

Longitudinal prediction of outcome in idiopathic pulmonary fibrosis using automated CT analysis

Joseph Jacob ^{1,2}, Brian J. Bartholmai³, Coline H.M. van Moorsel^{4,5}, Srinivasan Rajagopalan³, Anand Devaraj⁶, Hendrik W. van Es⁷, Teng Moua⁸, Frouke T. van Beek⁴, Ryan Clay⁸, Marcel Veltkamp^{4,5}, Maria Kokosi⁹, Angelo de Lauretis¹⁰, Eoin P. Judge¹¹, Teresa M. Jacob¹², Tobias Peikert⁸, Ronald Karwoski¹³, Fabien Maldonado¹⁴, Elisabetta Renzoni⁹, Toby M. Maher^{15,16}, Andre Altmann ² and Athol U. Wells⁹

Affiliations: ¹Dept of Respiratory Medicine, University College London, London, UK. ²Centre for Medical Image Computing, University College London, London, UK. ³Dept of Radiology, Mayo Clinic Rochester, Rochester, MN, USA. ⁴St Antonius ILD Center of Excellence, Dept of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands. ⁵Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands. ⁶Dept of Radiology, Royal Brompton Hospital, London, UK. ⁷Dept of Radiology, St. Antonius Hospital, Nieuwegein, The Netherlands. ⁸Dept of Pulmonary Medicine, Mayo Clinic Rochester, Rochester, MN, USA. ⁹Interstitial Lung Disease Unit, Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, UK. ¹⁰Division of Pneumology, "Guido Salvini" Hospital, Garbagnate Milanese, Italy. ¹¹Dept of Respiratory Medicine, Aintree University Hospital, Liverpool, UK. ¹²Dept of Radiology, St Georges Hospital, London, UK. ¹³Dept of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, MN, USA. ¹⁴Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. ¹⁵NIHR Respiratory Clinical Research Facility, Royal Brompton Hospital, London, UK. ¹⁶Fibrosis Research Group, National Heart and Lung Institute, Imperial College, London, UK.

Correspondence: Joseph Jacob, Dept of Respiratory Medicine, Rayne Institute, University Street, University College London, WC1E 6JF, UK. E-mail: j.jacob@ucl.ac.uk

@ERSpublications

Change in the vessel-related structures, a computer-derived CT variable, is a strong predictor of outcome in idiopathic pulmonary fibrosis and can increase power in future drug trials when used as a co-endpoint alongside forced vital capacity change http://bit.ly/2M7DfKS

Cite this article as: Jacob J, Bartholmai BJ, van Moorsel CHM, *et al.* Longitudinal prediction of outcome in idiopathic pulmonary fibrosis using automated CT analysis. *Eur Respir J* 2019; 54: 1802341 [https://doi. org/10.1183/13993003.02341-2018].

This single-page version can be shared freely online.

To the Editor:

The advent of antifibrotic agents [1, 2] as standard of care in idiopathic pulmonary fibrosis (IPF) requires that new non-inferiority IPF drug trials will need to identify smaller declines of forced vital capacity (FVC). Marginal annualised FVC declines (between 5.00 and 9.99%) are particularly challenging to interpret as they might reflect measurement variation or genuine clinical deterioration [3]. Following on from previous baseline-only computed tomography (CT) analyses [4], the current study examined whether changes in computer features (CALIPER) across serial CT examinations could be considered as a trial co-endpoint, particularly with regard to adjudicating marginal FVC declines, and therefore improve the sensitivity of IPF drug trials.

Copyright ©ERS 2019 This version is distributed under the terms of the Creative Commons Attribution Licence 4.0.