nose breathprints accurately discriminate asthma from
COPD (smoking and nonsmoking as well as ICS-treated
and non-ICS-treated)

e-nose breathprints accurately discriminate asthma from
nonsmoking controls

MONTUSCHI (2010) [42] Cross-sectional e-nose (Tor Vergata)
GCMS

e-nose breathprints accurately discriminate asthma from
healthy controls

e-nose superior to FeNO and spirometry for diagnostic
accuracy

Late expiratory phase breath sampling (described as
“alveolar air”) gives better separation than mixed
expiratory for the e-nose

No correlation between e-nose and FeNO or spirometry
FENS (2011) [43] Cross-sectional# e-nose (Cyranose 320) e-nose breathprints accurately discriminate asthma with

fixed airways obstruction and reversible airway
obstruction from COPD

Less successful at discriminating fixed airways obstruction
from reversible airways obstruction

TIMMS (2012) [34] Cross-sectional e-nose (Cyranose 320) e-nose breathprint could discriminate asthma with GORD
from healthy controls and asthma without GORD from
healthy controls

Could also discriminate asthma from COPD
DE VRIES (2015) [21] Cross-sectional e-nose (Spironose) e-nose breathprints accurately discriminate asthma from

COPD and healthy controls
Less successful at discriminating asthma from lung cancer
No significant difference in breathprints from asthma

patients at different sites
DRAGONIERI (2019) [44] Cross-sectional# e-nose (Cyranose 320) e-nose breathprints accurately discriminate asthma with

allergic rhinitis from allergic rhinitis (no asthma) and
healthy controls

Phenotyping
IBRAHIM (2011) [45] Cross-sectional GCMS VOC model accurately discriminates asthma from healthy

controls
VOC model accurately discriminates (using sputum

granulocyte percentages) eosinophilic from
non-eosinophilic asthma (superior to FeNO) and
neutrophilic from non-neutrophilic asthma phenotypes

VOC model accurately discriminates controlled from
uncontrolled asthma (using ACQ score)

MEYER (2014) [37] Cross-sectional GC ToF MS VOC model accurately discriminates asthma from healthy
controls

Identified 7 clusters (using 16 discriminatory VOCs and
clinical parameters) with different clinical phenotypes

PLAZA (2015) [46] Cross-sectional e-nose (Cyranose 320) e-nose breathprints accurately discriminates (using sputum
granulocyte percentages) eosinophilic from neutrophilic
asthma, eosinophilic from paucigranular asthma and
neutrophilic from paucigranular asthma

FENS (2015) [39] Cross-sectional e-nose (Cyranose 320) e-nose breathprints associated with bronchoscopy lavage
fluid eosinophil percentages (no relationship found
between FeNO and BAL eosinophils)

BRINKMAN (2019) [47] Longitudinal and
cross-sectional#

e-nose
(composite platform)

Identified 3 clusters (using e-nose breathprints) with
significant differences in chronic OCS usage and blood
eosinophil and blood neutrophil percentages

The majority of patients had migrated clusters at follow-up;
patients that migrated clusters had changes in their
sputum eosinophils

Continued
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TABLE 1 Continued

First author (year)
[reference]

Design Methodology Brief summary of main findings

SCHLEICH (2019) [38] Cross-sectional# GC ToF MS VOC model accurately discriminates (using sputum
granulocyte percentages) eosinophilic from
paucigranular asthma, eosinophilic from neutrophilic
asthma and neutrophilic from paucigranular asthma

VOC model accurately discriminates eosinophilic from
non-eosinophilic asthma (with similar accuracy to FeNO
and blood eosinophils) and neutrophilic from
non-neutrophilic asthma

VOC model unable to discriminate smokers, ex-smokers
and nonsmokers

VOC model unable to discriminate ICS-treated and
ICS-naïve patients

Treatment stratification
VAN DER SCHEE (2013)
[36]

Longitudinal and
cross-sectional

e-nose (Cyranose 320) e-nose breathprints accurately discriminate asthma from
healthy controls (maintained after asthma patients
treated with oral prednisolone)

Accurately discriminates (at the point of full treatment
withdrawal) patients who had lost control from ICS
withdrawal from patients who had not

Accurately discriminates (at the point of full treatment
withdrawal) patients who were OCS-responsive from
OCS-unresponsive patients

e-nose breathprint correlates with sputum eosinophils
Treatment monitoring
PAREDI (2000) [48] Cross-sectional GC FID Exhaled ethane levels increased in asthma patients not

receiving steroid therapy compared to steroid treated
asthma patients and controls

Ethane concentrations increased in patients with more
severe bronchoconstriction and gas trapping

BRUCE (2009) [35] Cross-sectional Breath ethanol device
(Alcometer SD-400TM)

Exhaled ethanol levels are transiently elevated following the
use of metred dose inhalers using hydrofluoroalkane
propellants

BRINKMAN (2018) [49] Longitudinal and
cross-sectional#

GC ToF MS Exhaled VOCs associated with urinary detection of
salbutamol and oral corticosteroids

Exacerbation
assessment/
prediction
OLOPADE (1997) [33] Longitudinal and

cross-sectional
GC FID Exhaled pentane concentrations increased in acute

exacerbation compared to healthy controls (higher in
those requiring admission from the emergency
department)

Pentane concentration significantly decreased following
treatment to concentrations similar to concentrations
found in healthy controls and stable (outpatient) asthma

BRINKMAN (2017) [50] Longitudinal e-nose (composite
platform) and GCMS

VOC model discriminates baseline from loss of control and
loss of control from recovery

e-nose breathprint accurately discriminates baseline from
loss of control and loss of control from recovery

GCMS identified compounds correlated with sputum
eosinophil but not sputum neutrophils; e-nose
breathprints did not correlate with either

Main findings not
applicable to clinical
categories
LAZAR (2010) [51] Longitudinal and

cross-sectional
e-nose (Cyranose 320) e-nose breathprint discriminates post-methacholine from

baseline and post-salbutamol (also post-methacholine)
from baseline, but unable to discriminate
post-methacholine and post-salbutamol (also post
methacholine)

e-nose breathprint discriminates post-saline from baseline
and post-saline from post-salbutamol (also post-saline)

Continued
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(AUC=0.88), defined as a ⩾12% increase in forced expiratory volume in 1 s (FEV1) and/or two or more
doubling doses of inhaled AMP to cause a 20% decline in FEV1 [36]. While the steroid-responsive group
(n=11) had higher FeNO and sputum eosinophil measurements at baseline, as compared to the
steroid-unresponsive group (n=9), the respective predictive AUCs of 0.55 and 0.61, respectively, for these
measures were not as good as that for e-nose [36]. Other than in the aforementioned steroid withdrawal
studies, we found no studies designed to look at treatment responders versus nonresponders.

Treatment monitoring
E-nose-derived clusters differ by oral corticosteroid use [47], and exhaled pentane levels are reduced in
patients receiving inhaled corticosteroid treatments [48], consistent with the premise that VOCs are
sensitive to ongoing inflammation. However, while oral corticosteroid use weakens the diagnostic (asthma
versus healthy controls) accuracy of FeNO, this is not the case for the e-nose breathprint [36]. Following oral
corticosteroid treatment of asthma patients, the e-nose continued to be able to diagnose asthma, suggesting
discrimination independent of ongoing inflammation, possibly related to the medication itself. Similarly,
the discrepancy between e-nose VOC profiles and BAL and sputum eosinophil percentages [36, 39], may be
explained by treatment effect: if the VOC profile were sensitive to eosinophilic inflammation alone, a better
relationship would be expected without the suppressive and noise effect of steroid therapy. Consistent with
this, the U-BIOPRED group have reported that exhaled VOCs correlate with urinary levels of salbutamol
and oral corticosteroid (by liquid chromatography-high resolution mass spectrometry) [49], confirming
that some exhaled VOCs are related to asthma medications.

Exacerbation prediction
Markers of lipid peroxidation are elevated in acute exacerbations before returning to normal levels
following treatment [33]. In addition, they are increased in patients with more severe disease (as defined
by more reduced lung function) [48]. Principal components derived from e-nose breathprints can
discriminate episodes of stability (baseline or at recovery with oral corticosteroids) from episodes of loss of
control, due to treatment withdrawal. While exhaled VOCs have been measured prospectively in children
to predict exacerbation events [55], no such studies have been performed in adults. In the two steroid
withdrawal studies captured in this systematic review, one did not measure exhaled VOCs at baseline [36],
and in the other, all but one patient suffered a loss of control on treatment withdrawal [50]. Therefore,
these studies were unable to compare exacerbators against non-exacerbators.

Breath sampling
Concerning sampling, storage and analysis, few studies use the same strategies. Although a degree of
consistency is seen from the studies originating from the same group [21, 40, 41, 43, 50–52], wide
methodological variation is seen at every step in exhaled breath methodology. This is illustrated in table 2
and expanded upon in the supplementary material.

Most studies instruct patients to perform a single vital capacity manoeuvre: from maximal inspiration to
maximal expiration. The majority of these studies collect VOCs from this total expiratory phase, as it is

TABLE 1 Continued

First author (year)
[reference]

Design Methodology Brief summary of main findings

VAN DER SCHEE (2013)
[52]

Cross-sectional e-nose (Cyranose 320) and
GCMS

Peak intensities of GCMS identified compounds did not
show changes related to storage time (of up to 14 days)

VOC model and e-nose breathprints discriminate asthma
from healthy controls with similar accuracies following
different storage times

LÄRSTAD (2007) [53] Cross-sectional GC FID Isoprene and pentane concentrations increase with
breath-holding

Ethane concentrations decreased at higher flow rates;
pentane increased

Studies are categorised according to their main aim. The main aims of the studies are briefly summarised and are by no means exhaustive.
GCMS: gas chromatography-mass spectrometry; COPD: chronic obstructive pulmonary disease; ICS: inhaled corticosteroids; FeNO: exhaled
nitric oxide fraction; GORD: gastro-oesophageal reflux disease; VOC: volatile organic compound; ACQ: Asthma Control Questionnaire; GC ToF
MS: gas chromatography–time-of-flight mass spectrometry; BAL: bronchoalveolar lavage; OCS: oral corticosteroids; GC-FID: gas
chromatography with flame-ionisation detection. #: external validation of results.
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logistically most simple to achieve, but is contaminated by air within the oropharynx. Several studies have
excluded dead space using strategies ranging from the crude (valves and estimated volumes [56, 57]), to
highly engineered (pressure sensors [58]).

TABLE 2 Methodological variation across studies split by breath fraction from which volatile organic compounds were captured

First author (year)
[reference]

Breathing manoeuvre for
breath collection

Breath fraction Flow rate Breath collection
container

Mixed expiratory
OLOPADE (1997) [33] Single vital capacity from

maximal deep inspiration
Mixed expiratory Not specified Tedlar bag

LARSTAD (2007) [53] Various manoeuvres tested
including breath-holding

Mixed expiratory Various tested (computerised
biofeedback)

Tedlar bag

DRAGONIERI (2007) [40] Single vital capacity from
maximal deep inspiration

Mixed expiratory 0.1–0.2 L·s−1 Tedlar bag

FENS (2009) [41] Single vital capacity from
maximal deep inspiration

Mixed expiratory 0.1–0.2 L·s−1 Tedlar bag

LAZAR (2010) [51] Single vital capacity from
maximal deep inspiration

Mixed expiratory 0.1–0.2 L·s−1 Tedlar bag

FENS (2011) [43] Single vital capacity from
maximal deep inspiration

Mixed expiratory 0.1–0.2 L·s−1 Tedlar bag

TIMMS (2012) [34] Single vital capacity from
maximal deep inspiration

Mixed expiratory Not specified Tedlar bag

VAN DER SCHEE (2013) [52] Single vital capacity from
maximal deep inspiration

Mixed expiratory 0.1–0.2 L·s−1 Nalophan bag

VAN DER SCHEE (2013) [36] Single vital capacity from
maximal deep inspiration

Mixed expiratory 0.1–0.2 L·s−1 “Inert bag”

MEYER (2014) [37] No special provision Not specified (assume
mixed expiratory)

Not specified Tedlar bag

DE VRIES (2015) [21] Single vital capacity from
maximal deep inspiration
following 5-s breath-hold

Mixed expiratory <0.4 L·s−1 Not applicable
(online data
collection)

PLAZA (2015) [46] Single vital capacity from
maximal deep inspiration

Mixed expiratory 0.1–0.2 L·s−1 Tedlar bag

FENS (2015) [39] Single vital capacity from
maximal deep inspiration

Mixed expiratory 0.1–0.2 L·s−1 Tedlar bag

BRINKMAN (2017) [50] Single vital capacity from
maximal deep inspiration

Mixed expiratory 0.1–0.2 L·s−1 Tedlar bag

BRINKMAN (2019) [47] Single vital capacity from
maximal deep inspiration

Mixed expiratory 0.1–0.2 L·s−1 Tedlar bag

DRAGONIERI (2019) [44] Single vital capacity from
maximal deep inspiration

Mixed expiratory 0.1–0.2 L·s−1 Tedlar bag

SCHLEICH (2019) [38] Single vital capacity from
maximal deep inspiration
following 5-s breath-hold

Mixed expiratory Not specified Tedlar bag

BRINKMAN (2018) [49] Single vital capacity from
maximal deep inspiration

Mixed expiratory 0.1–0.2 L·s−1 Tedlar bag

Other
PAREDI (2000) [48] Single vital capacity from

maximal deep inspiration
Late expiratory (calculated
time required to washout

dead space)

10–11 L·min−1 (equivalent to
0.1–0.2 L·s−1)

“Collapsible
reservoir”

BRUCE (2009) [35] Not specified (single vital
capacity from maximal deep
inspiration described by Lion

Laboratories)

Not specified (late
expiratory described by

Lion Laboratories manual)

Not specified (minimum
required flow described by
Lion Laboratories manual)

Not applicable
(online analysis)

MONTUSCHI (2010) [42] Single vital capacity from
maximal deep inspiration

Compared mixed
expiratory to late

expiratory (using 150 mL
as dead space)

Not specified Tedlar bag

IBRAHIM (2011) [45] Tidal breathing Late expiratory (respiratory
pattern monitored by a
pressure transducer)

Not specified Directly adsorbed
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Just 13 studies measured exhaled flow rate. 12 of these regulated exhaled breath flow between 0.1 and
0.2 L·s−1, which minimises nasal contamination of the sample by ensuring closure of the soft palate [59, 60],
rather than due to a determination of optimal VOC capture. Most studies collect breath samples in an inert
polymer, usually Tedlar, bag followed by storage onto thermal desorption tubes containing some adsorbent
material, usually Tenax. Once the exhaled breath is collected, it can be either analysed “online” or “offline”.
Online refers to real-time analysis, but other than the Alcometer, a blood alcohol “breathalyser” [35], no
studies have used such a platform.

VOC analysis
Since its first description in 2007 [40], the majority of modern studies utilise e-nose technology.
Preprocessing procedures on raw data is described in few studies, and even then only briefly [38, 47].
Variation in statistical methodology, ranging from univariate to machine-learning techniques (table 3)
broadly illustrates evolution over time: statistical analysis now involves some form of dimension-reduction
strategy coupled to some form of machine-learning classifier. Several studies used “leave one out
cross-validation techniques” but, until recently, external validation was notable by its rarity.

Risk of bias
In this systematic review, the QUADAS-2 scoring system highlights concerns in the published literature
across several domains [32] (figure 2). Many studies applied smoking history, use of oral corticosteroids
(due to the severity of illness) and common comorbidities as exclusion criteria to patient recruitment. By
removing diagnostically challenging patients, studies are likely to provide over-optimistic discriminatory
estimates. In addition, poor reference standards might undermine published results. Examples include
diagnostic studies using asthma diagnosis based on physician assessment only [61] and inflammatory
phenotyping studies based on sputum granulocyte percentages [62] or gastro-oesophageal reflux disease
diagnosis without objective evidence. However, the most significant source of bias related to the analysis of
exhaled VOC data (both GCMS or e-nose). In the absence of a clear consensus on the best statistical
approach to multivariate data and an over-reliance on internal validation, the statistical findings described
by authors are likely to be over-optimistic [63].

The flow and timing between index test and reference standards did not clearly introduce any bias, and
the applicability of the identified studies to our review question was generally very good. The applicability
of some study designs, such as cluster analysis, to our review question, which relates to clinical
applications, was not clear. Similarly, studies relying on GCMS-based analysis techniques for acute
assessment were found to be of limited translation potential.

Discussion
Technological evolution
Reviewing the past few decades of asthma–VOC literature demonstrates the rapid technological evolution of
this field. Early breath research was limited to a “bottom-up” approach: VOCs were targeted a priori and
analysed using expensive and laborious chemical techniques. Consequently, these studies were limited in
numbers and focused on markers of oxidative stress [33] (inflammation not specific to asthma [48, 64]).
The modern parallel developments of improved separation techniques, improved lower limits of detection,
e-nose technology and high-throughput omics analysis platforms allow the full spectrum of exhaled VOCs
to be analysed “top-down” as highly dimensional composite profiles: “breathomics”.

Modern breathomics can refer to several VOC analysis platforms [18, 65], but mass spectrometry
continues to be the gold standard [66], due to its ability to identify composition and concentrations of
individual VOCs. However, it is too expensive in terms of expertise and equipment. Although the e-nose
sensor array is cheaper, quicker and easier to use [40, 57], it sacrifices that ability to reliably trace back to
analytes of interest [67]. For clinicians, the focus on “treatable traits” [7, 68] requires a probabilistic
approach: stratification of a patient based upon a clinically relevant quality (diagnosis, prognosis, treatment
response) [69]. Understanding the mechanisms behind that biomarker/biomarker profile is not necessary
[70], so sensor-based systems are ideally suited. In contrast, if the biomarker is being interrogated for
mechanistic purposes [71] (e.g. drug target discovery), then the costs of chemical analytic techniques are
likely justifiable. That is not to say that the two technologies are mutually exclusive: both can be
successfully integrated into the same study [31], and improved understanding of the mechanisms and
factors contributing to VOC profiles could inform future sensor-based technologies.

Breath collection heterogeneity
Of course, the strength of both platforms is intimately linked with the quality of its reference library.
Efforts to build these libraries are already underway [72, 73] (www.breathomix.com/breathbase-data) and
will only improve as more studies engage with such processes. Critically, such libraries can only be
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TABLE 3 Statistical approaches to exhaled volatile organic compound (VOC) data, organised by type of data

First author (year)
[reference]

Signal Statistical technique External
validation

Univariate statistical
analysis
OLOPADE (1997) [33] Pentane Wilcoxon signed rank test No
PAREDI (2000) [48] Ethane ANOVA No
LÄRSTAD (2007) [53] Ethane, pentane, isoprene Wilcoxon signed rank test No
BRUCE (2009) [35] Blood alcohol Mann–Whitney No

Multivariate statistical
analysis
DRAGONIERI (2007) [40] Pre-processed sensor data PCA

Classification by linear discriminant analysis on all PC factors
No

FENS (2009) [41] Raw sensor data PCA
Classification by linear discriminant analysis on PC factors that

were discriminant between groups

No

MONTUSCHI (2010) [42] Raw sensor data PCA
Classification by feed-forward neural network

No

LAZAR (2010) [51] Pre-processed sensor data PCA
Mixed model analysis on PC factors that were discriminant

between groups

No

FENS (2011) [43] Raw sensor data PCA
Classification by linear discriminant analysis on PC factors that

were discriminant between groups

Yes

IBRAHIM (2011) [45] VOCs Logistic regression for each VOC
PCA for VOCs that were discriminant between groups.

Classification by multivariate logistic regression on all PCs

No

TIMMS (2012) [34] Raw sensor data PCA
Classification by canonical model on all PC factors

No

VAN DER SCHEE (2013) [52] Select VOCs and raw sensor
data (respectively)

PCA
Classification by linear discriminant analysis on PC factors that
were discriminant between groups and classification by linear

canonical discriminant analysis on compound intensities
(respectively)

No

VAN DER SCHEE (2013) [36] Raw sensor data PCA
Classification by linear discriminant analysis on PC factors that

were discriminant between groups

No

MEYER (2014) [37] Clinical features, asthma
medications, VOCs

Hierarchical SPSS two-step cluster analysis No

DE VRIES (2015) [21] Pre-processed sensor data PCA
Classification by linear discriminant analysis on PC factors that

were discriminant between groups

No

PLAZA (2015) [46] Raw sensor data PCA
Classification by linear discriminant analysis on PC factors that

were discriminant between groups

No

FENS (2015) [39] Raw sensor data PCA
Multivariate regression analysis on all PCs and BALF eosinophil

counts

No

BRINKMAN (2017) [50] Pre-processed data PCA on variables of interest determined by ANCOVA and Pearson’s
correlation to ACQ. Paired t-test on PCs with eigenvalue >1

No

BRINKMAN (2019) [47] Pre-processed data Non-hierarchical K-means clustering Yes
DRAGONIERI (2019) [44] Pre-processed sensor data PCA

Classification by linear discriminant analysis on PC factors that
were discriminant between groups

Yes

SCHELICH (2019) [38] VOCs Conditional inference forest algorithm and variable importance
measure for each VOC. Selection of identifiable and discriminatory

VOCs. Classification by random forest algorithm

Yes

BRINKMAN (2018) [49] Pre-processed data Multivariate modelling of GCMS fragments compared to LCMS
drug outcomes by AUC

Yes

PCA: principal component analysis; PC: principal component; BALF: bronchoalveolar lavage fluid; ACQ: Asthma Control Questionnaire; GCMS:
gas chromatography-mass spectrometry; LCMS: liquid chromatography-mass spectrometry; AUC: area under the receiver operating
characteristic curve.
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referenced against when using the same methodological parameters, so sharing meta-data relating to
sample handling, processing and analysis is of paramount importance. The methodological heterogeneity
of the breath analysis literature is well documented [30, 74]. While exhaled breath sampling is simple for
patients, by definition, the analyte of interest is volatile, and each stage of exhaled breath analysis
introduces additional sources of variation [74].

Like exhaled nitric oxide concentrations [60, 75], individual VOC concentrations [53] and e-nose sensor
deflections [21] can be influenced by flow rate and breath-holding [21]. Similarly, most studies collect
VOCs from the total expiratory phase, as it is logistically most simple to achieve. E-nose breathprints using
this breath sample show more inferior diagnostic potential (asthma versus healthy controls) than when
excluding air within the oropharynx [42], possibly reflecting the dilution of discriminatory VOCs by this
contaminant air. There has been a range of strategies used to exclude air from this dead space, including
valves and estimated volumes, which are inconsistent and unreliable [56, 57], to a highly engineered system
of pressure sensors [45, 58, 76], which is expensive and bulky. The optimal solution needs to balance
practicality and precision, so as not to negate the clinical utility of breath sampling. The breath sampler
developed by a broad consortium of breath researchers and engineers (www.breathe-free.org), represents
one such solution. A similar pragmatism is likely necessary for the exclusion of exogenous VOCs.
Subtracting ambient VOC concentrations from exhaled VOC concentrations (alveolar gradient) [77] risks
the loss of salient signals and ignores VOC interactions within the airways [78, 79]. Although unable to
eliminate all exogenous VOCs, filters can at least reduce background contamination [40].

Once collected, unless performing online analysis, the storage medium bears consideration. Most early
studies stored breath samples in an inert polymer (usually Tedlar) bag, but the concentrations of
compounds stored in Tedlar bags show compound-specific decay rates and the bags themselves can
introduce contaminants [80, 81]. VAN DER SCHEE et al. [52] found no variation when breath samples were
stored for up to 2 weeks, and many studies try to minimise storage time [40, 42]. Alternative or
subsequent storage solutions: thermal desorption tubes containing some sort of adsorbent material
(porous organic polymers, activated charcoal, carbon molecular sieves or graphitised carbon blacks) do
not guarantee against this decay [81]. No adsorptive material can completely capture all the VOCs in the
breath without some degree of loss [82].

Moreover, different materials are vulnerable to breakthrough (non-quantitative adsorption of analytes) and
memory effect (incomplete desorption resulting in interference with subsequent measures) [83]. Therefore,
ideally, the choice of adsorbent materials and the duration of storage [52] should be determined by
compounds of interest [82, 84]. Most studies now adsorb onto Tenax TA (2,6-diphenyl-p-phenylene oxide)
[85], due to its hydrophobicity, thermal stability and its ability to absorb a wide range of VOCs [86].

Data handling heterogeneity
Even then, a robust and reliable sample collection is relatively straightforward when compared to data
management, analysis, and interpretation [87]. There are many thousands of VOCs in exhaled breath [13],
and a proportion of these will relate to non-disease-related factors: age [88], sex [89], diet [90], exercise
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[91] and smoking [92], as well as therapies [51, 93], the resident microbiome [18] and environmental
exposures [70, 81, 94–96]. Furthermore, it is also appreciated that not all VOCs originate from the airways.
Non-asthma–VOC research proposes a model of blood/gas coefficients [97] and quantification of regional
lung ventilation and perfusion [98] to describe the delivery and migration of systemically generated VOCs
to exhaled breath.

Almost all the identified discriminatory VOCs identified in asthma studies are straight-chain, branched or
aromatic hydrocarbons [81], and while there are proposed endogenous origins to such compounds [79],
they frequently occur exogenously [99] and may simply reflect differential uptake of environmental VOCs
[100]. Consequently, those VOCs that occur commonly and in high concentrations or those that are
common to many inflammatory states [64, 101], are over-represented in the literature. For airways
diseases, it is likely that actually, only a fraction of the VOCs identified in exhaled breath actually relate to
airway events.

The majority of studies in this review explore their data using principal component analysis (PCA).
Dimension reduction in this manner usefully allows focus on the variation of interest [28]. Classification
by only using discriminatory principal components results in better diagnostic classification (asthma versus
healthy controls) than when using all principal components unselectively [42]. Different principal
components are used to discriminate diseases and inflammatory phenotype [39, 45], just as e-nose
discrimination of transcriptomic-associated clusters [54] in the U-BIOPRED study relies on different
principal components to those used to cluster patients according to inflammation [47]. As such, the VOCs
used to discriminate across sputum granulocyte phenotypes were unable to discriminate between inhaled
corticosteroid (ICS)-treated or ICS-naïve patients [38]. The disadvantage of PCA is its sensitivity to
outliers, the handling of which is critical but rarely commented upon [102]. Moreover, data restructuring
in this manner abstracts the relationship between trait/mechanism and biomarker.

For supervised statistical analyses, we commonly see linear discriminant analysis and partial least squares
discriminant analysis, both of which investigate linear relationships. Complex biological systems are
characterised by non-linear relationships, and although non-linear statistical techniques deliver the highest
accuracy, their application may be limited by difficulty in their interpretation [103]. In the absence of a
clear consensus on the optimal statistical approach, studies are likely to publish highly internally valid
results which, in the absence of external validation, probably overestimate real-world findings [63]. This
influence of data handling on biomarker identification means that transparency is more important than
ever. The TRIPOD (Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis
or Diagnosis) recommendations on reporting multivariable prediction models [104] and STARD
(Standards for Reporting of Diagnostic Accuracy Studies) guidelines on reporting of diagnostics accuracy
studies [105] provide useful frameworks for future publications.

Limitations of systematic review
We specifically sought to describe biomarkers for precision medicine in asthma [7]; however, few studies
specifically measure underlying biology or treatable traits, focusing instead on historical diagnostic labels [106].
In addition, we found that studies focused on milder cohorts, poorly representative of the heterogeneity of
asthma, which is greatest in those with severe disease [1, 2, 107, 108]. Although we deliberately excluded
paediatric studies, they have been summarised elsewhere [31]. Our broad and inclusive search strategy
successfully captures the full spectrum of study designs, populations and outcome measures seen in exhaled
VOC research. While this undermines some of the QUADAS risks-of-bias scores, we believe that our search
allows for a comprehensive review of this emerging field.

Future considerations
It is evident that the field of breathomics is addressing the limitations mentioned herein. The breath research
community has developed a framework for methodological standardisation [30, 109] and the latest
breathomics findings are coming from large, multicentre studies with defined validation cohorts [22, 38, 47].
Large-scale studies, which recruit over a protracted period and over multiple sites [81] introduce new
challenges. Such studies demand a multibatch experimental design (also unavoidable due to limitations of
VOC storage solutions). Regular instrument proficiency testing and the use of quality control samples [110]
is critical for demonstrating consistent quality assurance throughout such a study. Metabolomics studies
demand standard operating protocols for both the analytical and computational workflows [81], including
strategies to monitor within- and between-batch measurement variations [111]. This extends to data
preprocessing of MS data (denoising and baseline correction, alignment, peak picking and merging of the
peaks) as well as normalisation, scaling and transformation of the data, essential to constructing a reliable
data matrix [103]. Consistent with previous reviews, we found that details of this were rarely reported [63],
although recent publications are reversing this trend [38, 47]. The ultimate intention for breathomics
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research would be interlaboratory and equipment comparison [112]. Only then will true external validation
(where findings are replicated in a new study) be possible [113].

Robust biomarkers for T2-low asthma remain elusive [71, 114–116] despite these patient groups being
most treatment-resistant and having the worst clinical outcomes [2, 117, 118]. The airway microbiome and
host–microbial interactions have been proposed as a way to understand these poorly characterised asthma
endotypes [119, 120]. Where bacteria are abundant producers of VOCs [121–123], they are likely to
contribute to the spectra of exhaled VOCs. E-nose breathprints have been able to specifically discriminate
patients colonised with or without potentially pathogenic bacteria in COPD [124], and the same is likely
to be the case for asthma. For example, nonanal, identified to discriminate neutrophilic from eosinophilic
asthma [38], is produced by bacterial species and has antimicrobial properties of its own [125], which
may, in turn, contribute to the reduction in microbial diversity seen in neutrophilic asthma [126].

As airways diseases move closer to precision medicine, study designs will also have to consider the best
way to assess VOCs. Biomarker studies are only as good as the gold standard to which they are compared.
Existing gold standard biomarkers, such as FeNO and blood eosinophils, may not accurately predict
T2-high biology [62]. Failings of a new biomarker (such as VOCs) may, in fact, reflect imperfect gold
standard tests [127]: e-nose, for example, can discriminate (sputum) transcriptomic associated clusters
(TAC clusters) [47] more effectively than existing biomarkers. Therefore, studies that aim to assess the
biomarker potential of breathomics should consider moving away from solely comparing to these existing
biomarkers and towards the direct assessment of biology, possibly alongside other omics platforms [128].
GCMS studies might also consider parallel in vitro studies as a means to validate in vivo findings [129,
130]. Alternatively, the focus should be on crucial disease traits such as treatment response [69],
exacerbation prediction [28] and treatment adherence [131, 132]. Early evidence shows e-nose to
demonstrate superior accuracy at predicting clinical response to steroids (compared to FeNO or sputum
eosinophils) [36, 42], as well as accurate GCMS detection of VOCs, linked to salbutamol and OCS use [49].

Conclusions
Breathomics is still a relatively new field, and the guarded optimism with which findings are treated is justified
(figure 2). As with other omics technologies, breathomics generally suffers from a lack of external validation,
compounded by limited patient numbers and the risk of false discoveries due to model overfitting [12, 103,
113]. Nevertheless, the sensitivity of exhaled VOCs to underlying inflammation is corroborated across several
studies using both sensor- and chemical-based platforms. Encouragingly, we see successful discrimination
of asthma patients based upon their inflammatory phenotypes in a large replication cohort [38].

Strictly, true external validation has still not yet been met: the discriminatory VOCs in this study were not
the same as those in a similar study [45] nor relevant in vitro work [130]. These might be explained away
by differences in study design/methodology and the failings of headspace samples to accurately reflect
complex interactions within the airways [133], but equally demonstrate the scale of what is still unknown
in breathomics. Immediate priorities for breathomics include standardisation of reporting, a better
understanding of the best statistical approaches and access to data-sharing platforms. Armed with these
tools and study designs that maximise biomarker discovery, the next generation of breathomics evidence
should show the full potential of exhaled VOCs.
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