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ABSTRACT Chronic mucus hypersecretion (CMH) contributes to the morbidity and mortality of
asthma, and remains uncontrolled by current therapies in the subset of patients with severe, steroid-
resistant disease. Altered cross-talk between airway epithelium and airway smooth muscle cells (ASMCs),
driven by pro-inflammatory cytokines such as interleukin (IL)-1β, provides a potential mechanism that
influences CMH. This study investigated mechanisms underlying CMH by comparing IL-1β-induced gene
expression profiles between asthma and control-derived ASMCs and the subsequent paracrine influence on
airway epithelial mucus production in vitro.

IL-1β-treated ASMCs from asthmatic patients and healthy donors were profiled using microarray
analysis and ELISA. Air–liquid interface (ALI)-cultured CALU-3 and primary airway epithelial cells were
treated with identified candidates and mucus production assessed.

The IL-1β-induced CCL20 expression and protein release was increased in ASMCs from moderate
compared with mild asthmatic patients and healthy controls. IL-1β induced lower MIR146A expression in
asthma-derived ASMCs compared with controls. Decreased MIR146A expression was validated in vivo in
bronchial biopsies from 16 asthmatic patients versus 39 healthy donors. miR-146a-5p overexpression
abrogated CCL20 release in ASMCs. CCL20 treatment of ALI-cultured CALU-3 and primary airway
epithelial cells induced mucus production, while CCL20 levels in sputum were associated with increased
levels of CMH in asthmatic patients.

Elevated CCL20 production by ASMCs, possibly resulting from dysregulated expression of the anti-
inflammatory miR-146a-5p, may contribute to enhanced mucus production in asthma.
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Introduction
Asthma is a chronic inflammatory disease affecting 300 million people worldwide [1]. Chronic mucus
hypersecretion (CMH) contributes to the morbidity and mortality of asthma [2], and remains
uncontrolled by current therapies. There is an urgent need to identify new therapeutic targets.

Although mucus production increases in the airway epithelial layer during inflammation [3], the
underlying mechanism of CMH remains to be elucidated. Differentiation of airway epithelial cells into
either ciliated or goblet cells is directed by other structural cells in the submucosa. The cross-talk between
the epithelial layer and airway smooth muscle cells (ASMCs) may regulate mucus production, since the
airway smooth muscle mass is enlarged in asthma [4].

ASMCs have long been thought to have a passive role, but accumulating evidence suggests that these cells
play an important role in the inflammatory process that underlies CMH, providing an active source of
cytokines and chemokines via a number of pathways [5].

One of these inflammatory pathways know to be altered in asthma is the inflammasome, a multiprotein
complex that plays an important role in the activation of pro-inflammatory cytokines, e.g. conversion of
interleukin (IL)-1β from its pro-form into its active state [6]. The activity of the inflammasome is
enhanced in neutrophilic asthma [7], leading to increased levels of active IL-1β in sputum.

IL-1β is a strong pro-inflammatory signalling molecule, the downstream mediators of which are associated
with mucus production [8]. However, little is known about the influence of IL-1β on the
pro-inflammatory response of airway structural cells, especially ASMCs and the potential role in CMH in
asthma.

In this study we identified CCL20 and MIR146A when comparing gene expression profiles between
asthmatic and healthy ASMCs in vitro in response to IL-1β. Importantly, CCL20 had been shown to
induce MUC5AC expression in epithelial cultures by binding to its only known receptor CCR6 [9].
Furthermore, in murine models, anti-CCL20 treatment significantly decreased virus-induced mucus
production [10]. Previously, a single nucleotide polymorphism (SNP) in miR-146a has been associated
with the presence of asthma and other pro-inflammatory diseases [11, 12]. Interestingly, we have recently
shown that lower expression of miR-146a-5p in bronchial biopsies is inversely correlated with CMH in
chronic obstructive pulmonary disease (COPD) [13], highlighting miR-146a-5p as a regulator of mucus
regulation in respiratory diseases. Based on known roles of CCL20 and miR-146a-5p in mucus production,
we then investigated how these factors produced by ASMCs influence mucus production in airway
epithelial cells.

Methods
Human tissue
Primary human ASMCs were obtained as described previously [14, 15] with ethical approval from The
University of Sydney and participating hospitals (Concord Repatriation General Hospital, Sydney South
West Area Health Service and Royal Price Alfred Hospital) in Sydney, Australia. All patients, or next of
kin, provided written informed consent. An outline of the patients’ characteristics is shown in table 1.

Microarray processing and analysis
ASMCs were isolated from asthmatic patients (n=3) and healthy controls (n=3), and cultured as previously
described (Dataset A) [14, 15]. Cells were treated with 10 ng·mL−1 IL-1β (R&D Systems, Minneapolis,
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MN, USA) for 8 h [16]. Total cellular mRNA was isolated, labelled and run on a GeneChip Human
Gene 1.0 ST Array (Affymetrix, Santa Clara, CA, USA) according to the manufacturer’s instructions
(Gene Expression Omnibus identifier GSE63383) [4]. For independent validation, ASMCs derived from
asthmatic patients (n=2) and healthy donors (n=4) were grown and treated with IL-1β in the same manner
(Dataset B). Samples were labelled and run on a Human U133Plus 2.0 Array (Affymetrix) according to the
manufacturer’s instructions. Microarray analysis is outlined in the supplementary material.

Pathway analysis
Functional enrichment analysis to identify the overlapping genes altered by IL-1β treatment in Datasets A
and B was performed using gene set enrichment analysis (GSEA) software version 2.0.14 (http://software.
broadinstitute.org/gsea). Protein network analysis was conducted using STRING version 10 (https://
string-db.org) on the overlapping genes. GSEA was also used to investigate pathways regulated in Dataset
A using the BioCarta database (www.biocarta.com). Transcript factor binding site analysis was conducted
using g:Profiler (https://biit.cs.ut.ee/gprofiler).

Microarray candidate validation
The validation of the microarray results was undertaken at a transcriptional (quantitative real-time PCR)
and a translational (ELISA) level as described in the supplementary material.

Bronchial biopsies processing for quantification of MIR146A expression
Bronchial biopsies were collected from respiratory healthy subjects [17] and current asthma patients [18, 19]
with a previous doctor’s diagnosis of asthma, documented reversibility and airway hyperresponsiveness to
histamine (provocative dose causing a 20% fall in forced expiratory volume in 1 s for histamine (using 30-s

TABLE 1 Demographics of individual patients from whom samples were obtained.

Patient Diagnosis Age years Sex Samples FEV1 % pred Experiment(s) for which
sample was used#

1 Asthma 33 Male Bronchoscopy NA 1
2 Asthma 22 Male Bronchoscopy NA 1
3 Asthma 33 Female Transplant NA 1
4 Nondiseased donor 31 Male Bronchoscopy NA 1
5 Nondiseased donor 22 Male Bronchoscopy NA 1
6 Nondiseased donor 27 Female Bronchoscopy NA 1
7 Asthma 20 Male Bronchoscopy 65 2
8 Unknown NA Female Transplant NA 2
9 Asthma 19 Female Bronchoscopy 97 2
10 Nondiseased donor 20 Male Bronchoscopy NA 2
11 Nondiseased donor 30 Male Bronchoscopy NA 2
12 Nondiseased donor 21 Female Bronchoscopy NA 2
13 Nondiseased donor 31 Female Immortalised ASMCs 105 3, 4
14 Nondiseased donor 40 Male Immortalised ASMCs 131 3
15 Nondiseased donor 23 Male Immortalised ASMCs 82 3, 4
16 Nondiseased donor 22 Female Immortalised ASMCs 87 3, 4
17 Asthma 39 Male Immortalised ASMCs 84 3, 4
18 Asthma 29 Male Immortalised ASMCs 89 3, 4
19 Asthma 21 Male Immortalised ASMCs 108 3, 4
20 Asthma 31 Male Immortalised ASMCs 85 3, 4
21 Asthma 27 Female Immortalised ASMCs 78 3, 4
22 Asthma 33 Male Immortalised ASMCs 78 3, 4
23 Nondiseased donor 69 Male Immortalised ASMCs NA 4
24 Nondiseased donor 22 Female Immortalised ASMCs NA 4
25 Nondiseased donor NA NA Immortalised ASMCs NA 6
26 Cystic fibrosis 22 Female Paraffin-embedded bronchus NA 5
27 Nondiseased donor 16 Male Paraffin-embedded bronchus NA 5
28 COPD 56 Female Paraffin-embedded bronchus NA 5
29 Pulmonary fibrosis 53 Female Paraffin-embedded bronchus NA 5

FEV1: forced expiratory volume in 1 s; ASMC: airway smooth muscle cell; NA: not available; COPD: chronic obstructive pulmonary disease. #: 1,
Human Gene 1.0 ST microarray (Dataset A); 2, Human U133Plus 2.0 microarray (Dataset B); 3, quantitative real-time PCR validation; 4, CCL20
ELISA; 5, CCR6 immunohistochemistry; 6, miR-146a-5p functional work.
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tidal breathing) <32 mg·mL−1). The analysis was conducted on 39 healthy subjects and 16 asthmatic
patients, who were all nonsmokers and currently not taking inhaled corticosteroids. An outline of the
patients’ characteristics is shown in supplementary table S1. All study protocols were approved by the
medical ethics committee of the University Medical Center Groningen (Groningen, The Netherlands) and
all subjects provided written informed consent. RNA was isolated and sequenced as described in the
supplementary material.

miR-146a-5p predicted targets
To identify downstream targets of miR-146a-5p, we used a publically available microarray dataset (Gene
Expression Omnibus identifier GSE79340) of human hepatic Huh7.5.1 cells transfected with a
miR-146a-5p mimic (5 nM) compared with a negative control (n=3).

Functional analysis
Immortalised ASMCs were grown to 80–90% confluence and serum deprived before transfection with
either a miR-146a-5p (100 nM) mimic or mimic control using RNAiMAX (Invitrogen, Carlsbad, CA,
USA). 24 h later, cells were treated with 10 ng·mL−1 IL-1β or 0.1% bovine serum albumin (control).
Cell-free supernatants were collected at 24 h and IL-8 levels assessed by ELISA.

The human lung epithelial cell line CALU-3 and primary airway epithelial cells were grown at the air–
liquid interface (ALI), treated with 10 ng·mL−1 CCL20 for 48 h and mucus assessed by Alcian blue
staining as described in the supplementary material.

CCL20 levels in sputum
Sputum was induced in a population of asthmatic patients (n=89), as previously described [20, 21], with
and without CMH. CCL20 was measured by ELISA.

Definition of CMH
To define CMH, asthmatic patients were asked to respond to a clinical questionnaire: “How often did you
cough up sputum during the last week?” [22]. This question had seven possible answers: 1) never,
2) sometimes, 3) once in a while, 4) often, 5) most of the time, 6) regularly and 7) always. Patients who
responded 1) were classified as no CMH, patients who responded 2) and 3) were classified as moderate
CMH, and patients who responded 4)–7) were classified as severe CMH. Of the asthmatic patients with
available sputum, n=80 gave answers to the questionnaire and were analysed in this study.

Statistics
Statistical tests and graph plotting were conducted using Prism version 6 (GraphPad, La Jolla, CA, USA).
A p-value <0.05 was considered statistically significant.

Results
Response of ASMCs to IL-1β
To evaluate if IL-1β is involved in the abnormal cross-talk between ASMCs and airway epithelium,
contributing to CMH in the asthmatic airway, we first examined the regulation of genes following IL-1β
treatment. Asthmatic patients (n=3) and controls (n=3) were pooled to obtain sufficient power to
determine the effect of IL-1β on gene expression (Dataset A). Gene expression analysis identified 408
genes that were upregulated and 143 genes that were downregulated upon IL-1β treatment compared with
baseline (fold change > ±2, false discovery rate (FDR) <0.05) (supplementary table S2). Figure 1a and b
illustrate the genes significantly altered by IL-1β and a volcano plot, respectively.

To validate these findings, we investigated a second independent dataset from n=2 asthmatic and n=4
healthy-derived ASMC cultures treated with 10 ng·mL−1 IL-1β for 8 h (Dataset B). Gene expression
analysis identified 377 genes that were upregulated and 98 genes that were downregulated during IL-1β
treatment compared with baseline (fold change > ±2, FDR <0.05). GSEA of the two datasets revealed that
upon IL-1β treatment, 255 of the significantly upregulated genes and 111 of the significantly
downregulated genes were core-enriched in the same direction in the two datasets (figure 1c).

Pathway analysis of Dataset A revealed that the majority of pathways increased by IL-1β were
pro-inflammatory, including the NF-κB, IL-1 receptor (IL-1R) and TID (chaperones that modulate
interferon (IFN) signalling pathway) pathways (figure 1d). Protein network analysis (using STRING
version 10.0) showed that the increased IL-1β expression signature in ASMCs was enriched for protein–
protein interactions, indicating that the identified genes may have similar functions (figure 1e). Three
distinct clusters were identified: IFN-related genes, NF-κB signalling-related genes and pro-inflammatory
cytokines. NF-κB and IFN regulatory factor 1 (IRF1) were identified as central hub proteins connecting a
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FIGURE 1 Treatment of airway smooth muscle cells (ASMCs) with interleukin (IL)-1β. IL-1R: IL-1 receptor;
GSEA: gene set enrichment analysis; FDR: false discovery rate. a) Heatmap and b) volcano plot of genes
altered by IL-1β treatment for 8 h in ASMCs (fold change >±2, FDR <0.05). c) GSEA: enrichment of genes
upregulated and downregulated by IL-1β treatment in ASMCs comparing two independent datasets (GSEA
FDR <0.05). d) GSEA: enrichment of genes involved in the NF-κB, IL-1R and TID pathways with genes
upregulated by IL-1β treatment in ASMCs (GSEA FDR <0.05). Coloured bars in (c) and (d) represent genes
ranked based on their differential expression to treatment in ASMCs; vertical bars represent the running
GSEA enrichment score and location (in the ranked gene list) of genes that are involved in the pathway being
tested. e) Protein interaction analysis.
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number of protein network clusters together, indicating a central role of these proteins during IL-1β
stimulation in ASMCs (figure 1e). Six of the top 10 genes upregulated by IL-1β formed a clear individual
cluster (cytokines), which included the CXCL family proteins CXCL8 (a cytokine previously associated
with neutrophilic airway inflammation in asthma [23]), CXCL10 (an IFN-regulated cytokine associated
with mast cell migration [24]) and CCL20 (a chemoattractant for CCR6+ immature dendritic cells,
T-helper 17 cells and neutrophils).

Transcription factor binding analysis conducted on the overlapping genes between Datasets A and B using
g:Profiler identified that the upregulated genes were enriched for NF-κB (FDR 7.84×10−10), RelA (a
component of the NF-κB complex; FDR 7.18×10−13) and IRF1 (FDR 1.72×10−13) transcription factor
binding sites, while the downregulated genes were enriched for ETF (FDR 5.57×10−7) and EGR1 (early
growth response 1; FDR 5.64×10−5) transcription factor binding sites. These results again identify NF-κB
and IRF1 as key regulators of IL-1β signalling in ASMCs.

Importantly, CCL20 has been shown to induce MUC5AC expression in epithelial cultures [10, 25].
Furthermore, in murine models, anti-CCL20 treatment significantly decreased virus-induced mucus
production. Based on its known role in mucus production, we selected CCL20 for further functional
studies.

CCL20 protein release induced by IL-1β in ASMCs
To validate the microarray findings, CCL20 mRNA expression was measured following the stimulation of
the asthmatic (mild and moderate) and healthy-derived ASMCs from Dataset A with 10 ng·mL−1 IL-1β for
8 h. IL-1β significantly increased CCL20 expression, supporting the microarray results (figure 2a). No
differences were found in mRNA expression between asthmatic and healthy-derived ASMCs or between
ASMCs from mild and moderate asthmatic patients. Next, we confirmed our findings at the protein level
and observed that IL-1β significantly increased CCL20 release from ASMCs after 24 h (figure 2b). The
levels of CCL20 were more strongly elevated in moderate asthmatic ASMCs compared with those from
both healthy controls and mild asthmatic patients. Levels of CCL20 released from ASMCs at baseline were
equivalent to levels previously reported to be released by epithelial cells [20].

MIR146A is decreased in asthma and regulates CCL20
Having seen that CCL20 protein was differentially regulated by IL-1β in asthmatic compared with
healthy-derived ASMCs, we investigated other IL-1β-induced genes.

This analysis was conducted on a subset of genes regulated by IL-1β treatment in Dataset A (fold change
> ±2, FDR <0.05). Only a single transcript, MIR146A, had a significantly smaller increase in gene
expression upon IL-1β treatment in asthmatic-derived ASMCs compared with ASMCs from healthy
controls (fold change > ±2, FDR <0.05) (figure 3a). MIR146A is the precursor transcript for miR-146a-3p
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FIGURE 2 Interleukin (IL)-1β induced production of CCL20 mRNA by airway smooth muscle cells (ASMCs).
ASMCs were grown to confluence in growth media, quiesced for 72 h and then treated with 0.1% bovine
serum albumin (control) or 10 ng·mL−1 IL-1β for 8 h (mRNA) or 24 h (protein). a) mRNA levels of CCL20
(healthy controls n=4, mild asthma n=3 and moderate asthma n=3). b) CCL20 protein levels were measured in
cell-free supernatant (healthy controls n=4, mild asthma n=3 and moderate asthma n=3). Data are presented
as mean±SEM. Statistical analysis was performed using the paired t-test and t-test for paired and unpaired
samples, respectively. *: p<0.05, compared with healthy controls; #: p<0.05, compared with IL-1β treatment.
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and miR-146a-5p, the latter being a well-known anti-inflammatory microRNA (miRNA), identified to be
dysregulated in a number of inflammatory diseases [26]. To determine whether MIR146A expression was
altered in asthmatic patients in vivo, we investigated its expression in bronchial biopsies from 16 asthmatic
patients and 39 healthy controls. MIR146A expression was decreased in asthmatic bronchial biopsies
compared with healthy controls, reflecting the in vitro results (figure 3b).

To identify the function of MIR146A, we focused on the known anti-inflammatory mature transcript
miR-146a-5p, and studied direct and indirect targets of this transcript using a publically available dataset
of gene expression in Huh7.5.1 cells overexpressing miR-146a-5p. Gene expression analysis identified five
genes (UBD (ubiquitin D), CXCL10, CXCL8, CCL20 and UCA1 (urothelial cancer associated 1)) that were
downregulated, but no genes that were upregulated upon miR-146a-5p overexpression (fold change >±2,
FDR <0.05). A volcano plot is shown in figure 3c and a table of significant genes is given in
supplementary table S3. One of the downregulated genes, CCL20, is known to be modulated by
miR-146a-5p [27]. Therefore, we investigated whether miR-146a-5p negatively regulates IL-1β-induced
CCL20 protein release in ASMCs. Overexpression of the miR-146a-5p mimic in immortalised ASMCs led
to a significant downregulation of IL-1β-induced CCL20 release (figure 3d).

CCL20 receptor CCR6 is present on structural cells of the airways and CCL20 induces mucus
production by CALU-3 cells grown at the ALI
Having identified CCL20 as a mediator that is differentially expressed in asthmatic compared with
healthy-derived ASMCs, we next wanted to understand the functional consequences of increased CCL20
in the asthmatic airways. First, to determine whether structural cells in the airways are able to respond
to CCL20, the expression of CCR6, its unique receptor, was investigated in airway cells. Initially, we
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performed real-time PCR in human primary ASMCs, immortalised ASMCs and CALU-3 cells, which
showed detectable levels of CCR6 mRNA (supplementary figure S1). Immunohistochemistry staining for
CCR6 in human bronchial sections confirmed expression on both ASMCs and airway epithelium
(supplementary figure S2).

Previously, in murine models, anti-CCL20 treatment significantly decreased mucus production in response
to respiratory syncytial virus infection and CCL20 has been shown to induce MUC5AC expression in
submerged culture [9, 10]. To determine whether CCL20 can directly promote mucus production in a
model of differentiated epithelial cells, CALU-3 cells were grown at the ALI and allowed to differentiate
into mucus-producing cells before being treated basolaterally with physiologically relevant levels of CCL20.
CCL20 treatment of CALU-3 cells for 48 h increased the production of mucus measured by Alcian blue
staining (figure 4a). CCL20-induced mucus production was significantly reduced with the specific
anti-CCL20 antibody in CALU-3 cells, while the isotype control had no significant effect (figure 4b). A
trend in the same direction was found by Alcian blue staining upon CCL20 treatment of
ALI-differentiated primary human airway epithelial cultures (p=0.0625) (figure 4c–e). MUC5AC protein
levels measured in ALI apical wash were also found to be increased by CCL20 treatment (figure 4f).

Sputum levels of CCL20 are associated with mucus hypersecretion in asthma
Previous studies have shown that mesenchymal factors can cross the basal lamina propria and be found in
lung fluids [28]. This phenomenon is thought to be enhanced in asthmatic patients due to the
documented leaky nature of the epithelial layer [29], allowing trafficking to the mucosal layer, where it
may induce mucus production. To determine whether CCL20 levels are associated with mucus production
in asthmatic patients, we investigated sputum levels of CCL20 in asthmatic patients with and without
CMH. Of the 80 patients included, 24 were classified as having no CMH, 32 were classified as having mild
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FIGURE 4 CCL20 effect on mucus production in CALU-3 and primary airway epithelial cells grown at the air–
liquid interface (ALI). CMH: chronic mucus hypersecretion. a) Representative images of Alcian blue staining of
CALU-3 cells grown at the ALI treated on day 5 with either complete DMEM (control), rabbit anti-human
CCL20 antibody, isotype control, 10 ng·mL−1 CCL20, rabbit anti-human CCL20 antibody+10 ng·mL−1 CCL20
and isotype control+10 ng·mL−1 CCL20 for 48 h (n=3) for each. b) Densitometry analysis of Alcian blue staining
in CALU-3 cells. c–e) Representative images of Alcian blue staining of primary airway epithelial cells grown at
the ALI treated on day 28 with either c) PBS or d) 10 ng·mL−1 CCL20 for 48 h and e) densitometry analysis
(n=5). f ) MUC5AC protein measurement from ALI washes (n=5). g) CCL20 levels in sputum from patients with
no CMH, mild CMH or moderate-to-severe CMH. Data are presented as mean±SEM. Statistical analysis was
performed using the paired t-test and t-test for paired and unpaired samples, respectively. *: p<0.05; #:
p<0.05, compared with control. A Wilcoxon analysis was conducted on matched samples of primary airway
epithelial cells grown at the ALI.
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CMH and 19 were classified as having moderate-to-severe CMH. CCL20 protein levels in sputum were
found to be significantly increased when comparing moderate-to-severe CMH with no CMH (p<0.05),
and a trend towards an increase was observed between mild and no CMH (p=0.062) (figure 4g), further
supporting the role of CCL20 in mucus production. As smoking may be a confounding factor, this
analysis was repeated in nonsmoking patients only, where CCL20 sputum levels were also significantly
increased in moderate-to-severe CMH (n=11) compared with no CMH (n=21).

Our current findings indicate that IL-1β produced by the airway epithelium following insult induces
CCL20 production by the airway smooth muscle mass that is increased in asthmatic ASMCs. This CCL20
can then act on the airway epithelium by binding to CCR6, resulting in increased mucus production.
CCL20 production is inhibited by miR-146a-5p expression, which is induced by NF-κB activation.
However, this miR-146a-5p induction is lower in asthmatic ASMCs (figure 5)

Discussion
In this study we compared gene expression profiles between asthmatic and healthy ASMCs in vitro in
response to the NLRP3 inflammasome downstream mediator IL-1β. Through this analysis, we provide
genome-wide evidence that ASMCs respond to the active form of IL-1β, levels of which are increased in
the sputum of asthmatic patients [7], providing a source of inflammatory chemokines and cytokines in the
airways. Furthermore, we observed enhanced expression of CCL20 and MIR146A in response to IL-1β in
ASMCs, with a lower increase in MIR146A in asthmatic ASMCs. Furthermore, IL-1β induced a stronger
increase in CCL20 protein secretion by ASMCs from moderate compared with mild asthmatic patients and
healthy controls. Interestingly, CCL20 release was reduced following overexpression of miR-146a-5p,
providing evidence that this miRNA may be a dysregulated inhibitor of CCL20 production in ASMCs
from asthmatic patients. Recombinant CCL20 directly induced mucus production from differentiated
airway epithelial cells, indicating that CCL20 may contribute to CMH in asthma. The importance of this
finding was corroborated by our observation that CCL20 levels in sputum were associated with increased
levels of CMH in asthmatic patients. The current study reinforces the hypothesis that airway smooth
muscle is not a passive bystander in inflammation and CMH, but a key driver [30, 31].

miR-146a-5p has previously been found to regulate CCL20 production in skin keratinocytes after Toll-like
receptor 2 stimulation, mirroring the results in this study [27]. However, this repression of inflammatory
cytokines is not limited to CCL20, as the overexpression of miR-146a-5p led to the decrease of well-known
NF-κB-regulated pro-inflammatory cytokines UBD, CXCL10 and CXCL8. Previous studies have identified
miR-146a-5p as an anti-inflammatory miRNA that inhibits NF-κB signalling by targeting the IL-1R
downstream signalling molecules IL-1 receptor-associated kinase 1 and tumour necrosis factor
receptor-associated factor 6 for degradation, key genes in the activation of the NF-κB pathway [32].

Airway epithelium

Mucus

Goblet cells

CCR6

IL-1β CCL20

NF-κB

miR-146a-5p

CCR6

Basement membrane

Airway smooth muscle

FIGURE 5 Summary of the cross-talk between the airway epithelium and airway smooth muscle cells (ASMCs)
in the asthmatic airway. IL: interleukin. Basolaterally secreted IL-1β produced by the damaged airway
epithelium induces CCL20 production by ASMCs, which is increased in asthmatic ASMCs. CCL20 can
subsequently act on the airway epithelium by binding to its only known receptor CCR6, resulting in increased
mucus production. CCL20 production is inhibited by miR-146a-5p expression, which is induced upon NF-κB
activation. The miR-146a-5p induction is lower in asthmatic ASMCs, leading to reduced suppression of CCL20.
Red arrows: asthma; blue arrows: healthy
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In this study we found that induction of MIR146A in response to IL-1β was lower in asthmatic
ASMCs compared with healthy controls, which may thus be responsible for the increased secretion of
CCL20 from these cells. Notably, we validated the lower MIR146A expression in asthmatic patients
using bronchial biopsies from asthmatic patients and healthy controls. Similar findings have been
reported in human inflammatory cells, where circulating CD4+ and CD8+ T-cells of severe asthmatic
patients expressed less miR-146a-5p than healthy controls [33]. A likely rationale for the decrease of
MIR146A in asthmatic patients may be the presence of the SNP (rs2910164), which is known to
influence the levels of both the pre- and mature MIR146A transcripts [34]. This SNP has previously
been associated with the presence of asthma and other pro-inflammatory diseases [11, 12].
Interestingly, we have recently shown that lower expression of miR-146a-5p in bronchial biopsies is
inversely correlated with CMH in COPD [13], highlighting miR-146a-5p as a consistent regulator of
mucus regulation in respiratory diseases.

Although we observed increased CCL20 secretion from ASMCs derived from asthma patients, we did not
find a significant difference in CCL20 gene expression between asthmatic and healthy controls.
Furthermore, we observed a decrease in CCL20 gene expression following 72 h miR-146a-5p
overexpression. We postulate that only once the IL-1β-induced increase in miR-146a-5p starts to repress
CCL20 expression does this lead to differences between the asthma and control groups, with an
insufficient level of miR-146a-5p in asthma-derived ASMCs. The selected time-point of 8 h used in this
study may have been too early to detect differences in CCL20 gene expression levels between ASMCs from
asthma patients and healthy controls due to the absence of miR-146a-5p suppression.

CCL20 was identified as a key chemokine for immature dendritic cells [35], and has recently been
described as an antimicrobial protein [36] and regulator of mucus production [9, 25]. Overall, the function
of CCL20 appears to be pro-inflammatory in nature and it is upregulated in the sputum in a number of
inflammatory respiratory diseases, including asthma [20, 37], COPD [38] and cystic fibrosis [39]. Of
interest, CMH is a feature of all of these diseases in at least a subset of patients [40–42]. In the current
study we found that CCL20 promoted mucus production from an ALI-differentiated airway epithelial cell
line. Furthermore, there was a direct link between sputum CCL20 levels and mucus production in asthma
patients. Of note, data from our group have shown that treatment with inhaled corticosteroids increases
sputum levels of CCL20 [20], offering an explanation why current anti-inflammatory therapies are unable
to revert mucus hypersecretion.

The main strength of this study is the multidisciplinary approach used to identify a novel gene target
using mass screening approaches including microarray analysis followed by the functional interrogation of
the candidate using in vitro models. There are some limitations to this study, as we were unable to
determine the origin of the CCL20 levels in the sputum of the asthmatic patients. A number of cell types
in addition to ASMCs, including airway epithelial cells, produce this chemokine [43]. Despite this, the
increased sensitivity and size of the muscle mass in asthmatic airways provides a potential reservoir of
CCL20. Furthermore, due to remodelling of the airways, the airway smooth muscle mass is in closer
proximity to the epithelial layer in asthma, which may increase the cross-talk between epithelial cells
and ASMCs. The measurement of MIR146A in the bronchial biopsies is reflective of its expression
within a mixed population of cells in the asthmatic airways rather than a reflection of expression in the
airway smooth muscle alone. Finally, our finding that recombinant CCL20 increases mucin expression
does not directly prove that airway smooth muscle-derived CCL20 drives epithelial mucus production in
vivo. In future studies we will use epithelium and smooth muscle cocultures to further support our current
findings.

In conclusion, in this study we identified a novel pathway leading to mucus production in asthma, where
increased CCL20 released from the enhanced airway smooth muscle mass may contribute to the
exaggerated mucus production by airway epithelium in asthmatic airways, due to reduced suppression by
miR-146a-5p.
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