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Comments on data aggregation and covariates 

After the initial identification of studies, we noted that there was overlap in study populations 

examined in some studies, thus we chose one study from each set.	For one group of such studies 

[1–3], we chose to use the largest study from this group because it contained most or all of the 

data from prior studies. For the second set of such studies[4–6], based on subjects in the Severe 

Asthma Research Program (SARP), we used the study for which airway epithelial data 

generation was best described[6]. 

 

Also, we did not include in vitro studies of cultured epithelia from cases vs. controls because 

preliminary analyses indicated substantially different gene expression patterns between in vivo 

and in vitro samples (not shown). 

 

Case-control status 

For the study by Giovanini-Chami et al. [7], we combined both types of asthma cases (controlled 

and uncontrolled) together. Likewise, for the study Modena et al. (GSE63142) [6], we combined 

data from severe asthmatics and mild-to-moderate asthmatics in the analysis of differential gene 

expression. 

 

Smoking  



For the majority of studies, subjects were non-smokers. However, for two studies, GSE85568 [8] 

and GSE89809 (unpublished), some study subjects smoked and hence smoking status was 

included in differential gene expression analyses for these studies. 

 

Race 

Not all studies reported data on the race/ethnicity of their study subjects. Rather than exclude 

these studies, we made the assumption that cases and controls from each study were reasonably 

well matched with respect to race/ethnicity. For GSE89809, we excluded one subject self 

identified as African because this was the only African subject in the study and analysis 

including this subject would not have allowed us to make meaningful inferences about the effect 

of race/ethnicity. For GSE63142, three subjects lacked race data and hence were excluded from 

the dataset. 

 

Medication use 

Most studies did not provide data on medication use in GEO. Therefore the effect of medications 

was not examined in the meta-analysis. Instead, we compared our list of DEGs to previous 

studies which examined the effect ICS on airway epithelia transcriptomes [9, 10]. From these 

two studies, we manually compiled a list of genes that were reported to be differentially 

expressed in either study, totaling 111 genes. We then examined overlap between these 111 

genes and the genes from our meta-analysis. 

 

Array probe annotation  

In most cases, we used the array probe-gene annotation provided in GEO corresponding to the 



array platform used. However, for the unpublished study by Yang et al. (NJH), we used Biomart 

to convert probes to genes using the “Agilent_sureprint_g3_ge_8x60k_v2” annotation. If 

multiple probes mapped to one gene, the probe with highest standard deviation was used. For the 

RNA-seq dataset (GSE85568), we used the Ensembl gene annotations provided in the GEO 

entry. These data are summarized in Supplementary Table 2. 

 

Outlier identification 

To identify outlier samples within each study, we used Bolstad’s relative log expression (RLE) 

method [11]. We defined outliers as samples with an interquartile range (IQR) > 

mean(IQR)+2.5*SD(IQR). This resulted in the exclusion of 17 samples from six studies, as 

shown in Table 1 in the main text. 

 

Enrichment analyses 

We used Gene Set Variation Analysis (GSVA) [12] to transform gene expression data from each 

study to pathway level scores.  Briefly, GSVA works by estimating a gene set score in an 

unsupervised way by calculating an enrichment statistic for each gene set in each sample.  In this 

way the gene by sample matrix is transformed to a matrix of gene set by sample.  The gene set 

by sample matrix was then used for association testing and meta-analysis using the same 

methods as described above for individual genes.  Gene sets for analysis were collected from 

Enrichr (http://amp.pharm.mssm.edu/Enrichr/). We tested gene sets representing biological 

pathways (BioCarta_2016, KEGG_2016, NCI-Nature_2016, Panther_2016, Reactome_2016, 

Human_Gene_Atlas, WikiPathways_2016), sets representing regulatory targets (ChEA_2016, 

ENCODE_Histone_Modifications_2015, ENCODE_TF_ChIP-seq_2015, 



ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X, Epigenomics_Roadmap_HM_ChIP-seq, 

TargetScan_microRNA), protein-protein interactions (HumanCyc_2016, BioPlex_2017 

Transcription_Factor_PPIs, PPI_Hub_proteins, huMAP) and transcription factor targets 

(Genome_Browser_PWMs, TRANSFAC_and_JASPAR_PWMs).  

 

Supplementary results on overlap of asthma DEGs with other allergic disease states 

We examined whether the top DEGs from the meta-analysis were also associated with other 

allergic disorders, including allergic rhinitis (AR), atopic dermatitis (AD), and eosinophilic 

esophagitis (EoE). We identified DEGs for each of these studies from published findings[13–15] 

and conducted hyper-geometric tests of enrichment. As expected, the overlap between gene sets 

identified in our meta-analysis with AR was quite strong statistically (hyper-geometric p-value = 

6.52 x 10-5), with nine significant genes shared in common, most prominently CST1. Notably, all 

nine genes in common were modulated in the same direction (Supplementary Table 9). Overlap 

with AD, while statistically significant, was not impressive in that only two genes were shared in 

common, one of which was discordant in terms of direction of expression. We did, however, find 

strong enrichment of asthma DEGs in EoE (p = 4.8 x10-10), though the directionality of gene 

expression changes was not completely concordant (Supplementary Table 9). Three genes were 

shared in common between asthma, AR and EoE, namely CLC, CDH26, and HDC.  
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