Supplementary table 1. SNPs included in the $25(\mathrm{OH})$ D allele score in the HUNT2 study ($\mathrm{n}=54580$)

SNP	In gene/near gene (distance*)	Chromosome: position	Other allele/ effect allele ${ }^{\dagger}$	Effect allele ${ }^{\dagger}$ frequency (HUNT2)	Effect allele ${ }^{\dagger}$ frequency ${ }^{\#}$	Hardy- Weinberg equilibrium P value	Gene function
rs2282679	GC/	4:71742666	G/T	0.73	0.80	0.20	vitamin D binding protein
rs 12785878	$\begin{aligned} & \text { NADSYNI/DHCR7 } \\ & (3.5 \mathrm{~kb}) \end{aligned}$	11:71456403	G/T	0.35	0.35	0.94	NAD synthetase 1/ 7-dehydrocholesterol reductase
rs10741657	/CYP2R1 (1.0 kb)	11:14893332	G/A	0.39	0.31	0.36	vitamin D 25-hydroxylase
25(OH)D: 25-hydroxyvitamin D; HUNT2: The Nord-Trøndelag Health Study Survey 2; SNP: Single-Nucleotide Polymorphism							
*SNP is located upstream of the gene							
${ }^{\dagger}$ Effect allele: 25(OH)D increasing allele							
${ }^{\text {FFrom }} 1000$ Genomes Phase 3 combined population							

Supplementary table 2. Associations between the $25(\mathrm{OH})$ D allele score and potential confounders in the HUNT2 study ($\mathrm{n}=54580$)

Baseline variables *	Coefficient †	95% CI	P value
Age (difference in years)	0.06	$(-0.06$ to 0.18$)$	0.30
Sex (men vs. women)	-0.004	$(-0.02$ to 0.01$)$	0.57
Active smoking (ever vs. never)	-0.004	$(-0.02$ to 0.01$)$	0.61
Pack-years of active smoking (difference)	-0.01	$(-0.03$ to 0.01$)$	0.19
Family history of cancer (yes vs. no)	0.004	$(-0.01$ to 0.02$)$	0.66
Education (years) $(\geq 10$ vs. $<10)$	-0.001	$(-0.02$ to 0.02$)$	0.93
Economic difficulties (yes vs. no)	-0.01	$(-0.03$ to 0.01$)$	0.41
Body mass index (BMI, kg $\left./ \mathrm{m}^{2}\right)(\geq 25$ vs. $<25)$	0.01	$(-0.00$ to 0.03$)$	0.09
Physical activity (active vs. inactive)	0.0002	$(-0.02$ to 0.02$)$	0.98
Alcohol consumption (times $/$ month) $(\geq 1$ vs. never)	-0.02	$(-0.03$ to -0.00$)$	0.04
Chronic bronchitis (yes vs. no)	-0.01	$(-0.05$ to 0.03$)$	0.77

25(OH)D: 25-hydroxyvitamin D; CI: confidence interval; HUNT2: The Nord-Trøndelag Health Study Survey 2
*Data of baseline variables were collected by questionnaires or clinical examination in HUNT2. The classification of each covariate was described in detail in a previous study [1].
${ }^{\dagger}$ Coefficient was derived from linear regression for continuous variables and from logistic regression for categorical variables.

Supplementary table 3. MR estimates of a 10% increase in genetically determined $25(\mathrm{OH}) \mathrm{D}$ and risk of lung cancer overall and histologic types in a two-sample MR analysis ${ }^{*}$

Outcome	IVW method						Weighted median method		
	$\begin{aligned} & \text { MR estimate HR } \\ & (95 \% \mathrm{CI}) \end{aligned}$		P value	$I^{2}(95 \% \mathrm{CI})$		P value of Q statistic		$\begin{aligned} & \text { estimate } \mathrm{HR} \\ & 95 \% \mathrm{CI}) \end{aligned}$	P value
Lung cancer overall	0.99	(0.88 to 1.12)	0.85	0.00	(0.00 to 0.20)	0.88	0.99	(0.87 to 1.13)	0.91
SCLC	0.87	(0.63 to 1.20)	0.39	0.41	(0.00 to 0.82)	0.18	0.90	(0.63 to 1.29)	0.56
Adenocarcinoma	0.88	(0.70 to 1.10)	0.27	0.00	(0.00 to 0.68)	0.72	0.89	(0.71 to 1.13)	0.35
Squamous cell carcinoma	0.89	(0.69 to 1.15)	0.37	0.00	(0.00 to 0.89)	0.39	0.89	(0.68 to 1.17)	0.40
Other/unknown subtypes	1.20	(0.98 to 1.47)	0.07	0.00	(0.00 to 0.24)	0.87	1.22	(0.99 to 1.52)	0.06

25(OH)D: 25-hydroxyvitamin D; CI: confidence interval; HR: hazard ratio; IVW: inverse-variance weighted; MR: Mendelian randomization; SCLC: small cell lung cancer
*Summarized data of SNPs-25(OH)D association was derived from the study of Vimaleswaran et al [2] ($\mathrm{n} \approx 35000$); summarized data of SNPsoutcome association was derived from the HUNT2 study ($\mathrm{n}=54580$)

Supplementary table 4. MR-Egger pleiotropy test of associations between a 10% increase in genetically determined 25(OH)D and risk of lung cancer overall and histologic types in a two-sample MR analysis*

Outcome	MR-Egger method		
	Intercept (95\% CI)		P value
Lung cancer overall	-0.01	(-0.16 to 0.14$)$	0.90
SCLC	-0.08	(-0.83 to 0.66)	0.83
Adenocarcinoma	-0.10	(-0.39 to 0.19)	0.49
Squamous cell carcinoma	0.22	(-0.11 to 0.55)	0.19
Other/unknown subtypes	-0.05	(-0.31 to 0.20)	0.68

25(OH)D: 25-hydroxyvitamin D; CI: confidence interval; MR: Mendelian randomization; SCLC: small cell lung cancer
*Summarized data of SNPs-25(OH)D association was derived from the study of Vimaleswaran et al [2] (n ≈ 35000); summarized data of SNPsoutcome association was derived from the HUNT2 study ($\mathrm{n}=54580$)

Supplementary table 5. Mendelian randomization estimates of the associations between one pack-year increase of genetically determined smoking and risk of lung cancer overall and histologic types among ever smokers in the HUNT2 study ($\mathrm{n}=26815$)

$\left.\begin{array}{lcccc}\hline & \text { Number of cases } & \text { MR estimate HR } & & 95 \% \text { CI }\end{array}\right]$| value |
| :--- |
| Lung cancer overall |
| SCLC |

CI: confidence interval; HR: hazard ratio; HUNT2: The Nord-Trøndelag Health Study Survey 2; MR: Mendelian randomization; SCLC: small cell lung cancer
*Two-stage method was applied [3] using rs 1051730 as instrumental variable for smoking quantity [4]. Firstly, based on the linear regression of per effect allele (A) of rs 1051730 on pack-years of smoking, the predicted values of pack-years of smoking were generated. Secondly, Cox regression analyses of predicted pack-year values as exposure on incidence of lung cancer overall and histologic types were performed. Robust standard errors were applied for both regressions.

References

1. Sun YQ, Langhammer A, Wu C, Skorpen F, Chen Y, Nilsen TIL, Romundstad PR, Mai XM. Associations of serum 25-hydroxyvitamin D level with incidence of lung cancer and histologic types in Norwegian adults: a case-cohort analysis of the HUNT study. Eur J Epidemiol 2017.
2. Vimaleswaran KS, Berry DJ, Lu C, Tikkanen E, Pilz S, Hiraki LT, Cooper JD, Dastani Z, Li R, Houston DK, Wood AR, Michaelsson K, Vandenput L, Zgaga L, Yerges-Armstrong LM, McCarthy MI, Dupuis J, Kaakinen M, Kleber ME, Jameson K, Arden N, Raitakari O, Viikari J, Lohman KK, Ferrucci L, Melhus H, Ingelsson E, Byberg L, Lind L, Lorentzon M, Salomaa V, Campbell H, Dunlop M, Mitchell BD, Herzig KH, Pouta A, Hartikainen AL, Streeten EA, Theodoratou E, Jula A, Wareham NJ, Ohlsson C, Frayling TM, Kritchevsky SB, Spector TD, Richards JB, Lehtimaki T, Ouwehand WH, Kraft P, Cooper C, Marz W, Power C, Loos RJ, Wang TJ, Jarvelin MR, Whittaker JC, Hingorani AD, Hypponen E. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med 2013: 10(2): e1001383.
3. Palmer TM, Sterne JA, Harbord RM, Lawlor DA, Sheehan NA, Meng S, Granell R, Smith GD, Didelez V. Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. Am J Epidemiol 2011: 173(12): 1392-1403.
4. Tobacco, Genetics C. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 2010: 42(5): 441-447.
