APPENDIX 2

Drugs	Canadian max daily	US max daily dose ⁱ –	European max daily	UK max daily
	dose ⁱ – Health Canada	Food and Drug	Drug dose ⁱ – European	
	[1]	Administration [2]	Medicines Agency [3]	
Fluticasone propionate	2000 mcg	2000 mcg	Not available	2000 mcg
Fluticasone furoate	200 mcg	200 mcg	200 mcg ⁱⁱ	Not available
Budesonide	2400 mcg	1600 mcg	1600 mcg	1600 mcg
Beclomethasone	800 mcg	800 mcg ⁱⁱⁱ	Not available	800 mcg
Ciclesonide	800 mcg	800 mcg ⁱⁱⁱ	800 mcg ⁱⁱⁱ	800 mcg ⁱⁱⁱ
Mometasone	800 mcg	800 mcg	Not available	800 mcg
Salmeterol	100 mcg	100 mcg	Not available	100 mcg
Formoterol	48 mcg	24 mcg	48 mcg	48 mcg
Vilanterol	25 mcg	25 mcg	25 mcg	Not available

eTable 1. Regulatory limits on total daily dose for asthma medications

i: Maximum dose references were verified March 19, 2016

ii: based on maximum dose of fluticasone furoate in combined fluticasone furoate/vilanterol puffer, as single fluticasone furoate puffer not available iii By convention, we have listed the dose delivered by the metered dose inhaler valve, whereas US, EMA, and MHRA list a maximum recommended daily dose delivered from the metered dose inhaler actuator, which is 640 mcg (equivalent to 800 mcg delivered by the metered dose inhaler valve)

eTable 2. Summary of Included Studies

Study	Purpose	Studies/Patients Included Relevant to AAP Yellow Zone Formulation	Findings	Citations in Included Guidelines	Relevance to Proposed Yellow Zone Algorithm
Randomized Con	trolled Trials				
Go, et al. 2010 [5]	Compare nebulized fluticasone to IV hydrocortisone for severe acute asthma exacerbations	33 patients with all levels of baseline asthma severity presenting to the emergency department with severe acute asthma	Significant improvements in PEF and FEV1 with nebulized fluticasone compared to IV hydrocortisone	None	Not relevant. Dose not provided, and nebulized therapy not easily available for outpatients.
Systematic Povic		exacerbation			
Bateman, et al. 2011 [6]	Compare SMART to standard and/or higher fixed dose maintenance therapy for uncontrolled asthma	5 RCTs with 12512 patients. At entry all had uncontrolled asthma at GINA treatment Steps 2 (1037 patients), 3 (6352 patients), and 4 (5123 patients). All patients were using ICS, and 45% were also using LABA	Significant reduction in exacerbation rates with SMART therapy compared to same maintenance dose and higher fixed dose maintenance therapy with ICS/LABA	GINA All included studies also cited in CTS and BTS/SIGN	Not relevant. SMART was not compared to increased ICS in a yellow zone approach
Cates, et al. 2013 [7]	Compare SMART to current best practice	13 RCTs with 13152 patients. Patients	Significant reduction in exacerbations	GINA	Not relevant. SMART was not

		using LABA at study entry	compared to current best practice.		the yellow zone, and details about "current best practices" were not provided
Kew, et al. 2013 [8]	Compare SMART to standard and/or higher fixed dose maintenance therapy for uncontrolled asthma	4 RCTs with 9130 patients. Patients had persistent asthma with at least 1 exacerbation in the last 12 months, on regular ICS therapy and in regular need of rescue therapy; 38-55% also using LABA at study entry	Significant reduction in exacerbations requiring OCS and ER visits with SMART compared to higher fixed dose maintenance therapy	GINA and BTS/SIGN, and all included studies were referenced in CTS	Not relevant. SMART was not compared to increased ICS in a yellow zone approach
Quon, et al. 2010 [9]	Compare doubling the dose of ICS as part of an AAP at the onset of asthma exacerbation to maintaining the current dose of ICS	5 RCTs with 1222 adult patients. Mild to moderate asthma at baseline on ICS. 0-41% also using LABA at study entry	No significant reduction in exacerbations requiring OCS with doubling the dose of ICS compared to continuing the maintenance dose	CTS, BTS/SIGN, GINA	Relevant. Data already accounted for in guideline- based algorithm.

2012 [10]	to OCS (tapered dose and maintenance dose) on discharge from the emergency department after acute asthma exacerbation	adult patients. Mild to moderate asthma at baseline. 35-80% of patients on ICS at baseline," "low percentage" also using LABA at entry in all studies	differences in asthma relapse rates or admission with high dose ICS compared to OCS on discharge from the ER after asthma exacerbation	GINA	included provide a potential alternative to OCS in mild to moderate asthma exacerbations when ICS escalation is otherwise limited (see "Additional Rules" section of Algorithm Development)
Edmonds, et al. 2012 [11]	Compare ICS with placebo and with systemic CS for the treatment of acute asthma exacerbation presenting to the emergency department	ICS vs. placebo: 6 RCTs with 478 patients. Mild to severe asthma at baseline. Varied ICS and LABA use at study entry	ICS vs. placebo: 1 study found significant reduction in hospital admission with ICS compared to placebo. All others found no significant difference in outcomes (FEV1 change, hospitalization, Borg scale change)	BTS/SIGN and GINA	Not relevant. Studies were either negative or used a drug not widely used/available (flunisolide) and only involved an extremely short course of therapy (3 hours) in the emergency room
		ICS vs. systemic CS: 5 RCTs with 383 patients. Mild to	ICS vs. systemic CS: No significant difference in		Studies were either negative or only involved an

		moderate asthma at	hospitalization,		extremely short
		baseline. Varied ICS	change in PEF and		course of therapy
		and LABA use at	FEV1, and sputum		(3 hours) in the
		study entry	eosinophil count.		emergency room,
			Two of the included		with short term
			trials found		physiologic
			significant		outcome
			improvements in		measurement
			short term clinical		
			markers (RR, HR, PEF,		
			FEV1) with ICS		
			compared to systemic		
			CS		
Practice Guidelin	ie				
Dinakar, et al.	Provide general	Various	Recommendation	All included	Relevant. Data
2014 [12]	recommendations for		advising patients	studies	already accounted
	the management of		currently treated with	referenced in	for in guideline-
	acute loss of asthma		daily low-to-	CTS, GINA,	based algorithm
	control using an AAP		moderate dose ICS	BTS/SIGN	
			therapy to quadruple		
			the total ICS dose for		
			acute loss of asthma		
			control in the yellow		
			zone		
Narrative Review					
Spaggiari, et al.	Review the treatments	Various	Current evidence	All included	Relevant. Data
2014 [13]	for acute asthma		does not support the	studies	already accounted
	exacerbations		use of ICS as a	referenced in	for in guideline-
			substitute for	BTS/SIGN	based algorithm
			systemic CS in the	and GINA	

				1	
			emergency		
			department		
Bateman, et al.	Review studies	High dose	No significant	None	Relevant.
2013 [14]	comparing high-dose	ciclesonide (800mcg	difference in		Provides a safe
	ciclesonide to other	BID for 2 weeks) vs.	improvements in		and effective
	treatments in	OCS (40mg daily for	morning PEF, asthma		alternative to OCS
	moderate to severe	2 weeks): 1 RCT	symptoms, and FEV1		in patients on
	asthma with and	with 130 patients	with high dose		high dose
	without loss of control	with worsening	ciclesonide compared		maintenance
		asthma following	to OCS in this		ciclesonide
		systematic ICS	reviewed trial, no		(shows safety of
		withdrawal	serious adverse event		temporarily
			and fever adverse		exceeding
			events with high dose		regulatory limit
			ciclesonide		on total daily
					dose)
Fitzgerald, el al.	Review methods to	Various	Quadrupling the	All relevant	Relevant. Data
2010 [15]	gain control of		maintenance dose of	studies	already accounted
	moderate asthma		ICS at the onset of an	referenced in	for in guideline-
			exacerbation may	BTS/SIGN	based algorithm
			prevent the	and GINA	
			development of a		
			more severe		
			exacerbation.		

Abbreviations: AAP denotes asthma action plan; BTS/SIGN denotes British Thoracic Society/Scotish Intercollegiate Guideline Network; CS denotes corticosteroid; CTS denotes Canadian Thoracic Society; ER denotes emergency room; FEV₁ denotes forced expiratory volume in one second; GINA denotes Global Initiative for Asthma; ICS denotes inhaled corticosteroid; HR denotes heart rate; ICS/LABA denotes inhaled corticosteroid/long-acting beta agonist; OCS denotes oral corticosteroids; PEF denotes peak expiratory flow; RCT denotes randomized controlled trial; RR denotes respiratory rate; SMART denotes Budesonide/formoterol as maintenance and reliever therapy

APPENDIX 3

Search Strategy

Database: Ovid MEDLINE(R) <1946 to March week 1 2016> Search Strategy:

- 1 Asthma/ (107406)
- 2 asthma*.tw. (118101)
- 3 1 or 2 (137050)
- 4 exacerbat*.tw. (64322)
- 5 acute.tw. (841712)
- 6 Emergencies/ (34855)
- 7 emergenc*.tw. (219845)
- 8 sever*.tw. (1866724)
- 9 Status Asthmaticus/ (1058)
- 10 status*.tw. (541082)
- 11 cris#s*.tw. (38913)
- 12 worse*.tw. (121718)
- 13 attack*.tw. (90593)
- 14 or/4-13 (3344940)
- 15 3 and 14 (43834)
- 16 Budesonide/ (3734)
- 17 fluticasone.mp. (3318)
- 18 Beclomethasone/ (2822)
- 19 ciclesonide.mp. (277)
- 20 mometasone.mp. (706)
- 21 salmeterol.mp. (2409)
- 22 formeterol.mp. (6)
- 23 laba.mp. (744)
- 24 (inhal* adj2 corticosteroid*).mp. (7005)
- 25 long-acting beta2-agonist*.mp. (721)
- 26 exp Bronchodilator Agents/ (234275)
- 27 exp Anti-Asthmatic Agents/ (252665)
- 28 zenhale.mp. (1)
- 29 symbicort.mp. (143)
- 30 advair.mp. (40)
- 31 asmanex.mp. (3)
- 32 alvesco.mp. (9)
- 33 qvar.mp. (60)
- 34 pulmicort.mp. (141)
- 35 flovent.mp. (20)
- 36 or/16-35 (257205)
- 37 15 and 36 (11097)
- 38 limit 37 to yr="2010 -Current" (2572)

39 limit 38 to (controlled clinical trial or meta analysis or randomized controlled trial or "review" or systematic reviews) (1044)

40 remove duplicates from 39 (972)

41 exp animals/ not (exp animals/ and exp humans/) (4061621)

42 40 not 41 (970)

43 limit 42 to ("all adult (19 plus years)" or "young adult (19 to 24 years)" or "adult (19 to 44 years)" or "young adult and adult (19-24 and 19-44)" or "middle age (45 to 64 years)" or "middle aged (45 plus years)" or "all aged (65 and over)" or "aged (80 and over)") (371)

limit 42 to ("all infant (birth to 23 months)" or "all child (0 to 18 years)" or "newborn infant (birth to 1 month)" or "infant (1 to 23 months)" or "preschool child (2 to 5 years)" or "child (6 to 12 years)" or "adolescent (13 to 18 years)") (421)

45 42 not 44 (549) 46 43 or 45 (760)

Database: Embase <1974 to 2016 March 07> Search Strategy:

1 asthma/ (180791)

- 2 asthma*.tw. (170702)
- 3 1 or 2 (217545)
- 4 disease exacerbation/ (47697)
- 5 exacerbat*.tw. (97189)
- 6 acute.tw. (1184791)
- 7 emergency/ (41092)
- 8 emergenc*.tw. (327234)
- 9 disease severity/ (394146)
- 10 sever*.tw. (2605687)
- 11 asthmatic state/ (1820)
- 12 status*.tw. (784549)
- 13 cris#s*.tw. (54105)
- 14 worse*.tw. (208162)
- 15 attack*.tw. (127632)
- 16 or/4-15 (4802214)
- 17 budesonide/ (16160)
- 18 fluticasone/ (6247)
- 19 budesonide.mp. (17494)
- 20 fluticasone.mp. (13774)
- 21 beclometasone/ (6637)
- 22 beclomethasone.mp. (3548)
- 23 ciclesonide/ (1164)
- 24 ciclesonide.mp. (1206)
- 25 mometasone furoate/ (3614)
- 26 mometasone.mp. (3738)
- 27 salmeterol/ (6670)
- 28 salmeterol.mp. (9490)
- 29 formoterol/ (4717)
- 30 formeterol.mp. (33)
- 31 formoterol.mp. (6477)
- 32 laba.mp. (1742)

- 33 (inhal* adj2 corticosteroid*).mp. (11159)
- 34 long-acting beta2-agonist*.mp. (1858)
- 35 exp antiasthmatic agent/ (243704)
- 36 exp bronchodilating agent/ (180379)
- 37 zenhale.mp. (8)
- 38 symbicort.mp. (751)
- 39 advair.mp. (661)
- 40 asmanex.mp. (123)
- 41 alvesco.mp. (163)
- 42 qvar.mp. (371)
- 43 pulmicort.mp. (1345)
- 44 flovent.mp. (422)
- 45 or/17-44 (249081)
- 46 3 and 16 and 45 (23946)
- 47 limit 46 to yr="2010 -Current" (8068)
- 48 (exp animals/ or exp animal experimentation/ or nonhuman/) not ((exp animals/ or exp animal experimentation/ or nonhuman/) and exp human/) (5697975)
- 49 47 not 48 (7865)
- 50 limit 49 to embase (7471)
- 51 limit 50 to (adult <18 to 64 years> or aged <65+ years>) (2205)
- 52 remove duplicates from 51 (2183)
- 53 limit 52 to (randomized controlled trial or controlled clinical trial) (376)
- 54 limit 52 to (meta analysis or "systematic review") (30)
- 55 limit 54 to "review" (5)
- 56 53 or 54 or 55 (398)

Database: EBM Reviews - Cochrane Central Register of Controlled Trials <March 2016> Search Strategy:

- 1 asthma/ (8386)
- 2 asthma*.tw. (20014)
- 3 1 or 2 (20533)
- 4 disease exacerbation/ (1)
- 5 exacerbat*.tw. (6307)
- 6 acute.tw. (63814)
- 7 emergency/(1)
- 8 emergenc*.tw. (10191)
- 9 disease severity/ (0)
- 10 sever*.tw. (68078)
- 11 asthmatic state/ (0)
- 12 status*.tw. (35470)
- 13 cris#s*.tw. (1091)
- 14 worse*.tw. (11410)
- 15 attack*.tw. (6035)
- 16 or/4-15 (171901)

17 budesonide/ (1214) 18 fluticasone/ (0) 19 budesonide.mp. (2882) 20 fluticasone.mp. (3055) 21 beclometasone/ (903) 22 beclomethasone.mp. (1785) 23 ciclesonide/ (0) 24 ciclesonide.mp. (372) 25 mometasone furoate/ (0) 26 mometasone.mp. (680) 27 salmeterol/ (0) 28 salmeterol.mp. (1981) 29 formoterol/ (0) 30 formeterol.mp. (27) formoterol.mp. (1679) 31 32 laba.mp. (259) 33 (inhal* adj2 corticosteroid*).mp. (2588) 34 long-acting beta2-agonist*.mp. (240) 35 exp antiasthmatic agent/ (15070) 36 exp bronchodilating agent/ (0) 37 zenhale.mp. (3) 38 symbicort.mp. (146) 39 advair.mp. (50) 40 asmanex.mp. (4) 41 alvesco.mp. (1) 42 qvar.mp. (30) 43 pulmicort.mp. (143) 44 flovent.mp. (14) 45 or/17-44 (22133) 46 3 and 16 and 45 (2972) 47 limit 46 to yr="2010 -Current" (554) 48 Asthma/ (8386) 49 asthma*.tw. (20014) 50 48 or 49 (20533) 51 exacerbat*.tw. (6307) 52 acute.tw. (63814) 53 Emergencies/ (560) 54 emergenc*.tw. (10191) 55 sever*.tw. (68078) 56 Status Asthmaticus/ (43) 57 status*.tw. (35470) 58 cris#s*.tw. (1091) 59 worse*.tw. (11410) 60 attack*.tw. (6035) or/51-60 (171969) 61 62 50 and 61 (5963) 63 Budesonide/ (1214) 64 fluticasone.mp. (3055)

- 65 Beclomethasone/ (903)
- 66 ciclesonide.mp. (372)
- 67 mometasone.mp. (680)
- 68 salmeterol.mp. (1981)
- 69 formeterol.mp. (27)
- 70 laba.mp. (259)
- 71 (inhal* adj2 corticosteroid*).mp. (2588)
- 72 long-acting beta2-agonist*.mp. (240)
- 73 exp Bronchodilator Agents/ (12345)
- 74 exp Anti-Asthmatic Agents/ (15070)
- 75 zenhale.mp. (3)
- 76 symbicort.mp. (146)
- 77 advair.mp. (50)
- 78 asmanex.mp. (4)
- 79 alvesco.mp. (1)
- 80 qvar.mp. (30)
- 81 pulmicort.mp. (143)
- 82 flovent.mp. (14)
- 83 or/63-82 (20098)
- 84 62 and 83 (2755)
- 85 limit 84 to yr="2010 -Current" (496)
- 86 47 or 85 (554)
- 87 limit 86 to (controlled clinical trial or meta analysis or "review" or "review literature" or review, academic) (9)
- 88 limit 86 to cochrane airways group (380)
- 89 87 or 88 (384)

APPENDIX 4

Exception rules - supplementary information

High Dose Fluticasone

Levy, et al. randomized 413 patients with exacerbations severe enough to warrant oral corticosteroid treatment to either fluticasone 2000 mcg/day or oral prednisolone 40mg daily with a tapering regimen, and demonstrated no significant difference between the two groups in the primary outcome of treatment failure.[16] Twenty percent of patients in the fluticasone group were on a baseline inhaled corticosteroid dose of more than 1000 mcg/day BDP equivalents, and the median baseline dose was 800 mcg/day BDP equivalents (information on LABA use was not provided). As beclomethasone and fluticasone have similar potencies,[17] this suggests that a median dose intensification of only 2.5 times was effective in these patients. Additionally, the baseline dose did not predict treatment failure in a regression analysis.[16] Similarly, Di Franco, et al. randomized 37 patients with asthma exacerbations discharged from the emergency department to receive fluticasone 2000 mcg/day or an oral corticosteroid taper and found no betweengroup differences in sputum eosinophils, forced expiratory volume in the first second, peak expiratory flow variability, symptom score, or use of rescue medications. Baseline ICS doses ranged from 400-1500 mcg BDP equivalents, with a mean of 785 mcg BDP equivalents. Of note, the majority of patients were also on a LABA.[18]

Moderate and High Dose Budesonide

Fitzgerald, et al. randomized 185 patients discharged from the emergency room after receiving bronchodilators and systemic glucocorticosteroids for an asthma exacerbation to either budesonide 2400 mcg/day or prednisone 40mg daily, both for 7-10 days.[19] Baseline ICS and/or LABA doses were not provided, but roughly half of patients in each group were on an ICS at baseline. Relapse rates and improvements in forced expiratory volume at one second, symptoms, peak expiratory flow and quality of life were not significantly different between groups. Notwithstanding that these patients did receive a dose of systemic steroids, the results may suggest that a sufficiently high dose of budesonide is of similar efficacy to a short course of OCS. A second study by Nana, et al. randomized 81 patients discharged from the emergency room after receiving a single dose of 60mg of prednisolone and bronchodilators to either budesonide 3600 mcg/day or a tapering dose of prednisolone (from 40 to 5 mg per day over 7 days) (again, baseline ICS and/or LABA doses were not provided). Similarly, no between-group differences were found in clinical symptom scores, mean forced expiratory volume at one second increase, or peak expiratory flow increase at 7 day follow-up.[20] Although this was a higher dose than the Canadian allowable daily budesonide limit of 2400 mcg, it supports the role of high dose budesonide, regardless of baseline dose, in controlling severe exacerbations.

REFERENCES FOR APPENDICES

- 1. Health Canada. Drug Product Database. <u>http://www.hc-sc.gc.ca/dhp-</u> mps/prodpharma/databasdon/index-eng.php. Accessed: March 2016
- 2. U.S. Food and Drug Administration Drugs. http://www.fda.gov/Drugs/default.htm. Accessed: March 2016
- 3. European Medicines Agency. Search for Drugs. <u>http://www.ema.europa.eu/ema/</u>. Accessed: March 2016
- Medicines and Healthcare Products Regulatory Agency (MHRA) Drug Analysis Prints. <u>http://www.mhra.gov.uk/drug-analysis-prints/</u>. Accessed: March 2016
- 5. Go J, Ong E, Koh A. Comparison of intravenous hydrocortisone versus inhaled flulticasone in adult acute asthma a randomized controlled trial. *Respirology.* 2010;15:62.
- 6. Bateman ED, Harrison TW, Quirce S, et al. Overall asthma control achieved with budesonide/formoterol maintenance and reliever therapy for patients on different treatment steps. *Respir Res.* 2011;12:38.
- 7. Cates CJ, Karner C. Combination formoterol and budesonide as maintenance and reliever therapy versus current best practice (including inhaled steroid maintenance), for chronic asthma in adults and children. *Cochrane Database Syst Rev.* 2013;4:CD007313.
- 8. Kew KM, Karner C, Mindus SM, Ferrara G. Combination formoterol and budesonide as maintenance and reliever therapy versus combination inhaler maintenance for chronic asthma in adults and children. *Cochrane Database Syst Rev.* 2013;12:CD009019.
- 9. Quon BS, Fitzgerald JM, Lemiere C, Shahidi N, Ducharme FM. Increased versus stable doses of inhaled corticosteroids for exacerbations of chronic asthma in adults and children. *Cochrane Database Syst Rev.* 2010(12):CD007524.
- 10. Edmonds ML, Milan SJ, Brenner BE, Camargo CA, Jr., Rowe BH. Inhaled steroids for acute asthma following emergency department discharge. *Cochrane Database Syst Rev.* 2012;12:CD002316.
- 11. Edmonds ML, Milan SJ, Camargo CA, Jr., Pollack CV, Rowe BH. Early use of inhaled corticosteroids in the emergency department treatment of acute asthma. *Cochrane Database Syst Rev.* 2012;12:CD002308.
- 12. Dinakar C, Oppenheimer J, Portnoy J, et al. Management of acute loss of asthma control in the yellow zone: a practice parameter. *Ann Allergy Asthma Immunol.* 2014;113(2):143-59.
- 13. Spaggiari L, Bertorelli G, Ridolo E, et al. Exacerbations of severe asthma: A focus on steroid therapy. *Acta Biomedica*. 2014;85(3):205-15.
- 14. Bateman ED. Efficacy and safety of high-dose ciclesonide for the treatment of severe asthma. *Expert Rev Respir Med.* 2013;7(4):339-48.
- 15. FitzGerald JM, Shahidi N. Achieving asthma control in patients with moderate disease. *J Allergy Clin Immunol.* 2010;125(2):307-11.
- 16. Levy ML, Stevenson C, Maslen T. Comparison of short courses of oral prednisolone and fluticasone propionate in the treatment of adults with

acute exacerbations of asthma in primary care. *Thorax.* 1996;51(11):1087-92.

- 17. Lougheed MD, Lemiere C, Ducharme FM, et al. Canadian Thoracic Society 2012 guideline update: diagnosis and management of asthma in preschoolers, children and adults. *Can Respir J.* 2012;19(2):127-64.
- 18. Di Franco A, Bacci E, Bartoli ML, et al. Inhaled fluticasone propionate is effective as well as oral prednisone in reducing sputum eosinophilia during exacerbations of asthma which do not require hospitalization. *Pulm Pharmacol Ther.* 2006;19(5):353-60.
- 19. FitzGerald JM, Shragge D, Haddon J, et al. A randomized, controlled trial of high dose, inhaled budesonide versus oral prednisone in patients discharged from the emergency department following an acute asthma exacerbation. *Can Respir J.* 1999;7(1):61-67.
- 20. Nana A, Youngchaiyud P, Charoenratanakul S, et al. High-dose inhaled budesonide may substitute for oral therapy after an acute asthma attack. *J Asthma.* 1998;35(8):647-55.