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ABSTRACT Increasing evidence points towards an inflammatory component underlying pulmonary
hypertension. However, the conclusive characterisation of multiple inflammatory cell populations in the
lung is challenging due to the complexity of marker specificity and tissue inaccessibility. We used an
unbiased computational flow cytometry approach to delineate the inflammatory landscape of idiopathic
pulmonary arterial hypertension (IPAH) and healthy donor lungs.

Donor and IPAH samples were discriminated clearly using principal component analysis to reduce the
multidimensional data obtained from single-cell flow cytometry analysis. In IPAH lungs, the predominant
CD45+ cell type switched from neutrophils to CD3+ T-cells, with increases in CD4+, CD8+ and γδT-cell
subsets. Additionally, diversely activated classical myeloid-derived dendritic cells (CD14−HLA-
DR+CD11c+CD1a+/−) and nonclassical plasmacytoid dendritic cells (pDCs; CD14−CD11c−CD123+HLA-
DR+), together with mast cells and basophils, were more abundant in IPAH samples. We describe, for the
first time, the presence and regulation of two cell types in IPAH, γδT-cells and pDCs, which link innate
and adaptive immunity.

With our high-throughput flow cytometry with multidimensional dataset analysis, we have revealed the
interactive interplay between multiple inflammatory cells is a crucial part of their integrative network. The
identification of γδT-cells and pDCs in this disease potentially provides a missing link between IPAH,
autoimmunity and inflammation.
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Introduction
Pulmonary hypertension (PH) is characterised by severe vascular remodelling, resulting in increased
pulmonary vascular resistance. Increasing evidence has pointed towards an inflammatory component
being important in the disease development. In PH, elevated numbers of inflammatory cells have been
observed in and around remodelled arteries, where the number of infiltrating cells in the perivascular
region correlated with intima and media remodelling [1]. Despite the clear link between PH and
dysregulation of the immune system [2], systematic analysis of immune and inflammatory cells in the
lungs of PH patients is still lacking.

It has been long reported that mast cells and B- and T-lymphocytes are increased in patients with diverse
forms of PH [3–7]. Recruited inflammatory cells can release certain mediators that not only directly alter
the vessel microenvironment, but also recruit additional circulating inflammatory cells, which in turn
further worsens disease progression. The expression of several cytokines and chemokines, such as CCL2,
CCL5 or CX3CL1/fractalkine, is increased in lungs and remodelled vessels of PH patients [8–10]. In
addition, inflammatory cells are an important source of other mediators, such as danger molecules
(HMGB1) and proteases (tryptase), which can lead to enhanced pulmonary smooth muscle cell
proliferation when produced locally [7, 11].

To date, the analysis of inflammatory cells within the human lung has relied predominantly on
immunohistochemical or morphological characterisation [1, 4, 9, 12]. However, due to the complexity of
marker specificity, the conclusive classification of several inflammatory populations using only a single
marker is challenging. Flow cytometry provides a more sophisticated approach to thoroughly identify and
quantify different immune cell populations. This technique is well established in the characterisation of
cells from human blood or lavage samples, but only a few recent studies have addressed its usefulness in
analysing whole tissue samples [13–15]. We have undertaken an unbiased flow cytometry based approach
to immunophenotype multiple inflammatory cell populations in the lungs and pulmonary arteries in a
large well-characterised group of idiopathic pulmonary arterial hypertension (IPAH) patients and healthy
nonutilised donor lung tissue. This is the first study to conduct such a broad analysis to conclusively
demonstrate inflammatory components in the pathogenesis of IPAH.

Material and methods
A detailed description of methods is provided in the online supplementary material.

Lung tissue
Lung tissues from IPAH patients (n=16) and controls (n=15) were obtained from the Division of Thoracic
Surgery, Medical University of Vienna (Vienna, Austria). Nontransplanted donor lung tissue that had been
harvested for transplantation, but not implanted because of size-reduced lung transplantation, served as
controls [16, 17]. All lungs were flushed via ante- and retrograde perfusion with Perfadex (XVIVO
Perfusion, Göteborg, Sweden) to remove any residual blood. No signs of any inflammatory conditions
such as pneumonia, pulmonary tuberculosis or infections with pleural effusions were present. The protocol
and tissue usage were approved by the institutional ethics committee (976/2010).

Tissue preparation and flow cytometry
Two independent samples (∼400 mg each) were taken at random (either peripheral or perihilar) from
fresh explant lungs and processed using a standardised protocol in a blinded fashion. Pulmonary arteries
were isolated as shown in online supplementary figure S1; briefly, arteries were identified due to their
anatomical position and structure, excised and then processed in the same fashion as lung samples.
Single-cell suspensions were prepared and stained using four different combinations of cell surface
markers as detailed in online supplementary tables S1 and S2 and recorded on a LSRII flow cytometer
(BD Biosciences, Vienna, Austria). The results of paired lung samples were then averaged and data
presented as percentage of CD45+ cells or number of cells per mg of tissue.

Biocomputational analysis
For bioinformatic analysis RStudio (www.rstudio.com) and R (www.r-project.org) was used. Prcomp was
used to calculate the principal components from the log-odds ratios of the percentage CD45+ cells; the
first two principal components were plotted using the ggplot2 package. Heatmaps of the log-odds ratios of
cell number per tissue weight or percentage CD45+ cells were plotted using the pheatmap package.
Nonlinear-dimensionality reduction using t-distributed stochastic neighbour embedding (t-SNE) [18] was
performed in FlowJo (Ashland, OR, USA).
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Immunofluorescent staining
Immunofluorescent staining was performed on paraffin-embedded lung sections as previously described [19].
Confocal images were obtained using a laser-scanning confocal microscope (LSM 510 Meta; Zeiss,
Gottingen, Germany).

Statistics
Statistical analysis was performed in R. Each group was tested for distribution using the Shapiro–Wilk
normality test. Statistical significance was determined using the Wilcoxon rank sum test; p-values are
indicated on the figures. Scatterplots show boxplot overlays with median and interquartile range.

Results
Flow cytometric analysis
In this study, we used multiparameter flow cytometry in combination with bioinformatics analysis to
characterise the global inflammatory profile (figure 1) in lungs of patients with IPAH (n=16) and
compared it to that of healthy donors (n=15). Demographical and clinical characteristics of patients and
donors are described in table 1. Representative images of lung morphology showing classical vascular
remodelling in IPAH are shown in online supplementary figure S2.

21 different cell populations were analysed and separated into cells of 1) lymphoid lineage, including B-
and T-cells, T-cell subpopulations and natural killer (NK) cells and 2) myeloid lineage, consisting of
monocytes, macrophages, mast cells, neutrophils and dendritic cells (DCs) among others. In addition, the
markers CD1a and HLA-DR (human leukocyte antigen – antigen D related) were used to determine the
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FIGURE 1 Schematic representation of analysed cell populations identified during flow cytometric analysis. Hierarchal organisation of all
haematopoietic derived CD45+ cells of both lymphoid and myeloid lineages. NK: natural killer cells; NKT: natural killer T-cells; PMN:
polymorphonuclear neutrophils; Baso: basophils; Eos: eosinophils; Mono: monocytes; Int: intermediate monocytes; Nonclass: nonclassical
monocytes; DC: dendritic cells; pDC: plasmacytoid DC; Macs: macrophages. Italic letters (a–p) represent common cell populations, as identified in
figure 2.
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activation status for DCs and macrophages. Detailed descriptions of the multiple cell surface markers used
to describe the cell populations and the comprehensive gating strategy are shown in online supplementary
table S2 and figure 2, respectively. Due to the multipanel approach, we first performed correlation analysis
to determine how the results varied for cell types identified in the different panels (online supplementary
figure S3). A strong correlation was observed between panels, which demonstrated the robustness of our
analysis and enabled individual values to be averaged, thereby allowing us to generate the largest possible
coverage of cell populations for subsequent analysis. Similarly, the comparison of the flow cytometric
results obtained from the two independent samples revealed high reproducibility (online supplementary
figure S4).

Global changes in inflammatory profiles
Next, we sought to determine whether IPAH and healthy control lungs show distinct immune cell
signatures. To this end, we made use of the latest developments in computational flow cytometry [20] and
performed principal component analysis (PCA) to dimensionally reduce the complete dataset while
maximising the variance between donors and IPAH samples. Using only lungs with a complete dataset,
thereby analysing all 21 cell populations in a total of seven donor and five IPAH lungs gave a good
separation of donor and IPAH samples (figure 3a). We then enhanced the power of the PCA by omitting
the limiting three cell populations (eosinophils, NK, NKT-cells) from the global analysis. This procedure
maximised both the number of analysed lungs and populations and gave a superior discrimination
between groups (figure 3b). No differences were observed in the relative levels of these three cell
populations between donors and IPAH (online supplementary figure S5). This final dataset, comprising 31
lungs and 18 cell populations was analysed in depth.

Cell distribution of CD45+ cells in the lungs of IPAH patients and donors
In control samples, ∼64% of all CD45+ cells were from the myeloid lineage, predominantly granulocytes
(32%) and monocytes (17%); and ∼15% of the lymphoid lineage, primarily T-cells (14%), with almost
equal amounts of CD4+ and CD8+ T-cells. Minor populations included B-cells, basophils, DCs, γδT-cells
and mast cells (figure 4a). In IPAH lungs, the distribution of immune cells was distinctive, supporting the
clear clustering visible in the PCA plots. The strong predominance of myeloid cells was reduced to 52%,
while lymphoid-derived cells were enriched to 31%. Thus, the largest single cell classification in IPAH
lungs switched to T-cells (29%), which corresponded to a clear relative decrease in granulocytic

TABLE 1 Clinical characteristics of the donors and idiopathic pulmonary arterial hypertension
(IPAH) patients

Donors IPAH patients

Lung samples 15 16
Age years 41.7±13.2 34.1±10.6
Male/female 10/5 5/11
Height cm 175±9 170±8
Weight kg 73.6±9.9 61.2±13.3*
mPAP mmHg 71.2±16.6
PVR dyn·sec·cm−5 1845±669
6MWD m 280±187
NYHA class III–IV
NT-proBNP pg·mL−1 4412±2445
CRP mg·dL−1 1.2±2.4
PAH targeted therapy
ERA 1
ERA+PDE5i 1
sGCs+PGI 1
PDE5i+PGI 4
ERA+PDE5i+PGI 7
PDE5i+PGI+CCB 1
Unknown 1

Data are presented as n or mean±SD. mPAP: mean pulmonary arterial pressure; PVR: pulmonary vascular
resistance; 6MWD: 6-min walking distance; NYHA: New York Heart Association; NT-proBNP: N-terminal
pro-brain natriuretic peptide; CRP: C-reactive protein; ERA: endothelin receptor antagonists; PDE5i:
phosphodiesterase type 5 inhibitor; sGCs: soluble guanylate cyclase stimulator; PGI: prostacyclin analogue;
CCB: calcium channel blocker. *: p⩽0.05.
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populations (19%) as well as myeloid-derived monocytic populations (11%). In addition, a higher relative
abundance of several minor populations including DCs and mast cells was observed (figure 4a).
Approximately 21% of cells in control samples and 16% in IPAH could not be conclusively identified with
the markers used.

Using heatmap representations we examined how the distribution of the percentage CD45+ cells (online
supplementary figure S6) and the absolute numbers (figure 4b) of each cell type varied in every patient.
Within each group, relatively homogeneous patterns were observed, while between IPAH and donor
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samples, well-defined differences were found, as highlighted by the enrichment of T-cell and DC
populations in IPAH patients (figure 4b). Using Euclidean distance calculation to order the samples
resulted in good clustering of IPAH and donor samples (online supplementary figure S7).

Regulation of individual cell types in lung samples
Moving from global differences to the changes in individual cell types, we analysed the 18 cell populations
represented in figure 4b individually. When analysing cell numbers, 10 cell populations were differentially
abundant between IPAH and donor lungs (figure 5). These populations (as identified in figure 2) were
then mapped on t-SNE composite plots, which revealed a clear discrimination and localisation of most
populations (figure 5a). t-SNE plots highlight the relationship between different cell clusters on a new
bivariate matrix obtained by taking into account the similarities of all original dimensions. The altered
inflammatory state in IPAH lungs is demonstrated by an increased number of T-cells (CD4+ and CD8+

T-cells), mast cells, basophils and DCs. In addition, we identified elevated levels of γδT-cells, a population
which has not been reported in PH, so far. Within the myeloid-derived CD11c+ DC group, both CD209+

and CD209− subpopulations were increased, including CD1a+ activated DCs (figure 5b and online
supplementary figure S7). Of note, the DC overlay in figure 5a shows a more dispersed population in the
IPAH sample compared to donors. This can arise from the multiple DC populations being regulated and
activated in IPAH lungs. In addition, the nonmyeloid dendritic cells, pDCs, were increased in the IPAH
lungs. No changes were observed in the absolute abundance of CD19+ B-cells, macrophage subpopulations
(differing in their expression of HLA-DR and CD1a), CD11c−CD209+ DCs, monocyte subpopulations or
neutrophils (online supplementary figure S8). Closer examination of the percentage of CD45+ cells
revealed similar regulation in the majority of cell types (online supplementary figure S9). However, some
populations, such as neutrophils and monocytes, were decreased, which probably arises from the strong
increase in T-cell populations (online supplementary figure S9).
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Regulation of inflammatory profiles in isolated pulmonary arteries
We examined whether this cell regulation is restricted to lung tissues that contain multiple compartments,
such as small pulmonary arteries, or if it can be found within larger pulmonary arteries. Indeed, even in
these large vessels (third to fourth generation; online supplementary figure S1), we observed similar trends
with increased numbers of mast cells and basophils; however, several cell types were below statistical
significance (figure 6). In addition, we observed increased abundance of activated macrophages
(CD1a+HLA+) and DCs (CD11+CD209+CD1a+) and monocyte populations (online supplementary figure S10).

Localisation of pDCs and γδT-cells
As both pDCs and γδT-cells are cell types that have previously not been examined in PH, we additionally
performed multicolour immunofluorescent staining to confirm and visualise their presence in the lung
tissue. pDCs (CD123+CD304+) were found with increased prevalence in lungs of IPAH patients compared
to donors and were localised predominantly in the alveolar space in proximity to vessels (figure 7a and b).
γδT-cells could be detected in the lungs of both donor and IPAH patients, and in close proximity to
arteries in the latter with higher frequency (figure 7c and d).

Circulating pDC levels
Finally, we investigated whether the increased pDC numbers, as observed in IPAH lungs, could also be
detected in the circulation. The characteristics of the outpatient PAH group and controls are given in
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online supplementary table S3. Analysis of total CD123+CD11c− cells or pDCs
(CD123+CD11c−CD304+HLR-DR+) did not reveal any significant increases. Similarly, the other CD123+

population, basophils (CD123+CD11c−CD304−FceRi+), were not elevated (figure 8). These results indicate
that these populations are selectively increased in the lungs of PAH patients.

Discussion
In this study, we have created the most comprehensive picture of the immune cell populations within
IPAH lungs to date. Using an unsupervised and unbiased approach we have evaluated the presence and
abundance of 21 different inflammatory cell populations, thereby not only detailing the inflammatory
landscape in healthy control lungs, but also that of IPAH patients. Previous studies that have examined the
presence of inflammatory cells in the lungs of PH patients have predominantly relied on traditional
scoring or immunohistochemistry analysis [1, 4–6, 12, 21]. Although these techniques possess several
strengths, such as the ability to quickly recognise architectural and structural disturbances, they are limited
by the number of cell populations that can be analysed simultaneously. In contrast, flow cytometry permits
the concurrent analysis of multiple independent cell populations using a large number of differentiation
markers, including the multidimensional description of subpopulations and their activation states. Using
this approach together with concomitant bioinformatical analysis we describe 1) a detailed picture of the
immune phenotype in healthy lungs; 2) an altered immune cell signature in IPAH; and 3) novel regulated
cell populations contributing to the immune disequilibrium in IPAH.

In IPAH patients, we not only observed a change in cell distribution (thus a different profile), but also
increased abundance of inflammatory cells. As our analysis was restricted to IPAH and control samples we
cannot ascertain whether this profile is specific for IPAH or may be shared with other pathologic
conditions. Future studies should compare the findings with other patient groups, e.g. Eisenmenger’s
syndrome. However, even in such patients an inflammatory component cannot be excluded, as immune
responses may also be involved in the response to increased flow and/or pressure. This is exemplified by
studies using a rat model of PH due to left heart disease following supracoronary aortic banding. Here
mast cells and their mediators were shown to be important for lung vascular remodelling and PH
development [22].

Since vascular remodelling occurs in larger vessels as well as in small pulmonary arteries [16], we
undertook another innovative approach and analysed the inflammatory profile in isolated larger

p
D

C
s

γδ
T

-c
e

ll
s

20

25

b) pDCs

p=0.005

15

10

5

0

Donor IPAH

C
e

ll
s
 p

e
r 

fi
e

ld
 ×

1
0

25

d)

a)

c) γδT-cells

p=0.023

10

15

20

5

0

Donor IPAH

C
e

ll
s
 p

e
r 

fi
e

ld
 ×

1
0

Donor neg control IPAH

IPAH

magnified

magnifiedmagnified

Donor

TCR-γ
α-SMA

DAPI

TCR-γ
α-SMA

DAPI

CD304

CD123

DAPI

CD304

CD123

DAPI

neg control

magnified

magnified

magnified

FIGURE 7 Presence and localisation of plasmacytoid dendritic cells (pDCs) and γδT-cells in the lung. Immunofluorescence staining and
quantification of idiopathic pulmonary arterial hypertension (IPAH) and donor lung tissue against a,b) CD123 (red) and CD304 (green) to detect
pDCs (CD123+CD304+) and c,d) TCRγ (green) to detect γδT-cells. Smooth muscle actin (SMA) staining is shown in purple; nuclear staining via DAPI
(blue). Smaller panels represent magnified area as shown in larger panels. White arrows indicate cells of interest, red and green arrows indicate
single positive cells. Neg control: staining performed in the absence of primary antibodies. Scale bars=20 µm.

https://doi.org/10.1183/13993003.01214-2017 9

PULMONARY VASCULAR DISEASE | L.M. MARSH ET AL.

http://erj.ersjournals.com/lookup/doi/10.1183/13993003.01214-2017.figures-only#fig-data-supplementary-materials


pulmonary arteries (>500 µm). Indeed, even in these pulmonary arteries changes in the inflammatory
landscape were observed, which gives definitive evidence for the presence of inflammatory cells (including
mast cells, activated macrophages and DCs) in larger remodelled vessels. The presence of activated
macrophages within isolated pulmonary arteries supports the long standing premise of their involvement
in PH [23, 24].

Moving from the global inflammatory picture to specific cell types altered in IPAH, in our
multidimensional flow cytometric characterisation, we observed increased mast cells and lymphocytes
among others, which supports previous reports [3–7, 12, 25] and demonstrates the validity of our
approach. However, a few populations previously reported to be altered in PH were unchanged in our lung
samples, e.g. B-cells or total macrophages [4, 24]. It is possible that differences in PH cohorts, markers
used, or the use of enzymatic digestion could contribute to these differences. Unfortunately, our analysis
panels could not differentiate between alveolar and interstitial macrophages, which require a number of
additional markers including CD169 for accurate identification [13]. Future studies can make use of the
continuing development of novel cell markers to specifically analyse these cell types.

Similar to mast cells, basophils (also increased in our IPAH cohort) are typical innate effector cells that
can release a plethora of mediators such as interleukin (IL)-6, IL-13 or leukotriene B4, all implicated in
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PH pathogenesis [26–29], which in turn can activate and recruit T-cells [30]. In line with this we observed
a strong increase in abundance of diverse T-cell subpopulations, namely CD4+, CD8+ and γδT-cells in
IPAH patients [25]. Interestingly, we have previously shown decreased numbers of circulating lymphocytes
in IPAH, which indicates active recruitment to the lung [31]. In this study, we are the first to describe the
increased presence of γδT-cells in IPAH. γδT-cells serve as a bridge between innate (e.g. NK cells and
macrophages) and adaptive immune (e.g. B-cells and CD4+ T-cells) responses [32]. In the skin, γδT-cells
have important roles in tissue homeostasis and wound healing [33] by releasing insulin-like growth
factor-1, which was previously shown to enhance smooth muscle cell proliferation [34].

A crucial cell type responsible for T-cell activation are DCs, which are ontologically derived from two
distinct lineages, myeloid DCs (CD11c+ and/or CD209+ (DC-SIGN)) and pDCs (CD123+CD11c−).
Conclusive identification of DCs using only one marker is extremely challenging; thus, we additionally
used HLA-DR (major histocompatibility complex class II) positivity and CD14-negativity to identify both
CD209+ and CD11c+ DCs. We observed an increased abundance of myeloid DCs, including CD209− DCs
in the lungs and pulmonary arteries of IPAH patients, thereby expanding on previous observations [5, 12].
In addition, we observed increased numbers and complexity of activated DCs and macrophages, as shown
by CD1a (a transmembrane glycoprotein important in the presentation of lipid and glycolipid antigens)
positivity in IPAH samples, which could further potentiate T-cell activation. The regulation of both DCs
and T-cells indicate a strong adaptive immunity component underlying PH pathogenesis.

PH has been reported to possess autoimmune features [5, 35] and can develop in a variety of autoimmune
diseases, such as systemic lupus erythematosus or systemic sclerosis [36, 37]. Similar to γδT-cells, pDCs
have a key role in the regulation of autoimmunity and are at the crossroads of innate and adaptive
immunity [38]. We here show for the first time elevated numbers of pDCs in the lungs of IPAH patients.
Similarly to WANG et al. [39], we observed no changes in pDC numbers in the peripheral blood, which
could indicate lung specific changes or may be due to differences in disease severity between explant and
outpatient groups (New York Heart Association class III–IV versus II–III, respectively). pDCs are the most
important producers of antiviral type-I interferons [40], which have been implicated in PH pathogenesis [41].
Therefore, pDCs might represent the missing link between the associations of PH with both autoimmunity
and viral infections [42]. Alternatively, pDCs can also induce regulatory or anti-inflammatory responses
[43]. In animal models, regulatory immune responses, e.g. via regulatory T-cells have been shown to be
strongly protective of the PH phenotype [44]. It is therefore conceivable that the increased pDCs in the
IPAH lungs may thus represent a mechanism to counter ongoing inflammatory processes.

The presence of inflammatory cells in control and IPAH samples highlights the importance of
investigating how the immune response changes from a physiological to a maladaptive one. We can
speculate that multiple changes accumulate until one molecule/cell becomes the proverbial straw which
causes the remodelling cascade. Furthermore, it is likely that the global profile (the specific composition,
distribution and interaction) and not only the increased abundancy of one specific cell type, is important
for disease progression. Altogether, our data support the model of “smouldering inflammation” in PAH
which was recently put forward by VOELKEL et al. [45].

It is possible that several factors may influence the observed inflammatory cell profile, for example the
BMPR2 status of these patients is unknown, so we cannot comment the impact this mutation could have.
It is also possible that PH medication could alter the inflammatory signature, for example prostanoids
have been shown to affect nuclear factor-κB signalling [46], while phosphodiesterase-5 inhibitors can raise
cGMP and nitric oxide levels which can have inflammatory dampening effects [47]. However, clinical
evidence of anti-inflammatory effects of these medications in PH patients is lacking. Finally, our analysis is
limited to transplanted end-stage lungs. Future studies are needed to address the mechanistic effects of the
immune cells in IPAH. Along these lines, in several mouse model studies immune cells and their secreted
mediators have been shown to give rise to pulmonary arterial remodelling and increased right ventricular
pressure [29, 48, 49].

Our use of flow cytometry to analyse inflammatory cell populations in the lungs of IPAH patients is novel
and highlights the wealth of information that can be obtained by the simultaneous analysis of multiple cell
populations. As more research groups incorporate these techniques into their analysis of inflammatory
populations, it will further increase the resolution of the inflammatory landscape of pulmonary
hypertension and potentially even stratify patients according to their inflammatory status.
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