
Supplemental Methods 
I. Lung Genomics Research Consortium (LGRC): Gene expression profiles were obtained using 
the Agilent-014850 Whole Human Genome Microarray 4x44K G4112F-Probe number version 
(Agilent, Agilent Technologies, Santa Clara, CA, USA). Normalized gene expression values 
were adjusted for age, smoking status (current, former, never), and gender. Individuals with 
known interstitial lung disease and alpha-1 antitrypsin deficiency were excluded. The Gene 
Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) accession number for 
this study is GSE47460.[20, 22] 
II. Ohio State University (OSU): We retrieved normalized mRNA expression microarray data 
from the GEO GSE38974 dataset.[19] Briefly, gene expression profiles were generated with the 
Agilent-014850 Whole Human Genome Microarray 4x44K G4112F-Feature number version 
array (Agilent, Agilent Technologies, Santa Clara, CA, USA). Gene expression was not adjusted 
for covariates due to the small sample size. 
III. Lung expression quantitative trait loci (eQTL): Lung tissue samples were collected at three 
sites: Laval University (Quebec, Canada), University of British-Columbia (Vancouver, Canada) 
and Groningen University (Groningen, The Netherlands). Gene expression profiles were 
obtained using a custom Affymetrix microarray (GPL10379) (Affymetrix, Santa Clara, CA, 
USA).[21] Normalized gene expression data from these three sites were combined using the 
ComBat adjustment methods and were used for analyses.[18] RMA expression values were 
adjusted for age, smoking status (current, former, never), and gender, in the same manner as in 
the LGRC cohort. Individuals with known interstitial lung disease and alpha-1 antitrypsin 
deficiency were excluded. The GEO accession numbers for this study is GSE23546. 
DNA Repair Pathways:  We identified 419 DNA damage repair and tolerance genes (DDRT), in 
the online databases REPAIRTOIRE (www.repairtoire.com), GO Pathways 
(www.gopathways.com), DNA repair and chromatin remodeling genes 
(www.dnarepairgenes.com), and the Wood laboratory website  
(https://sciencepark.mdanderson.org/labs/wood/DNA_Repair_Genes.html). Entrez IDs for all 
419 DNA repair genes were mapped to the three-gene expression platform used and assigned 
to one of 10 categories of DDRT pathways: DR, BER, MMR, NER, HR, NHEJ, TLS, FA, CR, 
and TR. [24, 25] (Supplemental Table E1). 
Identification of a consensus DNA repair gene list: In the OSU, Lung eQTL, and LGRC cohorts, 
patients with severe COPD (GOLD IV) were compared with patients with nonsevere disease 
(GOLD I,II) and control (GOLD 0). All genes were ranked based on Significant Analysis of 
Microarray (SAM) score (d). SAM analysis was performed using BRB Array Tools v 4.1.[25, 26] 
DNA repair genes were included for further analysis if they were differentially expressed in all 
three cohorts and shared the same direction of effect (FDR < 0.1). 
DNA repair gene validation with RNAseq: We chose to validate the consensus genes using on a 
subset of lung tissue samples from the LGRC cohort that underwent gene expression profiling 
by RNA sequencing. (Supplemental Table E3). Complete details have been previously 
described.[30] Briefly lung tissue samples were sequenced on the Illumina GAIIx. Samples were 
aligned with TopHat to hg19. Gene expression was quantified using Cufflinks and log2 
transformed FPKM gene expression values were used for analysis. Genes were considered 
valid if they were differentially expressed between severe COPD (GOLD IV) and control (GOLD 
0) or severe COPD (GOLD IV) and nonsevere disease (GOLD I,II). The RNAseq data is 
available for download (https://www.lung-genomics.org/research/).  
K-means of LGRC samples by the 15-DDRT gene list: Cluster 3.0 software was used for K-
means clustering of patients with COPD from the LGRC cohort (GOLD I-IV) based on the 15 
consensus genes (bonsai.hgc.jp/~mdehoon/software/cluster/software.htm). To justify the 
number of clusters: five models were evaluated using different numbers of clusters between 1 
and 5, and the best number of clusters was determined by their ability to capture patients with 
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discrete subgroups of DDRT genes. These clusters were used to evaluate the clinical and 
genome-wide expression differences between DNA repair expression clusters. 
Pathway Enrichment Analysis for DNA repair clusters: Genome-wide mRNA expression 
differences were evaluated in the three DNA repair clusters of patients identified in the LGRC 
cohort. Pairwise comparisons using the unpaired t-test were performed between individuals in 
each cluster and a control cluster from the LGRC (GOLD 0) using Genespring version 12.6 
(Agilent Technologies, Santa Clara, CA, USA). Transcripts with ≥ 1.2-fold change between 
conditions were selected for pathway enrichment analyses with MetaCore version 6.23 build 
67496 (Thomson Reuters, New York, NY, USA). Pathways with a FDR < 0.05 were considered 
significant. 
Immunohistochemistry: Deidentified formalin-fixed paraffin-embedded tissues from a subset of 
LGRC patient samples used for microarray expression profiling. For IHC, sections were 
incubated with rabbit IgG directed against Endonuclease 8-like 1 (NEIL1) (HPA054084, Sigma-
Aldrich, St. Louis, MO, USA) X-ray repair cross-complementing protein 4 (XRCC4), (ab97351, 
Abcam, Cambridge, United Kingdom), and DNA damage-binding protein 2 (DDB2) 
(HPA058406, Sigma-Aldrich, St. Louis, MO).  Expose Rabbit specific HR/DAB detection IHC kit 
was used to detect the primary antibody per protocol (Abcam, Cambridge, United Kingdom). 
Sections were counterstained with hematoxylin. Images were photographed with a Nikon DS-
Ri2 microscope, using a 40x objective. Blinded comparison studies of at least 5 
immunohistochemistry samples from each cluster and controls were used to assess for 
differences in tissue staining. 
Gene Set Enrichment Analysis (GSEA): Gene set enrichment of the 10 DDRT pathway gene 
sets were performed using GSEA v3.0, using 1000 permutations 
(http://www.broad.mit.edu/gsea). [28] Gene ranking was based on Spearman correlations with 
clinical measurements of COPD severity amongst patients with COPD (GOLD I-IV), in the 
LGRC cohort. Clinical measurements of disease included: percent emphysema based on high 
resolution computed tomography (HRCT), forced expiratory volume in one second (FEV1) 
percent predicted,  diffusing capacity for carbon monoxide (DLCO) percent predicted, 6-minute 
walk distance (6MWD), St. George’s Respiratory Questionnaire (SGRQ), body mass index, 
airflow obstruction, dyspnea, and exercise capacity index (BODE), and the Short Form Healthy 
Survey-12 (SF-12).  
DNA Repair Pathway Expression Coefficients (Z-Score): Amongst patients with COPD (GOLD I-
IV) in the LGRC cohort, we correlated the expression of genes within a given DDRT pathway 
with clinical features of COPD. Z-scores were generated for each of the 419 DNA repair genes 
across all COPD samples. An average Z-score value for the DDRT genes within each of the 10 
pathways were used to generate a unique coefficient for all patients.[29] Spearman correlation 
analyses between the pathway coefficients and clinical features of disease were performed.   
Weighted Gene Co-expression Network analysis (WGCNA): WGCNA version 1.42 was used to 
identify gene co-expression networks. [30]  Using the whole transcriptome microarray data from 
LGRC patients, we identified genes with expression profiles that correlated across sample, and 
grouped those genes into gene modules. Every module is represented by an eigengene, and 
each module’s eigengene was correlated with clinical traits. For each gene in a module, module 
membership values were generated, representing the similarity between an individual’s gene 
expression and the module’s eigengene. Metacore Process networks were used for module 
enrichment analyses. Process networks with a FDR <0.05 were considered significant.  
Statistical Analysis: Basic summary measures were calculated: medians, means, and standard 
errors for continuous variables and counts and percentages for categorical variables as 
appropriate. Parametric data were compared with a students’ t-test, nonparametric data were 
compared by Mann-Whitney, and categorical data were compared with a χ2 statistic. D’agostino 
and Pearson test was used to determine if data was normally distributed. Unless otherwise 
mentioned, two-sided p values less than 0.05 were considered significant. Graphs and basic 
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statistical comparisons were performed with GraphPad (GraphPad Software, La Jolla, CA, 
USA). 
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