## Worked Example for SI units

Male 30 years old, 178cm, TLCO = 7.7 SI units Mspline = 0.101788 Sspline = -0.11049  $M = \exp(-8.758548 + 2.151173 \cdot \ln(height) - 0.027927 \cdot \ln(age) + Mspline)$  $M = \exp(-8.758548 + 2.151173 \cdot \ln(178) - 0.027927 \cdot \ln(30) + 0.101788)$ M = 10.970 $S = \exp(-1.98249 + 0.03430 \cdot \ln(age) + Sspline)$  $S = \exp(-1.98249 + 0.03430 \cdot \ln(30) - 0.11049)$ S = 0.139L = 0.38713% predicted = (measured/M)  $\cdot 100$ % predicted =  $(7.7/10.970) \cdot 100$ % predicted = 70.191 Lower limit of Normal (LLN) (5th percentile) =  $\exp(\ln(M) + \ln(1 - 1.645 \cdot L \cdot S)/L)$ Lower limit of Normal (LLN) (5th percentile) =  $\exp(\ln(10.970) + \ln(1 - 1.645 \cdot 0.38713 \cdot 0.139))$ 0.38713) Lower limit of Normal (LLN) (5th percentile) = 8.634Z-score =  $((\text{measured/M})^{L} - 1)/(L \cdot S)$ 

Z-score =  $((\text{measured/M})^{2} - 1)/(L \cdot S)$ Z-score =  $((7.7/10.970)^{0.38713} - 1)/(0.38713 \cdot 0.139)$ Z-score = -2.3796

## **Methodological Differences**

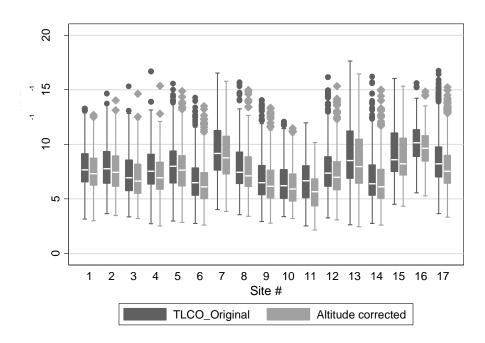



Figure S1. Absolute difference in *T*LCO values prior to, and after correction for partial pressure of oxygen, using centre altitude as a proxy.

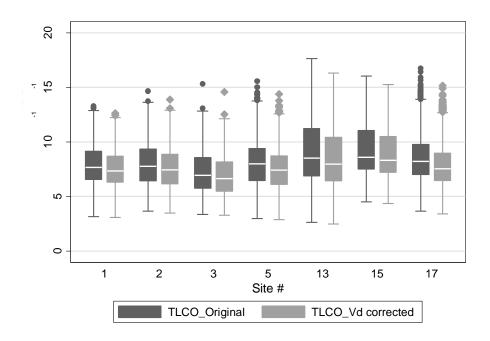



Figure S2. Absolute difference in *T*LCO values prior to, and after correction for anatomic dead space (Vd)

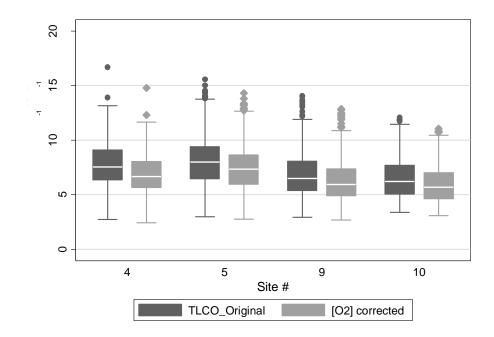



Figure S3. Absolute difference in *T*LCO values prior to, and after corrected for gas concentration.

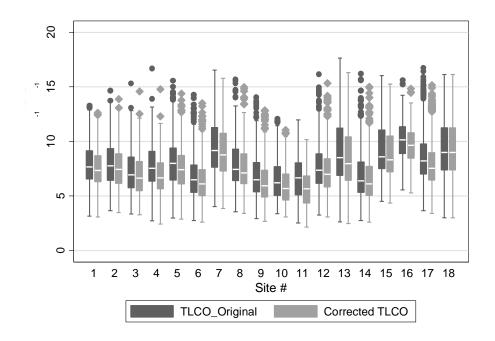



Figure S4. Absolute differences in *T*LCO values prior to, and after correction for anatomic dead space, gas concentration, and partial pressure of oxygen.

Study Population

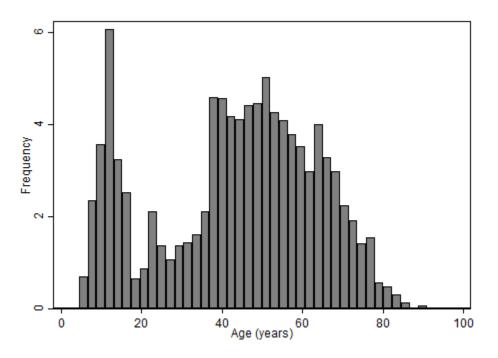



Figure S5: Age distribution of study population (median 45 years; inter-quarter range 26 to 57)

## Details regarding the correction for anatomical dead space

The dead space,  $V_D$ , is composed of the equipment dead space ( $V_{D,equip}$ ) plus the anatomic dead space ( $V_{D,an}$ ):

 $V_{\rm D} = V_{\rm D,equip} + V_{\rm D,an}$ 

The equipment dead space, which includes the filter, is fixed and is reported by the equipment manufacturer.

The alveolar volume,  $V_A$ , is calculated from the inspired volume of test gas,  $V_I$ , minus the dead space times the inspired tracer gas fractional concentration ( $F_{ITr}$ ) divided by the tracer gas fractional concentration in the exhaled gas ( $F_{ETr}$ ) :

 $V_{\rm A} = (V_{\rm I} - V_{\rm D}) * F_{\rm ITr} / F_{\rm ETr}$  (1)

To calculate  $T_{LCO}$ ,  $V_A$  is converted to STPD and multiplied by the logarithmic decay in CO divided by time and divided by barometric pressure. However,  $T_{LCO}$  is directly proportional to  $V_A$  so that any percent change in  $V_A$  translates to an equal percent change in  $T_{L,CO}$ .

Some systems use a fixed anatomic dead space ( $V_{D,an,fixed}$ ) of 150 mL since this is an option specified in the 2005 ATS/ERS standards.(1)

The anatomic dead space in mL can be estimated ( $V_{D,an,est}$ ) in subjects with BMI  $\leq$  30 kg/m<sup>2</sup> as 2.2 mL/kg(2) and in subjects with BMI > 30 kg/m<sup>2</sup> as height<sup>2</sup>/189.4.(1)

In order to adjust *T*LCO, it must be recalculated using an estimated anatomic dead space in place of a fixed anatomic dead space.

If  $V_{\rm I}$  and  $V_{\rm D,equip}$  are known, then *T*LCO can be recalculated relatively simply by dividing by ( $V_{\rm I}$ - $V_{\rm D,equip}$ - $V_{\rm D,an,fixed}$ ) and multiplying by ( $V_{\rm I}$ - $V_{\rm D,equip}$ - $V_{\rm D,annest}$ ):

TLCO' = TLCO \* (V<sub>I</sub>-V<sub>D,equip</sub> - V<sub>D,an,est</sub>)/(V<sub>I</sub>-V<sub>D,equip</sub> - V<sub>D,an,fixed</sub>)(2)

Where  $V_{\rm I}$  was not available, we assumed  $V_{\rm I}$  = FVC. Although  $V_{\rm I}$  usually tends to be larger than FVC because of dynamic gas trapping, the amount of error in the adjusted *T*LCO introduced by using FVC instead of  $V_{\rm I}$  will usually be less than 0.1%.

The change in *T*LCO calculated using a fixed anatomic dead space and adjusted to an estimated anatomic dead space is typically 6% for a 20 kg child and -2% for a 100 kg adult.

## References

- 1. Macintyre N, Crapo RO, Viegi G, Johnson DC, van der Grinten CP, Brusasco V, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J. 2005;26(4):720-35.
- 2. Cotes JE. Lung Function. 5th ed. London: Blackwell Scientific Publication; 1993.