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Supplemental Methods 

Participants 

Detailed characteristics of participants are described in Table S1.  

A minimum AHI of 20 events/hr was chosen to minimize the possibility that a clinically-important response 

to treatment (50% reduction in AHI) could occur by chance due to night-to-night variability (SD 

approximately 9 events/hr [S1]).  

Power analysis 

The study was powered (alpha = 0.05, power ~80%) to find a 1.0 SD difference in the response (by 33±33% 

percent reduction in AHI) between high loop gain and low loop gain subgroups (high: LG1>0.7, i.e. 

“hypersensitivity”) based on a prevalence of 1:2 (high:low). Ultimately the observed difference between 

groups was just +10.5±37.6% [mean±SD] (95%CI: -16 to 37%), a 0.28 SD difference; i.e. the best estimate 

of the difference was small and there was no more than a 37% greater reduction in patients with higher loop 

gain (using LG1). 

Percent change in AHI was chosen over absolute change in AHI because the percent change is typically 

least-strongly correlated with the baseline (sham) AHI (here: r=0.07 [p=0.7] versus r=0.4 [p=0.016] for 

absolute reduction). If we had used absolute reduction in AHI as the outcome variable, the observed 

difference would have been borderline non-significant (p=0.051), with a group difference of 13.3±18.9 

events/hr [mean±SD] (95%CI: 0.1 to 26.6 events/hr). However, this difference can be explained by an 

increased baseline AHI in the high LG1 group; after adjusting for baseline AHI the difference between 

groups became +6.0 events/hr (95%CI: -9.2 to 21.2 events/hr).  

Power for multivariable analysis. Given the absence of appropriate existing data for a formal power analysis, 

we estimated that approximately (10×M)+10=50 subjects would be necessary (56 were used) to build a 

prediction model that would use at least M=4 terms. Robustness was assessed based on the loss in predictive 

value via cross-validation.  We emphasize that the primary goal of the multivariable analysis was not to 

show that each trait contributes significantly to responses (there was no minimum detectable odds ratio). 

Rather, the objective was to define two subgroups that would have significantly different responses (after 

cross-validation); since these subgroups need to be powered to detect a difference in response, the power 

considerations are the same as for the initial analysis, i.e. 36 patients would provide ~80% power to detect a 

difference in the reduction in AHI by 33±33% (1 SD). Ultimately the difference was 46.3±30.3% 

[mean±SD] (95%CI: 24.8 to 67.7 %), or 1.5 SD, which was largely unchanged after adjusting for baseline 

AHI (46.8%; 95%CI: 26.0 to 67.6%). The difference in absolute reduction in AHI between subgroups was 

also significant: 23.2±16.4 events/hr [mean±SD] (95%CI: 11.6 to 34.7 events/hr), or 1.4 SD; adjusting for 

baseline AHI had a minimal effect (24.2 events/hr; 95%CI: 14.6 to 33.8 events/hr).  
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Procedure 

Studies were performed a week apart to facilitate between-study consistency of work and lifestyle factors 

that might contribute to sleepiness or blood pressure levels (e.g. exercise, diet, caffeine use). Participants 

were asked to keep routine medication use consistent between studies.  

Medications for hypertension, when applicable, were administered at home on the morning prior to the 

overnight study, and then were not taken until after morning blood pressure measurements were made.  

At arrival (~7pm), seated blood pressure measurements were made that served to familiarize participants 

with the measurement experience, reducing the chance of possible “first measurement” effects influencing 

the evening blood pressure values.  

After study completion, patients were asked if they knew which night was oxygen and which was sham: 26% 

guessed correctly, 20% guessed incorrectly, and 54% were unsure (signed rank test P=0.7; correct=1, 

unsure=0, incorrect=−1) indicating that subjects were effectively blinded.  

Ventilatory control tests (dynamic inspired CO2) were also performed before and after sleep on both nights 

[S2]; data are not provided here to focus on polysomnographic predictors.  

Polysomnographic setup 

Care was taken to ensure high quality nasal pressure signals were recorded: a cannula without evidence of 

mechanical damping effects was selected [prongs 3.5 mm diameter] (Hudson RCI standard “over the ear” 

cannula, Teleflex, Morrisville NC). Cannulas were secured to the face with tape to minimize displacement 

(Tegaderm, 3M, Maplewood MN); signal amplification was DC coupled to preserve the baseline (Validyne, 

Northridge CA) and unfiltered signals were exported for analysis. 

Hypopneas were scored based on a 30% reduction in airflow, avoiding the desaturation criterion given the 

use of supplemental oxygen.  

An epiglottic pressure catheter (Millar Instruments, Houston TX) was used to adjudicate central versus 

obstructive hypopneas to confirm obstructive pathophysiology.  

EEG arousals were scored using standard criteria (≥3-s change in EEG frequencies θ, α, β). All patients 

analyzed also had AHI>20 by standard hypopnea criteria (3% desaturation or arousal) [S3]. At baseline, 

events not associated with desaturation or arousal made up just 7.7±8.6% (mean±S.D.) of the scored events.   

Quantifying the pathophysiological traits using polysomnography 

Eupneic ventilation during OSA is inferred from the mean ventilation for each window of data on the basis 

that mean PCO2 is not greatly deranged during this time. This assumption did not adversely affect chemical 

drive and loop gain measurements in our model simulations [S4]. Eupneic ventilation on CPAP also 

compares closely with the mean value of ventilation during sleep in patients with OSA [S5]. 

To construct each phenotypic summary plot of ventilation versus ventilatory drive during sleep, the 

following process was automated: 
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1. Values for ventilation and ventilatory drive were tabulated for each breath that appeared during 

windows of non-REM sleep [S4]. 

2. Breaths were also labelled based on whether or not a scored EEG arousal was present within the 

breath (from start inspiration to end expiration). Breaths within an arousal or ≤2 breaths after an 

arousal ended (after sleep onset) were excluded from analysis to minimize the possibility of including 

data influenced by wakefulness in the assessment of behavior during sleep.  

3. Ventilatory drive data were sorted and divided into 10 groups or bins (deciles). For each decile, the 

median ventilation was measured and plotted against the median ventilatory drive for each decile.  

4. Linear interpolation was used between deciles to find a) the value of ventilation at eupneic ventilatory 

drive (Vpassive), and b) the value of ventilation at the arousal threshold (called Vactive); compensation is 

given by Vactive minus Vpassive.  

Definition of predictive model 

The term “model” here is used to indicate a classifier plus the necessary coefficients/cutoffs for predicting 

responders/non-responders: Univariable models consist of a cutoff alone (threshold). Multivariable models 

comprise a set of selected features (phenotypic variables), a set of coefficients, as well as a cutoff. In all 

cases (univariable and multivariable), we sought to maximize sensitivity and specificity [S6]. Also in all 

cases, we employed leave-one-out cross validation to provide generalizable measures of performance. 

Assessment of predictive value 

Cross-validation. When assessing the performance or predictive value of a model (defined above) that has 

been developed (trained) on available data, it is best practice to use unseen data for model validation (testing) 

to prevent over-estimation of the predictive value for future applications. With the modest sample size 

available in our study (i.e. N=9 responders), use of a fully-separate dataset for development and validation 

was considered inefficient use of available data. Rather, we used a common procedure called (leave-one-out) 

“cross-validation”. This procedure was used throughout the study for univariable and multivariable analyses 

(except for LG1, the a priori primary predictor).  

The procedure first involves developing a predictive model using all patients. To test the performance of this 

model, the entire process of developing the model was repeated but using all subjects except one who was 

left out. This “modified” predictive model was then tested on the unseen individual who was left out; we 

recorded the outcome of the prediction (true positive, false negative, etc.). This leave-one-out process was 

then repeated N times (here, N=36). A new modified model was developed each time a new individual was 

left out. Each time the model changes slightly, but we can be certain of the independence of the development 

and validation data. Of note, the actual model presented is that which is based on all subjects, since this is the 

best model we can present for future use based on all available data.  

Multivariate model analysis 
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We chose logistic regression as a simple “machine learning” tool that is easily interpreted. Quadratic model 

terms were used given the observation of interactions between variables, i.e. a simpler linear model was not 

sufficient to explain responses. The process was designed to be simple and transparent. In brief, the process 

for identifying the model was as follows:  

1. Terms are initially included in the model: all variables (N=4), their squares (N=4) and interaction 

terms (N=6). The number of terms starts with M=14. 

2. A logistic regression model was fit to the data using M terms.  

3. The term with the highest p-value (Wald test) was removed (if p>0.157) [S7-9], and Step 2 was 

repeated for the remaining terms.  

4. Once no further terms were removed, a logistic regression model cutoff was selected to maximize 

sensitivity plus specificity (receiver operating characteristic analysis) [S10].  

Additional considerations. Because two highly-correlated measures of loop gain were available (LG1, LGn), 

we tested the model performance with LG1 and LGn separately; LGn was consistently the most predictive of 

these two variables and therefore chosen over LG1. Vpassive was forced into the model because of (1) expert 

knowledge that collapsibility should contribute to responses [S11], and (2) its removal varied the model 

coefficients (betas) for other key traits (loop gain and compensation) considerably (by >25%). Model 

weights were used to balance the influence of patients per subgroup. To estimate the performance of this 

model when applied to unseen data, we repeated the above procedure using leave-one-out cross-validation 

(described above). 

Including additional published data to build a robust multiple logistic regression model. Data from a 

previous study [S12] were used to help build the multiple regression model, but we did not seek to test 

outcomes in the additional individuals. Hence, during cross-validation, we used N=55 (20+36-1) patients to 

develop a regression model to predict the outcome for each of the 36 patients in the current study. There 

were, however, some differences in study design between the current and previous one: Edwards et al used 

the same inspired oxygen concentration as the current study but in fact tested the combination of oxygen and 

3 mg eszopiclone versus sham/placebo: However, we argue that it is likely that eszopiclone had relatively 

little impact on the AHI in that study. Recent data [S13] illustrated that a similar dose of zopiclone (i.e. 3.75 

mg of eszopiclone, plus 3.75 mg of its inactive stereoisomer) had no impact on AHI overall and none of the 

8 patients with AHI>20 events/hr exhibited more than a 20% reduction in AHI with this treatment.  

Sensitivity analysis also proved that the additional data from Edwards et al. were useful in building a robust 

multivariable regression model. Without these additional data, (1) the quadratic model was underspecified 

and could not be used, (2) a linear model identified all four traits as contributors but no parameter was 

significant suggesting findings may not be robust (indeed poor compensation tended to predict a positive 

outcome, which is likely to be erroneous), (3) the linear model performance was similar before cross-
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validation but after cross-validation was slightly weaker (ΔAHI = 53±8% versus 15±7%, p=0.002; PPV = 

54±14% [p=0.04], NPV = 91±6% [p<0.006], accuracy = 78±6% [p=0.003]) indicating reduced robustness 

compared with the inclusion of the additional data. However, findings relating to improved secondary 

outcomes in the predicted responder subgroup were all upheld.  

Statistical analysis 

Statistical analyses were performed using MATLAB (Statistics and Machine Learning Toolbox, Mathworks, 

Natick MA, USA).  

Vpassive and arousal threshold data failed normality tests; their skewness were therefore minimized using 

square root transforms centered around the value of 100% (see manuscript for equations).  

Adjustments were not made for multiple secondary outcomes; all outcomes assessed were presented 

regardless of significance. Exploratory outcomes that were significantly improved (e.g. percentage time in 

stage 1 non-REM sleep; Table S1) were not emphasized. 

Use of clinical variables. A variety of clinical variables are available from which one might potentially build 

a separate predictive model that does not require the use our endophenotype traits. While we consider that 

such an effort would be highly-valuable, we caution that the use of endophenotype traits has a distinct 

advantage: there is a highly-plausible mechanistic basis for the association with the response to treatment. 

The use of patient characteristics that have little-to-no mechanistic basis is challenging statistically (spurious 

associations are expected when using a large number of variables in a relatively small dataset) and thereby 

requires a far greater number of patients. There is also the concern that any change in population 

characteristics (e.g. age, race) would likely require recalibration of the predictive model.  
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Supplemental Table 

Table S1. Characteristics and Impact of Treatment  

Characteristic 
All patients 

(N=36) 
Responders* 

(N=9) 
Non-Responders 

(N=27) 

Predicted 
Responders** 

(N=13) 

Pred. Non-Responders 
(N=23) 

 Sham Oxygen Sham Oxygen Sham Oxygen Sham Oxygen Sham Oxygen 

Demographics      

Age (years) 55±2 53±4 55±2 53±3 55±3 

Sex (M:F) 26:10 6:3 20:7 8:5 18:5 

Race (black:white:asian:other) 9:25:0:1 5:3:0:0 4:22:0:1 ¶ Δ 7:6:0:0 2:19:0:1 ¶¶ Δ 

Body mass index (kg/m2) 31.1±0.7 32.3±1.2 30.6±0.8 31.6±1.0 30.7±0.9 

Neck circumference (cm) 40.6±0.5 40.2±1.0 40.7±0.7 39.9±0.8 41.0±0.7 

Current treatment 
(CPAP:oral appliance:untreated) 

12:2:22 1:0:8 11:2:14 4:0:9 8:2:13 

Medications      

Anti-hypertensives, N (%) 12 (33) 1 (11) 11 (41) 3 (21) 9 (41) 

Proton pump inhibitors, N (%) 5 (14) 1 (11) 4 (15) 1 (7) 4 (18) 

Statins 4 (11) 1 (11) 3 (11) 1 (7) 3 (14) 

Antidepressants/anti-anxiety 4 (11) 1 (11) 3 (11) 1 (7) 3 (14) 

Aspirin 3 (8) 0 (0) 3 (11) 1 (7) 2 (9) 

Levothyroxine 3 (8) 0 (0) 3 (11) 0 (0) 3 (14) 

Zolpidem 1 (3) 0 (0) 1 (4) 0 (0) 1 (5) 

Metformin 1 (3) 0 (0) 1 (4) 0 (0) 1 (5) 

Polysomnography      

Time in bed (min) 421±8  422±11 416±16 446±20 423±10 414±12 421±13 424±17 421±11 421±14 

Apnea-hypopnea index† (events/hr) 57.9±3.7 40.5±3.8 56.6±7.7 17.6±4.6 58.3±4.3 48.1±3.9 56.1±5.7 23.9±4.0 58.9±4.9 49.8±4.6 

Effect of oxygen (%) −29.0±6.2 ### −71.8±4.6 ¶¶¶ ### −14.8±4.9 # −58.6±5.6 ¶¶¶ ### −12.3±7.2 

Arousal index† (events/hr) 50.3±3.7 35.9±3.4 46.0±8.1 23.1±3.9 51.7±4.2 40.1±4.0 47.1±6.0 22.5±3.3 52.0±4.7 43.4±4.3 

Effect of oxygen (%) −25.5±5.0 ### −48.3±3.7 ¶¶ ### −17.9±6.1 ## −47.5±6.5 ¶¶¶ ### −13.1±5.5 # 

Nadir oxygen saturation (%Hb) 87.1±0.8 97.1±0.4 89.2±1.5 97.9±0.5 86.4±0.9 96.9±0.6 88.2±1.4 97.5±0.6 86.5±1.0 96.9±0.6 

Effect of oxygen (%Hb) 10.0±0.8 ### 8.7±1.5 ### 10.4±0.9 ### 9.2±1.0 ### 10.4±1.0 ### 

Stage 1 sleep (% total sleep time) 25.9±3.7 23.8±3.7 22.3±5.1 12.4±4.3 27.1±4.6 27.7±4.5 20.1±4.5 9.6±2.4 29.2±5.1 31.9±4.9 

Effect of oxygen (%total sleep time) −0.3[−8.1 to 3.7] −10.5[−14.5 to −1.3] ¶ +0.8[−4.8 to 10.6] −7.2[−14.5 to −0.1] ¶¶ # 1.1[−1.9 to 13.8] 

Additional outcomes      

ΔSystolic blood pressure‡ (mmHg) +3.0±1.9 −0.8±1.4 +3.4±2.7 −4.1±1.8 +2.9±2.3 +0.3±1.7 +3.2±3.1 −2.5±2.2 +2.9±2.4 +0.2±1.8 

Effect of oxygen (mmHg) −3.8±2.1 −7.6±2.2 ## −2.6±2.8 −5.8±2.0 # −2.7±3.1 

ΔDiastolic blood pressure‡ (mmHg) +4.1±1.5 +0.9±0.9 +6.6±2.8 −0.6±1.3 +3.2±1.8 +1.4±1.1 +6.4±2.5 −0.7±1.2 +2.7±1.9 +1.8±1.2 

Effect of oxygen (mmHg) −3.1±1.5 # −7.2±2.9 # −1.8±1.6 −7.1±2.3 ¶ ## −0.9±1.8 

Slept Better:Same:Worse on oxygen ††  19:9:7 # 5:2:1 14:7:6 9:2:1 ¶ ### 10:7:6 

Alertness, Stanford Sleepiness Scale £ 2.0±0.2 2.1±0.2 2.3±0.6 2.3±0.5 2.0±0.2 2.1±0.2 2.2±0.4 2.4±0.4 1.9±0.2 2.0±0.2 

Effect of oxygen (points) 0.1±0.2 0.0±0.5 0.1±0.2 0.2±0.4 0.0±0.2 

OSA severity, alternate      

AHI standard scoring, supine non-REM 
(events/hr) 

54.2±3.9 34.8±3.7 49.8±7.6 14.7±4.2 55.6±4.6 41.4±3.9 49.8±5.8 19.6±3.8 56.6±5.1 43.3±4.5 

Effect of oxygen (%) −36.2±5.7 ### −73.9±4.8 ¶¶¶ ### −23.6±5.7 ### −62.8±5.3 ¶¶¶ ### −21.0±6.6 ## 

AHI standard scoring, all states/positions 52.5±3.7 33.5±3.3 44.7±5.6 16.1±3.5 55.1±4.5 39.3±3.6 46.1±4.8 20.9±3.5 56.1±5.0 40.6±4.1 

Effect of oxygen (%) −37.5±4.4 ### −66.1±5.5 ¶¶¶ ### −28.0±4.3 ### −56.8±4.9 ¶¶¶ ### −26.7±5.2 ### 

Values are mean±S.E.M. or median[interquartile range]. *Responders are defined by a ≥50% reduction in apnea-hypopnea index. 

**Predicted responders are based on the cross-validated logistic regression model analysis. †Reported during non-REM supine 
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sleep. ‡Morning minus evening values are taken to reflect sleep apnea burden (supine). For ‘Polysomnography’ and ‘Additional 

outcomes’, statistical comparisons are shown for the “Effect of oxygen’. ¶P<0.05, ¶¶P<0.01, ¶¶¶P<0.001 responders versus non-

responders. #P<0.05, ##P<0.01, ###P<0.001 oxygen vs sham. ΔFisher exact test (Black vs not Black). ††Not collected in one 

individual (responder) due to >1 month between studies (rescheduling difficulties); statistical differences were compared using 

ranks: Better=+1, Same=0, Worse=−1. £Taken >30 mins after lights on. Medication use was unchanged prior to each overnight 

study and there were no statistically differences between subgroups; antihypertensives included hydrochlorothiazide, lisinopril, 

losartan, labetolol, atenolol, amplodipine, verapamil, doxasozin; antidepressants and anti-anxiety medications included selective 

serotonin reuptake inhibitors and aripiprazole. “Standard scoring” denotes the definition of hypopneas based on ≥3% oxygen 

desaturation or arousal. 
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Table S2: Two-trait simplified logistic regression model for predicting responses to oxygen therapy 

Variable β SEM 
odds 
ratio* 

p Interpretation 

Constant −0.23 0.41 
 

0.6  

Loop gain 9.73 4.89 2.7 0.046 Higher loop gain→success 

Vpassive 7.24 2.54 6.0 0.004 Reduced collapsibility→success 

Loop gain × Vpassive -32.1 6.62 0.43 0.14 Low loop gain and greater collapsibility→failure 

 
The Table describes the results (3 terms) after backward stepwise elimination (p-to-remove=0.157) which began with the two key traits (loop 
gain [LGn], Vpassive), an interaction term (included but not significant), and two squared terms (excluded since p>0.157). SEM = standard error of 
the mean. *Odds ratio describes the increase in likelihood of being a responder per SD increase in each term. Traits were mean-subtracted 
before application to the regression model: mean Vpassive*=62.8%, mean loop gain [LGn]=0.42. To promote normality, Vpassive values were 
square-root transformed around 100% using y=1+(x−1)0.5 (n.b. x=1 describes 100%). Patients were considered a “predicted responder” here if Y 
= −0.23 + 9.73[Loop gain] + 7.24[Vpassive] – 32.1[Loop gain × Vpassive] > 0.25 (use of this equation requires transformed, mean-subtracted traits). 
The model included data from Edwards et al. [S12] such that N=56 (36+20). Predictive value (cross-validated) for patients in the current study 
(N=36): (ΔAHI = 53±7% in predicted responders versus 10±7% in predicted non-responders [p=0.0002]; PPV = 56±12% [p=0.01], NPV = 
100±0% [p<0.0001], accuracy = 81±7% [p<0.0001]).   
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Supplemental Figures 

 

Figure S1. Study flow diagram. 47 patients with diagnosed OSA were randomized to either the sham first or treatment 

first arms. Randomization was performed using a computer random number generator in blocks of 2. As patients were 

excluded, new patients filled their slots to ensure equal group sizes for analysed data. Overall, 44 patients completed 

the study, but 8 patients did not have OSA on their sham study night (*criterion: non-REM AHI>20 events/hour) and 

therefore could not contribute data for analysis. By design, analysis was per protocol rather than intention to treat; 

sham night polysomnograms provided baseline data to measure phenotypic traits for categorizing patients into 

subgroups as well as for assessing the change in OSA severity (apnea-hypopnea index, AHI) with treatment. Of note, 

the goal was not to assess the effect of oxygen on OSA in unselected patients per se; rather it was to assess the relative 

reduction in AHI between phenotypic subgroups.  
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Figure S2. Contrary to our primary hypothesis, patients with high versus low loop gain based on LG1 (pre-specified 

cutoff = 0.7, shading illustrates “high”) did not show a significantly greater response to supplemental oxygen 

(reduction in apnea-hypopnea index AHI on treatment versus sham). Bars illustrate the reduction in AHI with 

treatment in the high vs. low subgroups. LG1 is the magnitude of the chemoreflex ventilatory drive response to a 1 

cycle/min swing in ventilation.  
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Figure S3. Two-trait simplified model confirming that loop gain and collapsibility (Vpassive) can be combined to predict 

responses to oxygen therapy. Dots are individual patients (circles are patients from current study, squares are patients 

from Edwards et al [S12]); colors are consistent with figures in the main manuscript. Shading illustrates the regions of 

“predicted responders” (green) and “predicted non-responders” (red). See Table S2 for the equation for the logistic 

regression line.  
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Figure S4. Clinical and other polysomnographic factors and the response to supplemental oxygen. Dashed 

vertical lines illustrate the optimal cutoffs. Bars illustrate the reduction in apnea-hypopnea index (AHI) with treatment 

in the subgroups. P-values>0.3 are not shown. There were no very strong predictors of the response to supplemental 

oxygen. Notably, however, black race significantly predicted a stronger response to treatment, which has not been 

reported previously.  In addition, a faster cycling period (most common time from the end of one respiratory event to 

the end of the next, i.e. mode) was also a significant predictor. Non-significant trends were observed for a greater 

proportion of central events, a higher nadir oxygen saturation (SpO2), and a greater non-REM dominance of OSA 

(AHInon-REM/[AHInon-REM+AHIREM]; 0 = REM exclusive OSA, 100% = non-REM exclusive OSA, 50% = same OSA 

severity in non-REM and REM). BMI = body mass index, CPAP = continuous positive airway pressure, REM = rapid 

eye movement sleep. Note that p-values presented are not adjusted for multiple comparisons and variables were not 

proposed a priori as putative predictors.   
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Figure S5. Effect of oxygen therapy on the physiological traits. Summary data are shown in Table 3. Top: The four 

traits causing sleep apnea are shown on sham and on oxygen therapy. Loop gain (LGn, instability) was reduced, 

consequent to a reduction in feedback sensitivity (LG1, Bottom), and was counteracted somewhat by an increase in 

estimated delay (Bottom). Arousal threshold was also slightly reduced with oxygen, possibly a direct physiological 

effect of oxygen, but could potentially be consequent to the improvement in sleep apnea severity. There was no 

evidence of a change in collapsibility or compensation with intervention. 35 patients contributed to these data; 1 

individual had insufficient data on oxygen therapy for analysis. 

 


