
Lung elastic recoil and ventilation
heterogeneity of diffusion-dependent
airways in older people with asthma and
fixed airflow obstruction

To the Editor:

Small airways are abnormal in asthma [1]. One measurement of small airway function is Sacin, derived
from the multiple-breath nitrogen washout (MBNW) test. Sacin reflects ventilation heterogeneity in
diffusion-dependent airways, and is correlated with airway hyperresponsiveness [2] and asthma control
[3]. Theoretically, heterogeneity of diffusion-dependent ventilation can arise due to the heterogeneity of
cross-sectional areas of airway openings in terminal airways and the acini [4]. Therefore, Sacin may be
affected by structural changes in those airways. The elastic properties of the lung may also affect Sacin, as
the phase III slope, a marker of ventilation heterogeneity derived from the single-breath nitrogen washout,
correlates with lung compliance in explanted lungs of smokers and in healthy lungs [5].

Reduced lung elastic recoil makes a large contribution to airflow obstruction in asthma [6], particularly in
older individuals who may develop fixed airflow obstruction (FAO). FAO typifies chronic obstructive
pulmonary disease (COPD) but can occur in older asthmatics who have never smoked and despite
adequate treatment [7, 8]. Since FAO is associated with age and Sacin is more abnormal in older asthmatics
compared to younger [2], we hypothesised that the increase in Sacin in older people with asthma was due
to loss of lung elastic recoil. Therefore, the aim of this study was to examine the relationships between
Sacin and elastic recoil pressure and compliance.

We enrolled subjects from tertiary hospital clinics who were >40 years old, had ⩽5-pack-year smoking
history and a physician diagnosis of asthma. To optimise asthma control, all subjects were treated with
2 months of maximal-dose inhaled corticosteroid (ICS)/long-acting β-agonist (LABA) using a fluticasone/
eformoterol 250/10 µg metered-dose inhaler via a holding chamber, two puffs twice daily. Subjects
completed the five-item Asthma Control Questionnaire (ACQ-5), standard lung function and MBNW
(Exhalyzer D; ECO MEDICS AG, Duernten, Switzerland) as previously described [9], both during
enrolment and after 2 months of treatment. Post-bronchodilator spirometry was performed after 1 month
of treatment. Sacin, Scond (ventilation heterogeneity in convection-dependent airways) and lung clearance
index (LCI) (a global index of ventilation heterogeneity) were derived as previously described [10]. At the
end of the 2-month treatment period, lung elastic recoil pressure was measured using an oesophageal
balloon. The pressure–volume (P–V ) curve was constructed from points obtained during five interrupted
deflation manoeuvres from total lung capacity (TLC) to functional residual capacity (FRC). At least 30
acceptable points were plotted and an exponential function, V=A−Be−KP, fitted to the P–V curve between
50% and 100% of TLC [11] using a least-squares fit, where V is volume, A is the horizontal asymptote,
and B is the distance between A and the extrapolated y-axis intercept. The ratio of B/A, expressed as a
percentage, is an index of lung elastic recoil; a low ratio indicates reduced lung elastic recoil (leftward shift
of the P–V curve). K is an index of the curvature of the exponential relationship between P and V.
Increased K indicates a steeper P–V curve at lower lung volumes near FRC (hence, increased compliance)
but a flatter slope at higher lung volumes (hence, lower compliance near TLC). K is thought to represent
the lung’s elastic properties better because it takes into account lung volume over a meaningful range, as
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opposed to chord compliance, which only takes into account the linear portion of the P–V curve. Lung
elastic recoil does not change post-bronchodilator in stable conditions [12] and the measurement is
invasive; therefore, post-bronchodilator P–V measurements were not performed. ICS/LABA and short
acting β-agonist medications were withheld for at least 24 and 6 h prior to testing, respectively. Correlations
between pre-bronchodilator MBNW and P–V indices were assessed using Spearman’s rank test.

21 subjects were enrolled; three could not complete the study. All subjects were taking an ICS with or
without LABA; five subjects were also taking a long-acting muscarinic antagonist. One subject was on
long-term low-dose oral corticosteroids (prednisone dose 5 mg) for rheumatoid arthritis. Five subjects
were ex-smokers (mean±SD history 2.2±2.5 pack-years). The mean±SD age was 64.1±8.0 years, height 1.69
±0.10 m, body mass index 28.4±6.0 kg·m−2, asthma duration 38.9±22.5 years and ACQ-5 score 1.07±0.92.
Post-bronchodilator spirometry after 1 month of treatment showed moderate FAO: mean±SD z-score forced
expiratory volume in 1 s (FEV1) −2.2±0.5, forced vital capacity (FVC) −0.7±1.0 and FEV1/FVC −2.6±0.7.
After 2 months, spirometry did not change; there was mild gas trapping (residual volume z-score 2.0±1.6)
and mildly reduced diffusing capacity of the lung for carbon monoxide (78±15% predicted). All MBNW
indices were higher than normal and also did not change after 2 months of treatment: median
(interquartile range) z-score Scond 3.3 (3.1–4.2) L−1, Sacin 2.8 (2.1–3.8) L−1 and LCI 4.6 (2.3–7.8). P–V
curves were generated from TLC to a lower limit volume of 55% (51–60%) of TLC. Lung elastic recoil was
lower (B/A% z-score ⩽−1.64) in five out of 18 subjects and compliance was higher (K z-score ⩾1.64) than
normal in nine out of 18 subjects. Elastic recoil pressure at functional residual capacity was low at 1.4
(0.8–3.6) cmH2O.

Increasing age was associated with reduced lung elastic recoil (B/A% rs=−0.52, p=0.02) and increased lung
compliance (K rs=0.50, p=0.04) but not with MBNW indices. Increased Sacin and LCI were both associated
with loss of lung elastic recoil, B/A% (rs=−0.53 (p=0.03) and rs=−0.52 (p=0.03), respectively) (figure 1).
There were no associations between Scond and B/A% (rs=0.28, p=0.3), or between any MBNW indices and
lung compliance (K: rs=0.18 (p=0.5), rs=0.002 (p=1.0) and rs=0.33 (p=0.2) for correlations with Sacin,
Scond and LCI, respectively).

This study shows that in asthmatics over the age of 40 years with FAO, uneven ventilation distribution in
diffusion-dependent airways was associated with reduced lung elastic recoil but not with increased lung
compliance. Convection-dependent ventilation distribution was unrelated to either lung elastic recoil or
compliance. Furthermore, despite maximal ICS/LABA treatment, lung function did not change over a
2-month period, suggesting a steroid-unresponsive process. These findings suggest the mechanical
properties of the lung parenchyma are an important determinant of peripheral airway function in older
people with asthma and FAO.

We used B/A% as an index of reduced elastic recoil pressure. A approximates TLC, whereas B is the
volume spanned by the P–V curve, in turn related to shifts in recoil. Therefore, B decreases when recoil
pressures decrease, i.e. the curve is shifted to the left [13]. Since TLC was normal in our subjects, the
signal in elastic recoil changes arises from B: versus Sacin, r=−0.43 (p=0.08) and versus LCI, r=−0.52
(p=0.03). B/A% then normalises for TLC. Reduced B/A% indicates that recoil pressures generated by
alveoli and intra-acinar airways is reduced, and that the lung and acinar airways, which then reach full
inflation at lower distending pressures compared with normal lungs, i.e. greater distensibility. Decreasing
B/A% with age explains the increase in closing volume and residual volume/TLC with increasing age [13].
The lack of relationship between Sacin and K suggest that airspace per se is not a determinant.

If reduced lung elastic recoil due to asthma is variably distributed throughout the lungs, then alveolar and
intra-acinar airway sizes would be more variable. Thus, Sacin would increase since regional specific
ventilation, which is determined by alveolar size and cross-sectional areas of the intra-acinar airway
openings [4], would become more heterogeneous too. A global loss of elastic recoil could also increase
overall ventilation heterogeneity, by amplifying normal airway structural asymmetry and/or by bringing
some airways towards closure, thus changing airway closure distribution.

Support for heterogeneous distribution of lung tissue changes has been demonstrated in post mortem
asthmatic lungs from nonsmokers [8]. Microscopic examination confirmed mild, diffuse centrilobular
emphysema-like changes, predominantly in the upper to middle lobes, as well as areas of normal lung
parenchyma. The variability in the histopathological abnormalities within an asthmatic lung suggests the
distribution of lung elastic recoil pressures will also be distributed heterogeneously, thereby increasing
ventilation heterogeneity. Age-related structural changes such as enlargement of the airspaces, alveolar wall
thickening and reduced number of peripheral airways [14] may also be distributed unevenly. These
age-related changes may explain the rapid increase in ventilation heterogeneity values beyond 60 years of
age [15]. In this study, age was associated with both B/A% and K, consistent with the known relationship
in healthy individuals. It is possible that there is an interaction between asthma-related changes in lung
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and airway structure and ageing, which alters the lungs elastic properties and small airway structure in a
highly variable manner. Hence, asthma and ageing could have interactive effects on the elastic properties
of the lungs. A weakness of this study is that we are unable to examine any potential interactions of ageing
as a potential mechanism for the relationship between Sacin and B/A%. This is because age was unrelated
to Sacin (p=0.43), possibly related to the small numbers and narrow age range in this study.

In summary, we found that a loss of elastic recoil, but not lung compliance, was associated with increased
ventilation heterogeneity in diffusion-dependent airways in older asthmatics with FAO. The mechanisms
causing loss of lung elastic recoil in asthma need further investigation as they may provide insight into
causes of small airway dysfunction in asthmatics who develop FAO despite negligible smoking history.
This may represent a potential pathway by which the asthma–COPD overlap phenotype is manifest and
therefore highlights the need for development of novel treatments that target loss of elastic recoil in asthma.
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FIGURE 1 Univariate correlations (Spearman test) between multiple-breath nitrogen washout indices and lung elastic recoil (B/A): a) Scond
(ventilation heterogeneity in convection-dependent airways); b) Sacin (ventilation heterogeneity in diffusion-dependent airways); c) lung clearance
index (LCI), a global index of ventilation heterogeneity.
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