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Supplemental Methods 
 

Clinical cohort 

Nine omics data blocks collected from 52 subjects from the Karolinska COSMIC (Clinical & 

Systems Medicine Investigations of Smoking-related COPD) cohort (ClinicalTrials.gov ID: 

NCT02627872) were utilized. The COSMIC study is a three group cross-sectional study in 

which each group was stratified by gender with the aim of investigating the differentiation 

between the genders in early stage COPD and integrating several aspects of COPD and smoking 

through the use of imaging, transcriptomics, proteomics, metabolomics, and lymphocyte 

profiling in the context of clinical phenotypes (1-7). The COSMIC cohort consists of healthy 

never-smokers (“Healthy”), smokers with normal lung function (“Smokers”), and patients with 

COPD (GOLD stage I-II/A-B; FEV1=51-97%; FEV1/FVC<70). For the purpose of this study, the 

female groups of Healthy (n=20), Smokers (n=20) and current-smoker COPD patients (n=12) 

were included. The three female study groups were selected based on minimal missing data 

blocks across the maximal number of omics platforms. Previous single-omics analyses have also 

shown a more homogeneous intra-group molecular profiles in the female population with regards 

to COPD diagnosis and current smoking status, which is a necessity to provide a ground-truth 

reference for evaluation of the SNF unsupervised classification performance. Groups were 

matched in terms of age (45-65 years) and gender, as well as smoking history and the number of 

cigarettes per day where relevant. Bronchoscopy was performed as previously described for the 

collection of bronchoalveolar lavage (BAL), and bronchial epithelial cell (BEC) through 

brushings (1, 3). Peripheral blood was also collected through venipuncture.  

Study participants were recruited from individuals performing spirometry during “The 

World Spirometry Day,” through advertisements in the daily press and via primary care centers. 

The majority of the individuals with COPD were smokers who were found to have an obstructive 

spirometry upon screening. Participants had no history of allergy or asthma, did not use inhaled 

or oral corticosteroids and had no exacerbations for at least 3 months prior to study inclusion. In 

vitro screenings for the presence of specific IgE antibodies (Phadiatop; Pharmacia Corp) were 

negative. Reversibility was tested after inhalation of two doses of 0.25 mg terbutaline (Bricanyl; 

Turbuhaler®; AstraZeneca). Medications (including oral contraceptives, estrogen replacement, 

and NSAIDs or other potential lipid mediator-modifying drugs) were recorded by means of a 

questionnaire. Lung function parameters were calculated as post-bronchodilator percent of 

predicted using the European Community of Coal and Steel (ECCS) normal values. COPD 

patients and smokers were matched in terms of smoking history (>10 pack years) and current 

smoking habits (>10 cigarettes/day the past 6 months). Self-reported current smoking status as 

well as abstinence for at least 8 hrs. prior to BAL was verified through exhaled carbon monoxide 

(8). The COPD group consisted of both current smokers and ex-smokers (>2 years since 

smoking cessation). COPD ex-smokers were excluded for the purpose of SNF evaluation. Blood 

was drawn between 7-9 AM from fasting individuals by venipuncture and allowed to stand at 

room temperature for 30 min before centrifugation at 1695×g for 10 min at room temperature, 

and stored at -80°C until use. The study was approved by the Stockholm Regional Ethical Board 

(Case No. 2006/959-31/1) and participants provided their informed written consent. 

 

Omics data blocks 

Based on maximal overlap of omics data blocks across all subjects, 9 omics data blocks from 52 

female subjects were utilized for the purpose of the performance evaluation of the SNF n-tuple 
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omics integration. The 9 omics data blocks (Figure 1, Figure E1) consisted of mRNA from BAL 

cells collected by microarrays containing 41,000 probes corresponding to 19,596 genes as 

previously described (9); miRNA from BAL cells as well as from exosomes isolated from BALF 

collected by Agilent custom arrays as previously described (9, 10); Difference Gel 

Electrophoresis (DIGE) proteomics from BAL cells collected as previously described (11); 

Shotgun proteomics data from BAL cells collected by isobaric tags for relative and absolute 

quantitation (iTRAQ) mass spectrometry (MS) based proteomics (12, 13); Shotgun proteomics 

data from BEC collected by means of tandem mass tag (TMT)-MS as previously described (14); 

Oxylipin (eicosanoid) data from serum and BALF collected by LC-MS/MS as previously 

described (5); and non-targeted metabolomics data from serum collected as previously described 

(15). Each data collection platform is briefly described below: 

 

RNA isolation  

RNA from BAL cells, BEC cells, and the exosomal pellet from ultra-centrifugation of 100 ml of 

BAL fluid was extracted into two fractions containing small RNAs (including miRNAs) and 

large RNAs (containing mRNA) using the NucleoSpin® miRNA kit according to the 

manufacturer’s instructions (Macherey-Nagel, Düren, Germany). RNA quality and quantity was 

assessed for concentration and purity by determining UV 260/280 and 230/260 absorbance ratios 

obtained by the Nanodrop ND-1000 spectrophotometer (Nanodrop, Wilmington, DE). RNA 

integrity and size distribution was examined by gel electrophoresis on RNA Pico LabChips 

(Agilent Technologies, Palo Alto, CA) processed on the Agilent 2100 Bioanalyzer. The content 

of miRs and mRNA in the exosomes was measured by bioanalyser. 

 

mRNA Microarrays (1, 2) 

RNA was amplified using the Low Input Quick Amplification Kit (Agilent Technologies) 

according to the manufacturer’s protocol, and subsequent Cy3-CTP labeling was performed by 

using one-color labeling kits (Agilent Technologies). Clean-up of the labeled and amplified 

probe was performed (Zymo Research Corporation, Irvine, CA). The size distribution and 

quantity of the amplified product was assessed by Nanodrop. Equal amounts of Cy3-labeled 

target were hybridized to Agilent human whole-genome 4x44K Ink-jet arrays containing a total 

of 41,000 probes corresponding to 19,596 entrez genes. Hybridizations were performed at 65°C 

for 17 hours at a rotation of 10 rpm. Arrays were scanned by using the Agilent microarray 

G2565BA scanner (Agilent Technologies) with Scan region: Agilent HD (61x21.6) and a 

resolution of 5µm, TIFF: 16 bit, XDR: 0.10. Raw signal intensities were extracted with Feature 

Extraction v10.1 software (Agilent Technologies). Flagged outliers were not included in any 

subsequent analyses. Microarray datasets were normalized using the quantile normalization 

method according to Bolstad et al (3). No background subtraction was performed, and the 

median feature pixel intensity was used as the raw signal before normalization. All procedures 

were carried out using functions in the R package limma in Bioconductor (4, 5). 

miR Microarrays (1, 6) 

The exosomal small RNA extracts were concentrated using a Speed-Vac, and the entire amount, 

except 1 l, was used for the amplification. The BAL and BEC samples were diluted to a 

working concentration prior to labeling. Small RNA was labeled with Cy3-CTP using the 

miRCURY LNA microRNA power labeling kit (Exiqon, Inc, Woburn, MA), according to 

manufacturer’s protocol. Briefly, dephosphorylation of 5´ end was performed in 37C for 30 min 

followed by 95C for 5 min to stop the enzyme reaction and denature the RNA. Dye labeling of 
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3´ end with fluorochrome Cy3 was performed in a thermal cycler for 3 hrs in 16C, 15 min 65C 

and kept at 4C until the next step. The reaction was stopped by blocking agent at 100C, 

thereafter samples were snap-frozen before hybridization overnight (16 hrs) at 55C with a 

rotation of 20 rpm. Labeled RNA was hybridized to one-color Agilent custom UCSF miRNA, 

v3.5 containing 894 miRs (BAL samples) or v4.0 containing 1223 miRs (exosomal samples), 

multi-species 8x15K Ink-jet arrays (Agilent Technologies). Arrays were washed in Agilent gene 

expression wash buffer 1 & 2 before scanning on the Agilent G2565BA laser scanner (Agilent 

Technologies) with Scan region: Agilent HD (61x21.6) and a resolution of 5µm, TIFF: 16 bit 

and an extended dynamic range (XDR) of 0.10. Raw signal intensities were extracted with 

Feature Extraction v10.1 software (Agilent Technologies). Flagged outliers were not included in 

any subsequent analyses. Microarray datasets were normalized using the quantile normalization 

method according to Bolstad et al (3). No background subtraction was performed, and the 

median feature pixel intensity was used as the raw signal before normalization. All procedures 

were carried out using functions in the R package limma in Bioconductor (4, 5). 

 

DIGE proteome analysis of BAL cells (7) and BEC cells (8) 

After lysis of cells in 8M urea, 2M thiourea, 4% Chaps, 33 mM Tris, aliquots of 50 µg sample 

were labeled with minimal DIGE according to the supplier´s recommendations (GE Healthcare). 

A triplex of 2 samples and 1 internal standard were co-separated by isoelectric focusing using 18 

cm strips, pH 4-7, for 86 kVhrs and sodium dodecyl sulfate (SDS)-PAGE was performed on lab-

casted 10% tris-glycine gels prior to image acquisition using a FLA Typhoon 9000 laser scanner. 

Image analysis and univariate statistics were performed using SameSpots version 4.0 (Nonlinear 

Dynamics, Newcastle, U.K.) 

 

iTRAQ proteome analyses of BAL cells (9, 10) 

Trypsinized protein extracts from 1.5× 10
6
 BAL cells were labeled with 4-plex iTRAQ reagents, 

with the 114 isobaric tag dedicated to a pooled reference sample used for ratiometric 

normalization to reduce the variance between batches(11), while the subject samples were 

randomized and labeled with the 115, 116 or 117 isobaric tags. Labeled peptides were 

fractionated into 5 mix-mode fractions, and analyzed on an LTQ-Orbitrap Velos Pro (Thermo 

Scientific, Sunnyvale, California, USA) connected to a Dionex Ultimate NCR-3000RS (LC 

system, Sunnyvale, California, USA). Full scan MS spectra were acquired with resolution 

R=120,000 at m/z 400. Peak integration of iTRAQ MS/MS spectra was performed by Proteome 

discoverer 2.1 (Thermo Fisher Scientific) searched against the UniProt human database 

(2015_12). Ratio data of samples to reference was log2 transformed. 

 

TMT proteome analysis of BEC cells (8) 

 BECs were lysed and subjected to 10-plexed TMT® (Thermo Fisher Scientific), with TMT126 

dedicated to a reference pool. LC-Easy-nLCII interfaced to an Orbitrap Fusion Tribrid mass 

spectrometer (Thermo Fisher Scientific) were used for LC-MS/MS analysis. Database matching 

was performed using Mascot (Matrix Science) in Proteome Discoverer vs1.4 (Thermo Fisher 

Scientific) using the Homo Sapiens Swissprot Database (04/2015). The ratios of TMT-reporter 

ion intensities for unique peptides and the reference pool were used for relative quantification. 
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Eicosanoid analysis of BAL fluid and serum  

A liquid chromatography-mass spectrometry (LC-MS/MS) method was developed to quantify 

the reported lipid mediators. The complete method is described in the online supplement, with 

lipid mediator nomenclature provided in Table E1. Briefly, 3.3 mL of bronchoalveolar lavage 

fluid (BALF) were mixed with 10 µL of internal standards (Table E2, ref (2)) and loaded onto 

Waters Oasis HLB solid phase extraction (SPE) cartridges. SPE cartridges were air-dried, and 

lipid mediators eluted with organic solvent, evaporated under vacuum and reconstituted in 100 

µL of methanol. Following spin filtering, 7.5 µL were injected onto an Acquity UPLC with a 

BEH C18 column (2.1x150 mm, 1.7 µm, Waters) and analyzed on a Waters Xevo TQ-MS in 

negative mode. The calibration levels and method parameters of all analyzed compounds are 

provided in Table E2 and Table E3, ref (2). Isoprostanes were screened via LC-MS/MS as 

previously reported (12).  

 

Metabolomics analyses of serum (13) 

Briefly, for non-targeted metabolomics, 50 μL of serum was used for both hydrophilic 

interaction liquid chromatography (HILIC) and reversed-phase chromatography. Samples were 

analyzed on an Ultimate 3000 UHPLC coupled to a Q-Exactive Orbitrap mass spectrometer 

(Thermo Fisher Scientific, Bremen). Mass spectrometry data were acquired (full scan mode) in 

both positive and negative ionization. Molecular features were extracted using the software 

XCMS (https://metlin.scripps.edu/xcms/index.php). Putative metabolite annotation was 

performed using the Human Metabolome Database (HMDB) (14), and output matched to an in-

house accurate mass/retention time library of reference standards (15). The chromatographic 

signal drift (if any) was normalized with a QC normalization algorithm in MATLAB vR2015a 

(Mathworks, Natick, MA, USA) (16). Only metabolites that were present in ≥70% of the 

samples in any group and had a coefficient of variance <30% in the QC samples were included 

in the SNF analyses.  

 

 

Data processing 

Proteomic data from BAL and BEC were log2 transformed and normalized to a pooled internal 

reference sample. Features detected in <75% of the subjects in each sub-group were excluded. 

MicroRNA and mRNA profiles from BAL, BEC and exosomes were log2 transformed and 

quantile normalized. MicroRNA and mRNA below the lowest limit of quantification (LLOQ; 

defined as 5 x SD of the noise above the background fluorescence) (16) (RFU<2
5.5

) were 

excluded. Missing values in the non-targeted metabolomics platform, deemed to be associated 

with technical limitations rather than the detection limit, were imputed by KNN (K-nearest 

neighborhood) method with K = 10 by Euclidean distance. Oxylipin analytes present at levels 

below the limit of detection (LOD; defined as 3 x SD of the noise above) were set to 25% of 

LOD (5). Data blocks were mean-centered and scaled to unit variance across features prior to 

SNF. 

 

Similarity Network Fusion (SNF) construction and group prediction 

Network-based multi-omics data fusion analysis was performed by Similarity Network Fusion 

analysis, followed by clustering of subjects (17). The analysis includes four major steps: 1) The 

subjects’ distance matrices based on each single-omics data was calculated using Euclidean 

Distance; 2) Subject similarity graphs were constructed for each single-omics based on their 

https://metlin.scripps.edu/xcms/index.php
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distance matrices; 3) Subjects’ similarity graphs from different omics platforms were iteratively 

fused to one similarity network representing all the omics data blocks included in the specific 

evaluation at hand; 4) Based on the resulting fused similarity graph, prediction of each subject’s 

group label was performed using the label propagation method proposed in the SNFtool. Leave-

one-out cross-validation (LOOCV, N=10,000), using random sampling with replacement was 

performed, with the added constraint that a minimum of n=5 subjects with full overlap of all 

omics platforms included in the specific network had to be available (see Illustrations in Figure 

E2). The accuracy of each fused similarity network was evaluated by comparison between the 

predicted label and the known group label (by clinical diagnosis) by Normalized mutual 

information (NMI), with value range from 0 to 1, in which 1 means 100% correct prediction of 

test subjects’ group belonging, as defined by COPD diagnosis and current smoking status. The 

three parameters used in the SNF algorithm, the number of neighbors (K) and hyperparameter 

(alpha) when construct similarity graph from distance matrix, number of iterations (t) and also 

the number of neighbors (K) when fused similarity graphs, were optimized (see Results). In 

addition, the sampling times N in LOOCV was optimized for robustness. To decrease the impact 

of unbalance sample sizes among different groups, we use the equal number of sample size for 

all groups in training set to construct the fused similarity network. We select parameters as K = 

5, alpha = 0.5, t = 30, and N = 10,000 based on the robustness analysis (Figure E3-E4). The 

rational for choosing the label propagation and LOOCV methods as the primary prediction 

approach was based on the risk of overfitting associated with the small n. However, comparison 

evaluations using the spectralClustering approach indicated similar results (Figure E6).  

 

Evaluation of strategies for handling missing omics data blocks in SNF analysis 

Out of the 52 subjects included in the SNF evaluations, some of the 9 omics data blocks were 

missing from certain subjects, resulting in sample size variation from 27 to 52 across the 9 omics 

platforms. In order to evaluate the influence on varying overall sample sizes as well as sub-group 

sample sizes in the SNF construction, we compare three strategies for handling missing data 

blocks in SNF prediction: 1) A conservative strategy including only the 24 subjects with the 

most complete set of omics data blocks; 2) An equal sample size strategy, where all 52 subjects 

were included, but to avoid influence on sub-group sizes on the performance of different n-tuple 

omics combinations, equal sub-group sizes (n=4) were used as training data in the LOOCV 

training; 3) An unequal sample size strategy allowing for sampling of the different sub-group 

sizes (i.e. maximal number of subjects with full coverage of the particular omics combination 

minus one: with the overall n ranging from 18-52, and the smallest sub-group size ranging from 

n=5-12) as training data in the LOOCV prediction approach to utilize the maximum information 

of each omics integration. For all these three strategies, the same SNF analysis procedure is 

applied with equal group sample size for all three groups within each omics integration and the 

same parameters (Parameter values K = 5, alpha = 0.5, and t = 30, as well as N = 10,000 with the 

optimization results are described in the Online Supplement Result section as well as in Figures 

E3-E4).  

 

Estimation of the performance of multi-omics fusion in small sample size data 

A subset of the multi-omics data with 24 subjects with the majority of the data blocks available 

for every subject was used to estimate the performance of multi-omics fusion in different sample 

size data. We set different sample size in training data to construct different similarity networks, 

and then predict the test sample based on SNF with LOOCV random sampling without 



7 

replacement. To decrease the impact of unbalance sample sizes among different groups, we used 

the same sample size across all groups for this evaluation. Results were plotted as mean accuracy 

(NMI) ± SE for each omics n-tuple. Theoretical power curves were generated based on equal 

allocation sample sizes on the calculated mean accuracy for each n-tuple in order to allow 

estimation of the n required to reach relevant accuracies for the various omics n-tuples.  

 

Subject network visualization 

All subject-based network visualizations were made with nodes representing subjects and node 

color reflecting known diagnostic groups, as defined by GOLD COPD diagnosis and current 

smoking status. The positioning of the subjects in the network visualizations are made in two 

different manners: 1) Similarity networks, with subjects clustered according to network 

similarity, thereby facilitating visual inspection of the clustering performance of the network, 

with edge-weighted spring embedded layout (18). All edges are displayed with the same width, 

and proximity of subjects (length of edge) represent similarity. This applies to Figure 3 and 

Figure E7 (panels B). 2) Fixed-position network, with clustering according to subjects’ known 

group belonging (Healthy, Smoker, COPD) facilitate visual comparison. Edge thickness reflects 

the strength of the similarity between each pair of subjects, with ranked similarities <75% 

displayed as a thin line, and ranked similarities 75-100% proportional to edge thickness. This 

applies to Online Supplement Figure E7 and E8, panel A. All subjects networks are generated by 

Cytoscape 3.1.1 (19). 

 

 

Supplemental Results 
 

Robustness of SNF parameters 

Robustness analysis for the three main parameters used in the SNF algorithm (the number of 

neighbors (K), hyperparameter (alpha), and number of iterations (t)) was performed for the 

ranges recommended by Wang et al. (17) for our multi-omics data set, to assure that alpha and t 

are within their optimal ranges. Different levels and combinations of the three parameters were 

compared by the accuracy distributions based on 303 single- to 7-tuple omics similarity 

networks. Twenty-four subjects from the three groups of female current-smoker COPD patients 

(COPD, n=6), smokers with normal lung function (Smokers, n=10) and healthy never-smoker 

controls (Healthy, n=8) were selected for the parameter evaluation, based on the availability of 

the 9 omics data sets across most subjects, as well as the relative homogeneity of intra-group 

molecular profiles of the individual omics data sets, as evident from results from the individual 

omics data sets (5, 11). The 9 omics data blocks (Figure E1) were used to construct fused 

similarity networks and predict test groups by LOOCV with random sampling without 

replacement. The K parameter was evaluated from 2 to 5, as the least group size is 6 (Figure E3 

shows K from 3 to 5). The alpha parameter was evaluated from 0.3 to 0.8, by an increment of 0.1 

(Figure E3 shows alpha of 0.3, 0.5 and 0.7). The t parameter was evaluated for t=20 and t=30 

(Figure E3). Our results agreed with those of Wang et al. (17), with a high level of robustness for 

all three parameters. We selected K = 5, alpha = 0.5, and t = 30 in all further analyses. In 

addition, the robustness of the number of random sampling with replacement in the LOOCV test 

to construct and evaluate different SNF predictor was evaluated. We tested the N = [200, 400, 

800, 1000, 5000, 10000, 15000, 20000] (Figure E4), and compared the accuracy difference 

between adjacent N pairs in the same 24 sample dataset Figure E4). At N = 10000, the accuracy 
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is very robust with the mean of squared differential accuracy as 5.0 x 10
-4

 and standard deviation 

as 7.6 x 10
-4

. We select N = 10,000 in all further analyses.  

 

Evaluation of strategies for handling missing data blocks in SNF analysis 

The SNF data integration approach requires that data is available across all omics platforms from 

all included subjects in a particular network. As such, developing approaches for dealing with 

missing data in the network construction is essential. For the purpose to deal with missing data, 

we evaluated three approaches: 1) A conservative strategy including only the 24 subjects with the 

most complete omics data across all 9 platforms (Figure E1, red box), using a fixed sub-group 

size of n=4 as training sets for the iterative LOOCV prediction; 2) An equal sample size strategy, 

where all 52 subjects were included (Figure E1, grey box), but to avoid influence on sub-group 

sizes on the performance of different n-tuple omics combinations, equal sub-group sizes (n=4) 

were used for training purposes; 3) An unequal sample size strategy where all 52 subjects were 

included (Figure E1, grey box), but allowing for sampling of different sub-group sizes in training 

sets (range: n=5-12) in order to maximize the information utilized in the training. The mean 

performance of the three methods was very robust, indicating that the unequal sample size 

strategy is the optimal strategy for addressing the missing omics data block issue, while at the 

same time making use of all collected data.  
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Supplementary Tables 
 

Table E1. Clinical parameters of female individuals from the Karolinska COSMIC cohort included in the 

current study 
 

Parameters Healthy never-smokers Smokers COPD 

Group size (n) 20 20 12 

Age 55.5 (49.5, 62.0) 54.0 (48.0, 58.0) 59.0 (57.0, 63.0) 

BMI 25.4 (23.3, 28.2) 24.2 (22.7, 25.8) 23.5 (21.7, 25.9) 

Smoking [pack-years] 0.0 (0.0, 0.0) 33.0 (27.8, 40.0) 40.5 (37.3, 45.8) 

FEV1 [% predicted] 120 (113, 127) 110 (1001, 116) 78.5 (74.8, 90.5) 

FEV1/FVC 0.83 (0.77, 0.84) 0.79 (0.75, 0.82) 0.62 (0.57, 0.63) 

GOLD Stage (1/2) N.A. N.A. 6/6 

GOLD-2011 (A/B) N.A. N.A. 9/3 

Blood leucocytes [×109/L] 5.6 (4.5, 6.5) 6.8 (6.4, 8.0) 8.2 (6.1, 9.4) 

Blood platelets [×109/L] 267 (245, 304) 288 (245, 343) 281 (238, 327) 

Serum albumin [g/L] 40.0 (38.0, 41.0) 39.0 (37.8, 39.3) 39.5 (38.0, 41.0) 

Antitrypsin [g/L] 1.4 (1.3, 1.5) 1.6 (1.4, 1.7) 1.6 (1.5, 1.7) 

Menopause (yes/no) 14/6 12/8 12/0 

Emphysema (yes/no) 0/20 12/8 11/1 

Chronic bronchitis (yes/no) 0/20 3/17 5/7 

 

Definition of abbreviations: BMI = body mass index, COPD =current-smokers with  chronic obstructive pulmonary disease, FEV1 

[%]= post-bronchodilator forced expiratory volume in one second as % of predicted based on ECCS reference values, FVC = post-

bronchodilator forced vital capacity, GOLD = Global Initiative for Obstructive Lung Disease, N.A. = not applicable, Smoker = 

current-smokers with normal spirometry. Values are presented as median and IQR 
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Supplementary Figures 
 

 

 
 

Figure E1: Overview of omics data blocks-subject matrix. 
Overview of overlap of omics data collected from the 52 female subjects in the Karolinska 

COSMIC cohort that were included in the SNF performance evaluations. Each row represents a 

platform, and each column is a subject. Row one indicated subject groups (red=Never-smoker 

healthy, green=smoker with normal lung function, yellow=current-smoker COPD). Dark blue 

cells indicate available data blocks, and light blue indicates missing data blocks. The number in 

brackets following the data block name indicates total number of subjects that the respective data 

is available for. Anatomical locations: Serum; BAL: bronchoalveolar lavage cells; BALF: BAL 

fluid; BEC: bronchial epithelial cell; Exo: exosomes isolated from BAL fluid. Data types: DIGE: 

2-D Difference Gel Electrophoresis proteomics; iTRAQ: Isobaric tags for relative and absolute 

quantitation proteomics; TMT: Tandem mass tag proteomics; mRNA: mRNA microarray; 

miRNA; miRNA microarray. Red box: Subjects with maximal omics block overlap, included in 

the conservative sampling strategy. Grey box: Subjects included in equal- and unequal sampling 

strategies.  
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Figure E2: Prediction of group label using leave-one-out cross validation 
Illustration of two different scenarios for prediction of group belonging for a subject, using label 

propagation and LOOCV. First, a test set consisting of one subject (marked as “?”) is randomly 

selected from all subjects. A subject-based similarity network is constructed based on pairwise 

subject similarities from the fused multi-omics similarity matrix of all remaining subjects, 

excluding the test set. The between-group similarity edges are calculated based on the 

connections within- (C, black lines) and between (C, grey arrows) groups. Second, the group 

label of the test set consisting of one subject (C; marked as “?”) is predicted based on the 

similarities to all samples in the network using the label propagation method (D). The unique 

example of personalized medicine, with subgroups sizes of n=1 is illustrated in panels A-B.  
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A 

 
 

B 
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Figure E3: SNF parameter optimization. 
Evaluation of the three critical parameters used in SNF: the number of neighbors (K, in 

columns), hyperparameter (alpha as a in rows), and the number of iterations (t = 20 in panel A 

and t = 30 in panel B). The x-axis represents the n-tuple of multi-omics fusion, and y-axis is the 

accuracy of prediction (NMI). Box plots showing median (horizontal solid line), interquartile 

range (IQR; boxes), and range (whiskers). The accuracy is based on 303 single- to 7-tuple omics 

similarity networks using 24 samples from the three groups of female current-smoker COPD 

patients (6), smokers with normal lung function (10) and healthy never-smoker controls (8). Both 

use LOOCV with random sampling without replacement. As discussed by Wang et al. (17), these 

parameters are quite robust. We selected K = 5, alpha = 0.5, and t = 30 in all further analyses. 
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Figure E4: Optimization of number of sampling in LOOCV 
Estimation of the variation in the robustness of accuracy of prediction, calculated as NMI, with 

the N-times LOOCV random sampling test. Boxplot displaying median (solid line), IQR (boxes), 

and range (whiskers) of the squared differences in accuracy (NMI) between each pair of 

permutation tests with N1 and N2 times sampling. The accuracy is based on 303 single- to 7-

tuple omics similarity networks using 24 samples from the three groups of female current-

smoker COPD patients (6), smokers with normal lung function (10) and healthy never-smoker 

controls (8). We use LOOCV random sampling with replacement with K = 5, alpha = 0.5, and t 

= 30. Based on these results, 10,000-times LOOCV was utilized in all further analyses. 
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Figure E5: Comparison of strategies for handling missing omics data blocks 
Panels A-C display the mean accuracy of group prediction for SNF-mediated omics integration 

using 9 omics data sets from the Karolinska COSMIC cohort, as displayed in Figure E1. Values 

are displayed as mean accuracy ± SE of all possible omics combinations for each respective 

number of omics (n-tuple) combination based on the Conservative (A), equal (B) and unequal 

sampling strategies (C; identical to Figure 2A). The heat maps in panels D-E are displaying the 

accuracy of group prediction achieved when using sub-group sizes of n=1-5 (y-axis) for each 

number of omics platforms integrated (x-axis) for are displayed for the conservative (D) as 

compared to equal or unequal sampling strategy (E, identical to Figure 2C). Accuracy of 

prediction was calculated by comparing prediction using the SNF with COPD diagnosis 

according to the GOLD criteria as well as current smoking status to define correct reference 

groups. Panel F displays the correlation of accuracy of between equal vs. unequal sampling 

strategy (R
2
 = 0.94). 
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Figure E6: Accuracy of group prediction using spectralClustering 
The accuracy of group prediction using the unsupervised spectralClustering alogorithm provided 

in the SNFtool, to be contrasted to Figure 2A displaying the accuracy of group prediction using 

the label propagation method. A) Accuracy of prediction of the three study groups (Healthy 

never-smokers, Smokers with normal spirometry, and smokers with COPD). The graphs display 

the mean (solid line) and maximum (dashed line) accuracy of group prediction for n-tuple SNF-

mediated omics integration using 9 omics data sets from the Karolinska COSMIC cohort, as 

displayed in Figure 1 and Figure E1. Values are displayed as mean accuracy ± SE of all possible 

omics combinations for each respective n-tuple combination. Group belonging was predicted 

using spectralClustering, and accuracy of group prediction was calculated as NMI compared 

with COPD diagnosis according to the GOLD criteria as well as current smoking status to define 

correct reference groups. The mean performance was lower compared to the LOOCV (Figure 

2A), with a higher variation between networks for the higher n-tuples. However, peak 

performing networks were achieved already at 4-tuple omics integration, as compared to 5-tuple 

integration required for 100% accurate prediction for the LOOCV (Figure 2A). Panel B shows 

the corresponding results following permutation of original omics data across all features for 

each subject separately (which means the feature-subject relationships are randomized), thereby 

corresponding to the accuracy of prediction that can occur by random in data sets of the same 

size. The improvement in accuracy observed as a result of an increased number of predictors (i.e. 

number of omics data blocks) was negligible, increasing from 0.09 to 0.13 from single to 7-tuple 

omics. 
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Figure E7: Sextuple SNF network with 100% accuracy of prediction 
Subject similarity networks for each of the individual single-omics data blocks, compared to the 

optimal 6-tuple fused SNF similarity network (center), which resulted in 100% correct 

classification of the three groups. Nodes represent subjects (red: COPD current smokers, yellow: 

Current smokers with normal lung function, blue: Healthy never-smokers). Edge thickness 

reflects the strength of the similarity between each pair of subjects, with similarity ranks <75% 

displayed as a thin line, and similarity ranks 75-100% proportional to edge thickness. The 

accuracy of 100% is based on 10,000-times LOOCV permutation test using training data 

iteratively selecting 6 samples from each group.  
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Figure E8: Optimal SNF network based on the conservative sampling strategy 
Subject similarity networks for each of the individual single-omics data blocks, compared to the 

optimal septuple fused SNF similarity network (center) achieved from the conservative sampling 

strategy, which resulted in 91% correct classification of the three groups. Nodes represent 

subjects (red: COPD current smokers, yellow: current smokers with normal lung function, blue: 

healthy never-smokers; all female subjects). The upper panel (A) displays as fixed-position 

network, with clustering according to known groups preserved for all six networks to facilitate 

visual comparison. Edge thickness reflects the strength of the similarity between each pair of 

patients, with similarities rank in each network <75% displayed as a thin line, and similarities 

rank 75-100% proportional to edge thickness. The lower panel (B) displays the corresponding 

networks with subjects clustered according to network similarity. The accuracy of 91% is based 

on 10,000-times LOOCV permutation test using training data with 4 samples in each group.  
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Figure E9: Accuracy of prediction of chronic bronchitis in COPD patients 
The accuracy of group prediction of chronic bronchitis diagnosis among the female COPD group 

using the unsupervised, data driven prediction based on SNF multi-omics integration. The graphs 

display the mean (solid line) and maximum (dashed line) accuracy of prediction for each 

respective n-tuple combination using 8 omics data sets from the Karolinska COSMIC cohort as 

displayed in Figure 1 and Figure E1. One omics data set (mRNA from BAL cells) was excluded 

due to not fulfilling the criteria of a minimum coverage of n=4 subjects in each of the sub-group 

with/without chronic bronchitis. The mean accuracy increased in a near-linear fashion from 

<0.10 for the single omics data blocks to 0.75 for 7-tuple omics integration. Out of 254 possible 

single to 7-tuples omics networks, 57 networks of 2-7 omics combinations achieved an accuracy 

of 100% (dashed line) with group sizes as small as n=4.  Group belonging was predicted using 

spectralClustering, and accuracy of group prediction was calculated as NMI compared with 

chronic bronchitis diagnosis as determined by self-reported cough and sputum production for 

≥3months in each of at least two consecutive years.   
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