Increased T helper 17.1 cells in sarcoidosis mediastinal lymph nodes

Caroline E. Broos¹, Laura L. Koth², Menno van Nimwegen¹, Johannes C.C.M. in 't Veen³, Sandra M.J. Paulissen⁴, Jan Piet van Hamburg⁵, Jouke T. Annema⁶, Roxane Heller-Baan⁷, Alex Kleinjan¹, Henk C. Hoogsteden¹, Marlies S. Wijsenbeek¹, Rudi W. Hendriks¹, Bernt van den Blink^{1§}, Mirjam Kool^{1§*}

¹Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands; ²Department of Medicine, Division of Pulmonary and Critical Care, University of California, San Francisco, California 94143; ³Department of Pulmonology, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands; ⁴Department of Rheumatology, Erasmus MC, Rotterdam, The Netherlands; ⁵Department of Experimental Immunology, Amsterdam Rheumatology & Immunology Center, Academic Medical Center/University of Amsterdam, The Netherlands, ⁶Department of Pulmonology, Ikazia Hospital, Rotterdam, The Netherlands.

[§] Shared senior authors

* Reprint requests and address correspondence to: Mirjam Kool, Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, Netherlands, Phone: +3110-7038526, Email: <u>m.kool@erasmusmc.nl</u>

Online Data Supplement

Flowchart describing the donated material (BALF, MLN, and/or PB) by the 55 sarcoidosis patients in this study.

Company	Antigen	Fluor chrome	Clone
eBiosciences	CD3	APC-eFluor780	SK7
	CD4	AF700	OKT4
	FoxP3	PE	236A/E7
	CTLA4	PerCp-eFluor710	14D3
BD biosciences	CCR6	APC	11A9
	CXCR3	BV711	1C6/CXCR3
	Ki67	Pe-Cy7	B56
	CD28	BV605	CD28.2
	PD-1	BV786	EH12.1
	PD-1	BV711	EH12.1
	CD25	PE-Cy7	M-A251
	CD25	BV650	M-A251
	CD278 (ICOS)	BV650	DX29
R&D	CCR4	FITC	205410
Biolegend	CXCR3	BV421	G025H7
Invitrogen	CD45RA	PE-Texas Red	MEM-56

Supplementary Table E1. Overview antibodies

A. Five CD3⁺CD4⁺ T cell populations were characterized according to CD45RA and intracellular FoxP3 expression[1], i.e. CD45RA⁺FoxP3⁻ naïve T cells, CD45RA⁺FoxP3⁻ memory T cells, CD45RA⁺FoxP3⁻ int activated (non-suppressive/-regulatory) T cells, CD45RA⁺FoxP3⁻ memory T cells and CD45RA⁻ FoxP3^{high} activated Tregs. The total memory T cell pool consists of memory T cells plus activated T cells. The total (non-suppressive/-regulatory) T cell pool consists of naïve T cells plus total memory T cells. B. Th cell subsets can be classified according to chemokine-receptor expression[2-6]. CCR6⁻ memory T cells subsets, including CCR4⁺CXCR3⁺ Th1 cells and CCR4⁺CXCR3⁻ Th2 cells; and CCR6⁺ T cell subsets, which include CCR4⁺CXCR3⁻ Th17 cells, CCR4⁺CXCR3⁺ DP Th cells and CCR4⁺CXCR3⁺ Th17.1 cells. Th17.1 cells (i.e. IFN- γ -producing Th17 cells) contain both IL-17A⁺/IFN- γ ⁺ (Th17/Th1) cells and IFN- γ -single-positive cells. CCR6⁺CCR4⁺CXCR3⁺ DP cells are thought to reflect an intermediate Th17 and Th17.1 cell population[4 5 7], expressing both ROR γ t/IL-17A and T-bet/IFN- γ in patients with rheumatoid arthritis (RA)[7]. *Abbreviations:* CCR: C-C chemokine receptor, CXCR: CXC chemokine receptor, DP: double-positive, Th: T helper, Treg: regulatory T cells.

Representative flow cytometry analysis of BALF (A) and MLN (B) from one sarcoidosis patient and one control. *Abbreviations:* CCR: C-C chemokine receptor, BALF: broncho-alveolar lavage fluid, MLN: mediastinal lymph nodes, SRC: sarcoidosis, Ctrl: control.

Proportions of total CCR6⁺ and Th1 cells were determined in total memory CD4⁺ T cells from sarcoidosis PB, MLN and BALF. A-B. Proportions of total CCR6⁺ and Th1 cells of total memory CD4⁺ T cells. *Statistics:* Horizontal lines indicate median values and significance was determined using a Mann-Whitney U test, * p < 0.05 ** p < 0.01 *** p < 0.001. Data are from 34 (PB), 17 (MLN) and 36 (BALF) patients. *Abbreviations:* CCR: C-C chemokine receptor, PB: peripheral blood, MLN: mediastinal lymph nodes, BALF: broncho-alveolar lavage fluid, DP: double-positive, Th: T helper.

Proportions Th17 and Th17.1 cells were determined in total memory CD4⁺ T cells from sarcoidosis patient that donated either both PB and MLN (n=17) or PB and BALF (n=15). A-B. Proportions of Th17 and Th17.1 cells of total memory CD4⁺ T cells in PB and MLN of 17 sarcoidosis patients. C-D. Proportions of Th17 and Th17.1 cells of total memory CD4⁺ T cells in PB and BALF of 15 sarcoidosis patients. *Statistics:* Significance between median values of paired samples was determined using a Wilcoxon signed rank test, * p < 0.05 ** p<0.01 *** p < 0.001. *Abbreviations:* PB: peripheral blood, MLN: mediastinal lymph nodes, BALF: broncho-alveolar lavage fluid, Th: T helper.

15-

10·

5-

0

2⁴⁰

(% of total memory T cells)

Th17 cells

BALF

D.

Disease course of a subgroup (n=25) of patients was determined 2 years after study inclusion. Resolution of disease (n=7) was defined by the absence of abnormalities on the chest X-ray and clinical symptoms. Patients with residual abnormalities on chest X-ray, but without need for treatment were designated as non-progressive chronic (n=11); and patients with need for treatment as progressive chronic (n=7)[8]. A. Proportions Th17 cells of total memory CD4⁺ T cells at time of diagnosis. B. Ratio of proportions Th17.1 versus Th17 cells. *Statistics:* Data are presented as boxplots and whiskers that show the 10-90 percentile of the data. Significance was determined using a Mann-Whitney U test. *Abbreviations:* BALF: broncho-alveolar lavage fluid, Th: T helper, SRC: sarcoidosis.

REFERENCES

- Miyara M, Yoshioka Y, Kitoh A, et al. Functional Delineation and Differentiation Dynamics of Human CD4< sup>+</sup> T Cells Expressing the FoxP3 Transcription Factor. Immunity 2009;**30**(6):899-911
- 2. Acosta-Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 2007;8(6):639-46 doi: ni1467 [pii]

10.1038/ni1467[published Online First: Epub Date]|.

3. Ramesh R, Kozhaya L, McKevitt K, et al. Pro-inflammatory human Th17 cells selectively express Pglycoprotein and are refractory to glucocorticoids. J Exp Med 2014;**211**(1):89-104 doi: jem.20130301 [pii]

10.1084/jem.20130301[published Online First: Epub Date]|.

4. Paulissen SM, van Hamburg JP, Dankers W, Lubberts E. The role and modulation of CCR6+ Th17 cell populations in rheumatoid arthritis. Cytokine 2015;**74**(1):43-53 doi: S1043-4666(15)00057-5 [pii]

10.1016/j.cyto.2015.02.002[published Online First: Epub Date]|.

5. Lubberts E. The IL-23-IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol 2015 doi: nrrheum.2015.53 [pii]

10.1038/nrrheum.2015.53[published Online First: Epub Date]|.

- Ramstein J, Broos CE, Simpson LJ, et al. Interferon-gamma-producing Th17.1 Cells are Increased in Sarcoidosis and More Prevalent Than Th1 Cells. Am J Respir Crit Care Med 2015 doi: 10.1164/rccm.201507-1499OC[published Online First: Epub Date]
- 7. Paulissen SM, van Hamburg JP, Davelaar N, et al. CCR6(+) Th cell populations distinguish ACPA positive from ACPA negative rheumatoid arthritis. Arthritis Res Ther 2015;17:344 doi: 10.1186/s13075-015-0800-5

10.1186/s13075-015-0800-5 [pii][published Online First: Epub Date] |.

 Prasse A, Zissel G, Lützen N, et al. Inhaled vasoactive intestinal peptide exerts immunoregulatory effects in sarcoidosis. American journal of respiratory and critical care medicine 2010;**182**(4):540-48