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ABSTRACT: Pulmonary endothelial cells normally synthesize prostacyclln (PGil) 
and nitric oxide (NO), which are both potent vasodllators. Although PGI2 s 
largely used to treat patients with severe pulmonary hypertension, its role In the 
physiology and pathophysiology of the pulmonary circulation Is stiU debated. NO, 
which is now considered as the endogenous nltrovasodllator, Is perhaps more 
involved than PGI

1 
in the mechanisms that modulate pulmonary vascular tone In 

health and disease. There is evidence to suggest that background release of NO 
contributes to the normally low pulmonary vascular tone in normoxia. Although 
there are theoretical grou.nds to hypothesize that hypoxia reduces the synthesis of 
NO, Jack of the latter does not seem to account for the acute hypoxic pulmonary 
vasoconstriction. Instead, there Is evidence to suggest that NO activity Is Increased 
in order to modulate the pulmonary vasopressor response to acute alveolar 
hypoxia. However, more consistent, concerning the role of NO, are data gath­
ered from studies performed in chronic hypoxic conditions. Bofh experimental 
data and studies performed in man demonstrate impairment of NO synthesis and/ 
or release In chronic hypoxic pulmonary hypertension. The impaired NO pro­
duction, whilst reducing the ability of the pulmonary vasculature to relax, also 
favours the occurrence of excessive pulmonary vasoconstriction. Lack of NO 
synthesis might also permit mitogenesis and proliferation of various cell types 
within the vascular wall. 

We hypothesize that functional alterations of pulmonary endothelium are likely 
to affe.ct both reactivity and growth of pulmonary vessels. In this respect, NO 
probably has a pivotal role In modulating pulmonary vascular tone and control­
ling pulmonary vascular remodelllng in health and disease. 
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Pulmonary hypertension often occurs in end-stage 
chronic obstructive lung disease (COLD), thereby 
worsening the prognosis of this condition. Indeed, 
the higher the pulmonary arterial pressure, the poorer 
the prognosis [1]. Although prolonged alveolar 
hy-poxia is certainly a major contributing factor for 
pulmonary hypertension to develop in COLD patients, 
the underlying mechanisms of the increase in 
pulmonary arterial pressure still remain uncertain 
[2). What is known, however, from detailed his­
topathological studies [3-5], is that the intima of 
pulmonary vessels is seldom unscathed by chronic 
alveolar hypoxia. It is also known that the intima 
and its main cell type · the endothelium · can no 
longer be considered as just a simple layer of cells 
that interposes a physical barrier between the underly­
ing vascular smooth muscle and the circulating 
blood [6]. Indeed, since the discovery of prostacyclin 
(PGI2) by MoNCADA et al. (7], and the so-called 
endothelium-derived relaxing factor (EDRF) by 
FURCHGOTI and ZAWADZKI (8], there is increasing 
evidence to suggest a fundamental role of endothelium 
in the modulation of vasomotor tone in health and 
disease. 

Endogenous vasodilators synthesized by the 
pulmonary endothelium 

Prostacyclin 

PGI
2 

is a powerful pulmonary vasodilator and is 
currently used to treat patients with severe pulmonary 
hypertension, especially those with primary pulmonary 
hypertension [9]. The role of PGI2 in the pathophysi­
ology of chronic pulmonary hypertension remains, 
however, unclear. Pulmonary hypertension induced by 
chronic hypoxia in neonatal calves is associated with 
reduced pulmonary artery production of PGI

2 
[10]. By 

contrast, PGI
2 

production is increased in the endothe­
lium and vascular smooth muscle of pulmonary arteries 
from rats with chronic hypoxic pulmonary hypertension 
[11]. Whether these contradictory results are species­
dependent (rats versus calves) or age-related (neonates 
versus adult animals) requires further investigation. 
Nevertheless, it seems unlikely that PGI

2 
has a major 

role in the mechanisms that maintain a low pulmonary 
resistance during exercise, a major physiological 
adaptation process of the pulmonary circulation in 
response to increased blood flow [12]. 
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Nitric oxide 

Increased blood flow, through the shear stress it 
generates on the luminal surface of endothelial cells, 
is precisely one of the factors causing the release of 
the second major endogenous vasodilator synthesized by 
the endothelium, namely EDRF (13]. Discovered in 
1980 by FURCHGOTT and ZAWADZKI (8), EDRF is 
now identified with either the free radical nitric oxide 
(NO) [14], or a nitroso compound which ultimately 
releases NO (15]. The molecular target of either 
form is the soluble enzyme guanylate cyclase. 

L-arginine 02 

ea++ ACh 

" 

Stimulation of the latter by NO increases the level of 
the second messenger cyclic guanosine monophosphate 
( cGMP) within vascular smooth muscle, thereby caus­
ing vasorelaxation (16] (fig. 1). The nitrogen atom of 
NO derives from the N-guanidino terminal of the amino 
acid, L-arginine (17], whereas, recent evidence suggests, 
that the oxygen atom is provided by molecular oxygen 
(Oz) [18] (fig. 1). NO is synthesized from these two 
precursors by the enzyme NO synthase (19], which 
exists in at least two isoforms, a constitutive and an 
inducible one [20). The constitutive NO synthase is 
thought to be important in the modulation of vascular 

ADP 

~ Endothelium 

p 

ULJ 
+<D G L·arginine 

analogues 

L·arginine 

Vascular 
smooth muscle 

NO synthase 

A 

GTP 

cGMP 

Relaxation 

• 
L·citrulline 

NO 

NO or A·NO 

guanylate 
cyclase 

Fig. 1. - Endothelial biosynthetic pathway and action of NO on vascular smooth muscle. Stimulation of specific endothelial receptors, e.g. 
muscarinic (M) and purinergic (P) receptors, activates the endothelial enzyme, NO synthase. The latter could also be activated by a rise in 
cytosolic calcium (Ca++). NO synthase forms NO and L·citrulline from L-arginine and molecular oxygen (02). This synthesis requires the 
presence of eo-factors (NADPH, calmodulin), and is competitively inhibited by L-arginine analogues. NO is released from endothelium either 
as a free radical or combined to a putative carrier molecule (R). The free radical NO activates the vascular smooth muscle soluble enzyme, 
guanylate cyclase, increasing cGMP level and thereby causing relaxation. ACh: acetylcholine; ADP: adenosine diphosphate; GTP: guanosine 
triphosphate; cGMP: cyclic guanosine monophosphate; NADPH: reduced nicotinamide adenine dinucleotide phosphate. The question marks (?) 
reflect mechanisms which are, as yet, uncenain. 
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tone [20], whereas the inducible enzyme is involved in 
the cytotoxic activity of the macrophage [20]. The 
synthesis of NO is stereospecifically inhibited by 
various L-arginine analogues, which act as competitive 
inhibitors of different forms of the NO synthase (20] 
(fig. 1). 

As compared with the systemic circulation [21], 
studies of endothelium-dependent relaxation mediated by 
NO in the pulmonary vascular bed are relatively scarce 
[22]. Nevertheless, sufficient evidence has emerged in 
recent years to allow a preliminary assessment of the 
role of NO in the modulation of pulmonary vascular 
tone in health and disease. Endothelium-dependent 
relaxation resulting from EDRF (NO) release has been 
found in isolated pulmonary arteries from most 
mammalian species [23-26], including humans [27-30]. 
In patients without pulmonary hypertension who 
undergo lobectomy for lung carcinoma, release of NO 
in response to various endothelium-dependent 
vasodilators is, in most cases, sufficient to fully relax 
precontracted pulmonary vascular rings [27-30]. These 
in vitro potent pulmonary vasorelaxant effects of 
endothelium-dependent vasodilators, such as acetylcho­
line, are consistent with in vivo studies [31 ], and pro­
vide a cellular and molecular basis for their well-known 
pulmonary vasodilator action, which was first described 
more than 30 yrs ago [32]. 

Physiology and pathophysiology of nitric oxide in 
the pulmonary circulation 

Once sufficient evidence suggesting that NO is a 
potent endogenous pulmonary vasorelaxant paracrine 
substance is gathered, three questions rapidly emerge as 
to its role in health and pulmonary vascular disease. 
Firstly, is background release of NO involved in the 
mechanisms that maintain a normally low pulmonary 
vascular tone at rest? Secondly, is acute hypoxic 
pulmonary vasoconstriction due to impairment of this 
release? Thirdly, is NO synthesis and/or release 
impaired in chronic hypoxic pulmonary hypertension? 

Nitric oxide and basal normoxic pulmonary vascular 
tone 

To date, contradictory results make it difficult to 
definitely answer the first question. In isolated vascular 
rings from various species, of different sizes ranging 
from resistance to conduit pulmonary arteries, removal 
of NO production, either by mechanical means (by 
rubbing the intimal surface) [33, 34] or biochemical 
means (by pretreating with L-arginine analogues) [30, 
35], consistently results in a significantly greater 
response to vasoconstrictor stimuli [30, 33-35]. This 
suggests the existence of a braking mechanism, which 
readily triggers the release of NO to counteract any rise 
in pulmonary vascular tone. Whether background 
release of NO also prevails in vivo to account for the 
low pulmonary vascular tone at rest is still unclear. In 

isolated perfused lungs of rats, inhibition of NO activ­
ity by methylene blue (36] or the L-arginine analogue, 
N°-monomethyl-L-arginine [37], has no effect on rest­
ing perfusion pressure in normoxic conditions. By 
contrast, methylene blue [38) and the L-arginine 
analogue, N'"·nitro-L-arginine [39), significantly increase 
pulmonary vascular resistance in perfused lungs from 
humans [38] and rabbits [39], respectively. Despite 
these apparent contradictory results, it is tempting to 
speculate that baseline release of NO is probably 
important to maintain a low pulmonary vascular tone 
in man [38], an effect prevailing in some [39], but not 
all, mammalian species (36, 37]. 

Nitric oxide and acute hypoxic pulmonary vasocon­
striction 

Better consensus seems to exist as to the answer to 
the second question, evaluating the role of NO in acute 
hypoxic pulmonary vasoconstriction. Indeed, irrespec­
tive of the species or type of inhibitors [36, 37, 
39-42], it is consistently found that inhibition of NO 
synthesis markedly enhances the pulmonary pressor 
response to acute hypoxic challenges [36, 37, 39-42]. 
These results not only rule out the hypothesis of a 
blunted NO release as the direct cause of hypoxic 
pulmonary vasoconstriction, they also suggest that NO 
activity is in fact increased during acute hypoxia. This 
increased activity probably represents an important 
physiological defence mechanism, enabling the pulmo­
nary vascular bed to limit excessive vasoconstriction 
during hypoxia. Instead, these observations suggest that 
NO probably modulates pulmonary vascular tone at rest 
and during acute alveolar hypoxia. 

Nitric oxide and chronic hypoxic pulmonary hyperten­
sion 

A step which naturally follows brings us to the third 
question concerning NO synthesis and/or release during 
chronic hypoxic pulmonary hypertension, especially in 
conditions associated with chronic alveolar hypoxia. 
Endothelium-dependent relaxation to acetylcholine of 
either isolated pulmonary arterial rings (43], or perfused 
lungs [ 44 ], is markedly reduced in rats with chronic 
hypoxic pulmonary hypertension as compared with 
normoxic animals. This altered vasoreactivity is 
specificaUy due to endothelial dysfunction as the pul· 
monary vasorelaxant response to sodium nitroprusside, 
a vasodilator acting directly on vascular smooth muscle, 
is not affected by chronic hypoxia [ 43, 44]. These 
experimental results are consistent with those from a 
series of studies using human tissues (34, 35, 45, 46]. 
Indeed, endothelium-dependent relaxation is markedly 
impaired in isolated pulmonary arterial rings from 
patients undergoing heart-lung transplantation for end· 
stage COLD [34, 35, 45, 46] as compared with control 
patients. It is likely that this impaired relaxation is due 
to reduced NO synthesis and/or release and that the 
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latter results from impaired activity of the constitutive 
enzyme, NO synthase, during hypoxia. Firstly, this 
stems from the observations that animals and humans 
in vivo exhale NO and that this NO excretion is 
reduced during hypoxia [47]. Secondly, in vitro NO 
synthase activity is markedly decreased by hypoxia [48] 
which, in turn, results in reduced endothelium-dependent 
relaxation. 

on the other, it is unlikely that thickening of the intima 
and/or the media directly alters the vascular response 
to NO. Rather, on the basis of recent evidence sug­
gesting that NO and NO-generating vasodilators exert 
an inhibitory effect on mitogenesis and cell prolifera­
tion [ 49), it is tempting to speculate that reduced NO 
production has a dual, and parallel, effect on pulmonary 
vasoreactivity and vascular remodelling. Lack of NO 

Internal elastic lamina 

Fig. 2. - Putative actions of chronic alveolar hypoxia causing hypoxaemia on reactivity and structural changes of pulmonary vessels. Low 
levels of arterial oxygen tension (PaoJ decrease the synthesis and/or release of EDRF (NO) from the endothelium (1). This in turn causes a 
rise in pulmonary vascular tone and thickening of the intima (2) through, as yet, undefined mechanisms (small arrows and question marks). At 
a later stage, proliferation and phenotypic changes of smooth muscle ceiis in the media might occur as a result of chronic defect of EDRF 
(NO) (3). EDRF: endothelium-derived relaxing factor. 

The impaired relaxation is associated with an exag­
gerated contractile response of rings from COLD 
patients to the alpha-adrenergic agonist phenylephrine 
[34, 35]. Removal of endothelial production of NO 
eliminates this difference, increasing the tension in 
control rings but not in rings from COLD patients [34, 
35]. This suggests that the normal release of NO to 
brake the vasoconstrictor effects of phenylephrine, 
whilst being effective in reducing the rise in tension in 
control rings, is lacking in rings from COLD patients, 
thus explaining the greater response to phenylephrine in 
the latter as compared with the former [34, 35]. This 
further indicates that reduced NO production not only 
impairs relaxation but also leads to the occurrence of 
excessive vasoconstriction in the pulmonary vascular 
bed of COLD patients. 

The reduced endothelium-dependent relaxation is 
related to structural changes affecting the intima and 
the media of pulmonary vascular rings from COLD 
patients [34]. In other words, the less the endothelium­
dependent relaxation, the more the structural alterations. 
As the vasorelaxant response to sodium nitroprusside is 
normal on the one hand, and NO is highly diffusible 

causes a rise in pulmonary vascular tone through 
mecha!lisms which are already discussed, and favours 
remodelling of pulmonary vessels by facilitating prolif­
eration and phenotypic changes of cells of the media 
and intima [50) (fig. 2). 

Future prospects 

That NO is a potent endogenous nitrovasodilator of 
the systemic circulation is certainly no longer ques­
tionable [20, 21). Interestingly, NO possibly also 
reduces smooth muscle tone in the bronchial wall where 
soluble guanylate cyclase is present [51]. Several 
laboratories are now making an effort to redefine the 
role of NO in the pulmonary circulation [30, 33, 34, 
37, 39, 40, 43, 44]. For the future, there are perhaps 
two different, but equally fascinating, directions for in­
vestigators to pursue. Firstly, to search for the cause(s) 
of impaired NO synthesis. This will require increasing 
use of molecular biological techniques applied to studies 
of human disease in preference to those of experimental 
conditions. Secondly, to better define the role of NO 
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as a therapeutic means on the basis of preliminary 
results suggesting that inhaled NO is both an effective 
and selective pulmonary vasodilator [52, 53]. This will 
demand from physicians a more thorough knowledge 
about the toxicity and long-term tolerance effect of this 
single, but far from simple, free radical. 
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