Supplemental Data

A meta-analysis of genome-wide association studies of asthma in Puerto Ricans

Qi Yan,¹ John Brehm,¹ Maria Pino-Yanes,^{2,3} Erick Forno,¹ Jerome Lin,⁴ Sam S. Oh,⁵ Edna Acosta-Perez,⁶ Cathy C. Laurie,⁷ Michelle M. Cloutier,⁸ Benjamin A. Raby,⁹ Adrienne M. Stilp,⁷ Tamar Sofer,⁷ Donglei Hu,⁵ Scott Huntsman,⁵ Celeste S. Eng,⁵ Matthew P. Conomos,⁷ Deepa Rastogi,¹⁰ Kenneth Rice,⁷ Glorisa Canino,⁶ Wei Chen,¹ R. Graham Barr,^{11,13} Esteban G. Burchard,^{5,12,13} Juan C. Celedón^{1,13,*}

¹Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA ²CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain ³Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain

⁴Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA

⁵Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA

⁶Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico

⁷Department of Biostatistics, University of Washington, Seattle, WA 98195, USA

⁸Department of Pediatrics, University of Connecticut, Farmington, CT 06030, USA

⁹Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, MA 02115, USA

¹⁰Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA

¹¹Department of Epidemiology, Columbia University, New York, NY 10027, USA

¹²Department of Bioengineering and Therapeutic Sciences, University of California San

Francisco, San Francisco, CA 94143, USA

¹³These authors contributed equally to this work

*Correspondence: juan.celedon@chp.edu.

CND	Cha	Desition	Baf		Cono	Design		efford DD	ii unu						Combined
SNP	Chr	Position	Ref	Alt	Gene	Region	- Ha	rtiord-PK		JALA I		ALA II	HC D I E	HS/SUL	Combined
2041522	17	27010270	C	m	CDD7 WZEC	., .	KAF 0.44	P-value	KAF 0.42	P-value	KAF 0.42	P-value	KAF	P-value	P-value
rs2941522	17	37910368	C	I	GRB7,IKZF3	intergenic	0.44	6.55E-05	0.43	4.77E-01	0.45	5.15E-06	0.44	2.25E-01	2.80E-08
rs12946510	17	3/9123/7	C	T	GRB/,IKZF3	intergenic	0.67	6.23E-06	0.68	3.55E-02	0.67	2.35E-07	0.65	7.78E-02	5.90E-12
rs907092	17	37922259	G	A	IKZF3	exonic	0.69	4.96E-06	0.69	2.33E-02	0.68	3.95E-08	0.66	9.17E-02	1.16E-12
rs10445308	17	3/93804/	C	I	IKZF3	intronic	0.67	6.15E-06	0.67	4.02E-02	0.66	5.03E-07	0.64	7.08E-02	1.01E-11
rs12942330	17	37939839	C	I	IKZF3	intronic	0.67	6.66E-06	0.67	4.02E-02	0.66	5.81E-07	0.64	7.17E-02	1.23E-11
rs11658993	17	37940808	C	1	IKZF3	intronic	0.67	1.34E-06	0.67	4.60E-02	0.66	5.56E-07	0.65	7.41E-02	5.09E-12
rs4795395	17	3/96298/	T	A	IKZF3	intronic	0.67	8.49E-06	0.67	4.14E-02	0.66	5.48E-07	0.64	7.86E-02	1.66E-11
rs9909593	17	3/9/0149	A	G	IKZF3	intronic	0.67	9.34E-06	0.67	4.05E-02	0.66	4.66E-07	0.64	7.85E-02	1.51E-11
rs34233420	17	38004929	GATTT	G	IKZF3	intronic	0.67	5.20E-06	0.67	3.04E-02	0.67	1.45E-06	0.64	8.40E-02	2.41E-11
rs4/9539/	17	38023745	A	G	ZPBP2	upstream	0.67	1.66E-06	0.66	7.50E-03	0.66	8.86E-07	0.64	1.02E-01	3.73E-12
rs1155/466	17	38024626	C	T	ZPBP2	exonic	0.69	3.92E-06	0.68	2.86E-03	0.68	1.73E-06	0.65	9.16E-02	5.21E-12
rs110/8925	17	38025208	T	C	ZPBP2	intronic	0.69	3.92E-06	0.68	2.86E-03	0.68	1.59E-06	0.65	9.16E-02	4.82E-12
rs200306858	17	38025643	Т	THEE	ZPBP2	intronic	0.65	5.13E-05	0.65	4.14E-03	0.63	4.02E-05	0.61	3.72E-01	9.16E-09
rs34120102	17	38026035	G	A	ZPBP2	intronic	0.69	4.58E-06	0.68	3.11E-03	0.68	1.73E-06	0.65	7.83E-02	4.52E-12
rs11655198	17	38026169	С	Т	ZPBP2	intronic	0.65	5.67E-05	0.63	8.07E-03	0.63	7.65E-05	0.60	3.97E-01	2.83E-08
rs11650661	17	38026286	А	Т	ZPBP2	intronic	0.65	5.67E-05	0.63	7.06E-03	0.63	4.85E-05	0.60	3.97E-01	1.77E-08
rs11655292	17	38026361	С	G	ZPBP2	intronic	0.65	5.67E-05	0.63	6.90E-03	0.63	5.86E-05	0.60	3.97E-01	2.05E-08
rs12709365	17	38027400	А	G	ZPBP2	intronic	0.66	4.87E-05	0.65	8.10E-03	0.65	3.11E-05	0.62	2.33E-01	3.80E-09
rs13380815	17	38027583	А	G	ZPBP2	intronic	0.66	4.87E-05	0.65	8.10E-03	0.65	3.11E-05	0.62	2.33E-01	3.80E-09
rs11557467	17	38028634	G	Т	ZPBP2	exonic	0.64	2.64E-05	0.61	7.93E-03	0.61	1.15E-04	0.59	3.84E-01	2.29E-08
rs11870965	17	38030205	Т	А	ZPBP2	intronic	0.66	4.87E-05	0.65	8.10E-03	0.64	4.54E-05	0.62	2.32E-01	5.26E-09
rs9903250	17	38031030	G	А	ZPBP2	intronic	0.64	2.45E-05	0.63	4.54E-03	0.63	3.38E-05	0.60	3.74E-01	5.26E-09
rs9905959	17	38031138	A	G	ZPBP2	intronic	0.66	4.71E-05	0.66	3.56E-03	0.67	7.64E-05	0.63	2.04E-01	3.87E-09
rs11658278	17	38031164	Т	С	ZPBP2	intronic	0.62	3.14E-06	0.62	1.02E-02	0.62	3.19E-04	0.60	2.48E-01	7.62E-09
rs10852935	17	38031674	С	Т	ZPBP2	exonic	0.69	4.58E-06	0.68	3.83E-03	0.68	1.69E-06	0.65	9.55E-02	7.43E-12
rs10852936	17	38031714	С	Т	ZPBP2	intronic	0.66	1.07E-04	0.65	7.91E-03	0.65	2.80E-05	0.62	2.32E-01	5.66E-09
rs9891174	17	38031802	Т	А	ZPBP2	intronic	0.67	4.21E-05	0.65	8.45E-03	0.65	2.92E-05	0.63	3.45E-01	7.87E-09
rs59716545	17	38031857	Т	G	ZPBP2	intronic	0.70	7.74E-06	0.70	1.74E-03	0.70	2.65E-06	0.67	9.15E-02	9.11E-12
rs36095411	17	38031865	Т	G	ZPBP2	intronic	0.70	6.35E-06	0.69	4.81E-03	0.69	1.00E-06	0.66	6.89E-02	3.87E-12
rs12939457	17	38032188	Т	C	ZPBP2	intronic	0.66	4.87E-05	0.66	8.32E-03	0.66	1.05E-04	0.62	2.37E-01	1.19E-08
rs34189114	17	38032460	С	Т	ZPBP2	intronic	0.69	4.58E-06	0.68	2.88E-03	0.68	1.69E-06	0.65	9.16E-02	5.65E-12
rs35736272	17	38032680	Т	С	ZPBP2	intronic	0.69	3.75E-06	0.68	3.83E-03	0.68	1.54E-06	0.66	8.69E-02	5.04E-12
rs1054609	17	38033277	А	С	ZPBP2	3'UTR	0.66	4.07E-05	0.65	8.10E-03	0.65	3.11E-05	0.62	2.32E-01	3.39E-09
rs9907088	17	38035116	G	А	ZPBP2	downstream	0.66	6.87E-05	0.66	5.27E-03	0.65	1.86E-05	0.63	2.23E-01	2.16E-09
rs36038753	17	38035370	G	Т	ZPBP2,GSDMB	intergenic	0.66	6.87E-05	0.65	3.44E-03	0.65	2.50E-05	0.63	2.23E-01	2.14E-09
rs35569035	17	38035624	С	Т	ZPBP2,GSDMB	intergenic	0.69	4.58E-06	0.68	2.88E-03	0.68	1.25E-06	0.65	9.16E-02	4.33E-12
rs9910826	17	38035648	А	G	ZPBP2,GSDMB	intergenic	0.67	4.38E-05	0.67	5.41E-03	0.66	1.52E-05	0.63	2.01E-01	1.17E-09
rs34074973	17	38035766	GAGA	G	ZPBP2,GSDMB	intergenic	0.69	4.58E-06	0.68	2.88E-03	0.68	1.69E-06	0.65	9.16E-02	5.64E-12
rs9904624	17	38036586	А	G	ZPBP2,GSDMB	intergenic	0.66	6.87E-05	0.66	6.02E-03	0.65	7.94E-06	0.63	2.23E-01	1.15E-09
rs4795398	17	38038179	С	Т	ZPBP2,GSDMB	intergenic	0.69	4.58E-06	0.69	3.02E-03	0.68	1.44E-06	0.65	9.16E-02	5.20E-12
rs62067029	17	38038391	А	Т	ZPBP2,GSDMB	intergenic	0.73	2.84E-04	0.73	6.24E-03	0.73	8.26E-05	0.69	7.33E-02	3.54E-09
rs148094956	17	38039561	TAACA	Т	ZPBP2,GSDMB	intergenic	0.61	7.07E-06	0.61	1.09E-02	0.61	2.59E-04	0.59	2.97E-01	1.51E-08
rs12232497	17	38040119	Т	С	ZPBP2,GSDMB	intergenic	0.69	3.75E-06	0.68	4.00E-03	0.68	1.26E-06	0.66	8.69E-02	4.37E-12
rs12232498	17	38040363	Т	С	ZPBP2,GSDMB	intergenic	0.66	6.87E-05	0.66	5.26E-03	0.65	1.88E-05	0.63	2.23E-01	2.17E-09
rs12941333	17	38040534	С	Т	ZPBP2,GSDMB	intergenic	0.66	6.87E-05	0.66	5.26E-03	0.65	1.88E-05	0.63	2.23E-01	2.17E-09
rs2872507	17	38040763	G	А	ZPBP2,GSDMB	intergenic	0.66	6.87E-05	0.66	5.26E-03	0.65	1.56E-05	0.63	2.23E-01	1.85E-09
rs9908132	17	38042777	Т	А	ZPBP2,GSDMB	intergenic	0.62	8.62E-06	0.61	8.89E-03	0.61	1.68E-04	0.59	3.24E-01	1.19E-08
rs9901146	17	38043343	G	А	ZPBP2,GSDMB	intergenic	0.62	8.62E-06	0.61	8.89E-03	0.61	1.68E-04	0.59	3.23E-01	1.19E-08
rs12936409	17	38043649	С	Т	ZPBP2,GSDMB	intergenic	0.69	5.69E-06	0.68	3.56E-03	0.68	1.54E-06	0.65	9.02E-02	6.74E-12

Table S1. SNPs across the genome with meta-analysis (Hartford-PR, GALA I, GALA II and HCHS/SOL) P-values $< 5 \times 10^{-8}$

rs12103884	17	38045725	С	Т	ZPBP2,GSDMB	intergenic	0.62	8.62E-06	0.61	8.92E-03	0.61	1.84E-04	0.59	3.19E-01	1.26E-08
rs9906951	17	38048244	Т	С	ZPBP2, GSDMB	intergenic	0.61	4.26E-06	0.61	1.42E-02	0.61	2.79E-04	0.58	2.73E-01	1.21E-08
rs12950209	17	38049102	Т	С	ZPBP2,GSDMB	intergenic	0.62	1.02E-05	0.62	6.04E-03	0.62	1.41E-04	0.59	3.03E-01	7.68E-09
rs12950743	17	38049233	Т	С	ZPBP2,GSDMB	intergenic	0.61	6.83E-06	0.61	9.03E-03	0.61	1.99E-04	0.59	3.13E-01	1.15E-08
rs7359623	17	38049589	С	Т	ZPBP2,GSDMB	intergenic	0.62	1.07E-05	0.62	6.14E-03	0.62	8.42E-05	0.59	2.89E-01	4.50E-09
rs11651596	17	38056116	Т	С	ZPBP2,GSDMB	intergenic	0.66	5.65E-07	0.66	4.63E-03	0.66	1.35E-05	0.64	6.53E-02	6.96E-12
rs12949100	17	38057189	G	А	ZPBP2,GSDMB	intergenic	0.69	7.25E-06	0.68	3.66E-03	0.68	2.30E-06	0.66	7.75E-02	8.70E-12
rs8069176	17	38057197	G	А	ZPBP2,GSDMB	intergenic	0.63	7.37E-06	0.63	7.04E-03	0.64	8.83E-05	0.61	1.52E-01	1.15E-09
rs4795399	17	38061439	Т	С	GSDMB	intronic	0.69	5.17E-06	0.69	2.61E-03	0.68	1.10E-05	0.65	7.57E-02	2.26E-11
rs2305480	17	38062196	G	А	GSDMB	exonic	0.70	2.00E-06	0.69	2.97E-03	0.68	6.71E-06	0.66	7.07E-02	7.38E-12
rs2305479	17	38062217	С	Т	GSDMB	exonic	0.68	2.24E-06	0.66	4.17E-03	0.66	2.21E-05	0.64	1.55E-01	1.28E-10
rs67786416	17	38062942	А	AC	GSDMB	intronic	0.70	8.70E-06	0.68	4.54E-03	0.69	6.01E-06	0.66	9.18E-02	3.53E-11
rs56750287	17	38062944	А	С	GSDMB	intronic	0.69	1.36E-06	0.68	4.95E-03	0.68	1.32E-05	0.65	7.42E-02	1.66E-11
rs11078926	17	38062976	G	А	GSDMB	intronic	0.70	2.00E-06	0.69	3.32E-03	0.69	7.11E-06	0.66	6.99E-02	8.18E-12
rs883770	17	38063381	С	Т	GSDMB	intronic	0.68	2.24E-06	0.66	4.16E-03	0.66	2.36E-05	0.64	1.54E-01	1.35E-10
rs62067034	17	38063738	С	Т	GSDMB	intronic	0.68	2.24E-06	0.66	3.83E-03	0.66	2.88E-05	0.64	1.54E-01	1.54E-10
rs36000226	17	38063929	Т	С	GSDMB	intronic	0.68	2.24E-06	0.66	4.15E-03	0.66	2.37E-05	0.64	1.54E-01	1.35E-10
rs36084703	17	38063980	CA	С	GSDMB	intronic	0.68	3.50E-06	0.67	9.69E-03	0.67	7.49E-05	0.64	1.95E-01	1.41E-09
rs11078927	17	38064405	С	Т	GSDMB	intronic	0.70	1.34E-06	0.69	2.97E-03	0.69	7.91E-06	0.66	7.86E-02	8.13E-12
rs11078928	17	38064469	Т	С	GSDMB	splicing	0.70	1.34E-06	0.69	2.97E-03	0.69	6.75E-06	0.66	7.86E-02	7.02E-12
rs12939832	17	38064876	G	А	GSDMB	intronic	0.70	1.09E-06	0.69	2.96E-03	0.69	7.09E-06	0.66	7.83E-02	6.39E-12
rs1008723	17	38066267	G	Т	GSDMB	intronic	0.65	4.09E-05	0.64	6.06E-03	0.63	1.94E-04	0.61	2.94E-01	2.30E-08
rs4795400	17	38067020	С	Т	GSDMB	intronic	0.69	1.08E-06	0.69	2.22E-03	0.68	1.62E-05	0.66	6.34E-02	7.74E-12
rs4795401	17	38067533	А	G	GSDMB	intronic	0.65	5.59E-05	0.65	7.58E-03	0.65	7.90E-05	0.61	2.32E-01	9.09E-09
rs869402	17	38068043	Т	С	GSDMB	intronic	0.33	2.56E-06	0.35	5.01E-03	0.35	7.22E-06	0.38	2.03E-01	9.80E-11
rs1011082	17	38068514	Т	С	GSDMB	intronic	0.37	1.14E-05	0.38	3.88E-03	0.38	5.09E-05	0.40	2.04E-01	1.13E-09
rs921650	17	38069076	G	Α	GSDMB	intronic	0.34	6.80E-06	0.36	9.59E-03	0.36	8.83E-06	0.38	1.86E-01	2.67E-10
rs921649	17	38069274	С	Т	GSDMB	intronic	0.34	6.04E-06	0.36	9.30E-03	0.36	8.48E-06	0.38	1.87E-01	2.37E-10
rs5820308	17	38069364	TCAAAA	Т	GSDMB	intronic	0.32	1.84E-06	0.35	3.65E-03	0.34	2.16E-05	0.36	1.15E-01	5.64E-11
rs6503524	17	38069809	С	Т	GSDMB	intronic	0.34	6.58E-06	0.36	9.90E-03	0.36	7.79E-06	0.38	1.90E-01	2.51E-10
rs7216389	17	38069949	С	Т	GSDMB	intronic	0.34	6.58E-06	0.36	1.31E-02	0.36	1.11E-05	0.38	1.91E-01	4.16E-10
rs7221605	17	38070789	С	Т	GSDMB	intronic	0.33	1.33E-05	0.37	6.35E-03	0.37	1.53E-05	0.37	2.77E-01	1.09E-09
rs1031458	17	38072173	G	Т	GSDMB	intronic	0.33	1.33E-05	0.35	1.79E-02	0.35	1.82E-05	0.37	2.77E-01	2.66E-09
rs1031460	17	38072247	Т	G	GSDMB	intronic	0.33	1.33E-05	0.35	1.86E-02	0.35	3.22E-05	0.37	2.85E-01	4.68E-09
rs8065777	17	38072402	С	Т	GSDMB	intronic	0.33	1.33E-05	0.35	2.80E-02	0.35	1.87E-05	0.37	2.77E-01	3.72E-09
rs2872516	17	38072727	С	Т	GSDMB	intronic	0.32	4.24E-05	0.36	1.38E-01	0.37	3.19E-05	0.35	1.21E-01	8.66E-09
rs146378727	17	38073837	CCCG	С	GSDMB	intronic	0.36	1.39E-04	0.39	1.99E-02	0.39	3.46E-05	0.41	2.59E-01	1.72E-08
rs9303279	17	38073968	G	С	GSDMB	intronic	0.31	4.52E-06	0.33	3.44E-03	0.33	1.15E-06	0.35	1.22E-01	7.83E-12
rs8076131	17	38080912	G	А	ORMDL3	intronic	0.32	1.52E-05	0.33	2.52E-02	0.34	3.92E-07	0.36	9.22E-02	1.74E-11
rs7221814	17	38089717	А	G	ORMDL3,LRRC3C	intergenic	0.33	1.11E-04	0.34	1.15E-01	0.33	5.26E-07	0.36	4.08E-01	6.59E-09

RAF: reference allele frequency

 Table S2. Chromosome 17q21 LD comparisons across different cohorts using varLD

Cohorts Comparisons	<i>P</i> -values
Hartford-PR PR vs. GALA I PR	0.0835
Hartford-PR PR vs. GALA II PR	0.4591
Hartford-PR PR vs. GALA I MX	0.0002
Hartford-PR PR vs. GALA I MX	0.0007
Hartford-PR PR vs. 1000G EUR	0.0001

Table S3. SNPs in *IL33* with meta-analysis (Hartford-PR, GALA I, GALA II and HCHS/SOL) *P*-values < 0.01

Table	Tuble 55. 51115 in 1255 with new diarysis (function in R, 574271, 674271) and fields/502271 values < 0.01																		
SNP	Chr	Position	Ref	Alt	Gene	Hartford-PR			GALA I			GALA II				HCHS/S	Combined		
						AAF	OR	P-value	AAF	OR	P-value	AAF	OR	P-value	AAF	OR	P-value	OR	P-value
rs10815393	9	6240324	Т	С	IL33	0.20	1.09	0.480	0.23	1.47	0.085	0.20	1.17	0.076	0.20	1.21	0.056	1.18	0.002
rs10975504	9	6235009	Α	G	IL33	0.20	1.07	0.588	0.24	1.47	0.087	0.20	1.17	0.073	0.20	1.20	0.059	1.17	0.003
rs10975507	9	6236977	А	Т	IL33	0.20	1.06	0.619	0.24	1.47	0.086	0.20	1.18	0.053	0.20	1.18	0.081	1.17	0.003
rs7035413	9	6243119	А	G	IL33	0.19	1.06	0.607	0.23	1.47	0.086	0.19	1.16	0.089	0.19	1.20	0.063	1.16	0.004
rs12339348	9	6233082	Α	Т	IL33	0.19	1.06	0.636	0.23	1.48	0.083	0.19	1.17	0.086	0.19	1.19	0.075	1.17	0.005
rs72689565	9	6240953	Α	С	IL33	0.19	1.08	0.532	0.23	1.48	0.082	0.20	1.15	0.110	0.19	1.19	0.076	1.17	0.005

Table S4. Results of the meta-analysis of GWAS of childhood asthma, for SNPs previously associated with asthma in meta-analysis of GWAS of asthma in Europeans (GABRIEL) and ethnically diverse North American populations (EVE)

SNP	Chr	Position	Ref	Alt	Gene	In cited paper	Hartford-PR				GALA	I		GALA	II	Combined	
						OR	AAF	OR	P-value	AAF	OR	P-value	AAF	OR	P-value	OR	P-value
Loci reported	l by the G	ABRIEL cons	ortium	in Mof	fatt M.F. et al.												
rs3771166	2	102986222	G	Α	IL18R1	0.85*	0.45	0.90	0.500	0.44	0.75	0.114	0.43	0.85	0.018	0.85	0.003
rs9273349	6	32625869	А	G	HLA-DQ	1.14	0.61	0.98	0.860	NA	NA	NA	NA	NA	NA	0.98	0.860
rs1342326	9	6190076	Α	С	IL33	1.27	0.21	0.90	0.403	0.26	1.12	0.571	0.22	1.05	0.528	1.02	0.804
rs744910	15	67446785	G	Α	SMAD3	0.89	0.43	0.88	0.175	0.42	1.01	0.981	0.45	0.93	0.269	0.91	0.118
rs2305480	17	38062196	G	Α	GSDMB	0.76	0.31	0.62	2.0×10^{-6}	0.31	0.54	0.003	0.32	0.71	6.7×10 ⁻⁶	0.66	1.5×10 ⁻¹²
rs3894194	17	38121993	G	Α	GSDMA	1.26	0.37	1.23	0.034	0.39	0.92	0.648	0.40	1.23	0.002	1.20	0.001
rs2284033	22	37534034	G	Α	IL2RB	0.92	0.41	0.91	0.272	0.39	1.09	0.638	0.40	1.17	0.024	1.06	0.202
rs2073643	5	131723288	Т	С	SLC22A5	0.89	0.50	0.96	0.668	0.48	1.18	0.356	0.50	0.93	0.257	0.96	0.401
rs1295686	5	131995843	Т	С	IL13	0.85	0.59	1.01	0.943	0.62	0.75	0.136	0.62	0.90	0.159	0.90	0.117
rs11071559	15	61069988	С	Т	RORA	0.88	0.26	1.07	0.525	0.25	1.69	0.012	0.24	0.90	0.193	1.01	0.763
Replicated ge	nes repor	ted by the EVI	E conso	rtium i	n Torgerson D	.G. et al. Nat. Gene	et. 2011; 4	3(9):887-9	02								
rs1102000	1	158932907	Т	С	PYHIN1	$0.76^{#}$	0.08	1.09	0.651	0.06	0.50	0.061	NA	NA	NA	0.93	0.562
rs10173081	2	102957348	С	Т	IL1RL1	0.83	0.19	0.84	0.132	0.16	0.85	0.519	0.26	0.78	0.010	0.81	0.003
rs1837253	5	110401872	С	Т	TSLP	0.84	0.25	0.73	0.004	0.23	0.65	0.041	0.27	0.83	0.014	0.78	3.1×10 ⁻⁵
rs2381416	9	6193455	Α	С	IL33	1.18	0.38	0.98	0.847	0.39	1.00	0.980	0.37	1.09	0.249	1.05	0.441
rs11078927	17	38064405	С	Т	GSDMB	0.79	0.30	0.61	1.4×10 ⁻⁶	0.31	0.55	0.003	0.31	0.71	7.9×10 ⁻⁶	0.66	1.4×10 ⁻¹²

Chr: chromosome; Ref: reference allele; Alt: alternative allele; AAF: alternative allele frequency; OR: odds ratio.

*: This column is childhood onset odds ratio in Moffatt M.F. et al. N Engl J Med 2010; 363:1211-21.

#: This column is overall odds ratio in Torgerson D.G. et al. Nat. Genet. 2011; 43(9):887-92.

Human Genome version: hg19

Figure S1. QQ plot for the meta-analysis (Hartford-PR, GALA I, GALA II and HCHS/SOL)

 λ is the genomic control value.

Figure S2. Manhattan plots showing the GWAS results of Hartford-PR, GALA I,

GALA II and HCHS/SOL

The blue line represents the suggestive significance line ($P < 1 \times 10^{-5}$). The red line represents the conservative significance line ($P < 5 \times 10^{-8}$). The blue arrows mark the 17q21 region on chromosome 17. The detailed information of 17q21 is shown in Figure S6.

Figure S3. QQ plot for the GWAS results of Hartford-PR, GALA I, GALA II and HCHS/SOL

 $\boldsymbol{\lambda}$ is the genomic control value.

Figure S4. Manhattan plot showing the summary meta-analysis results of the

Hartford-PR, GALA I, and GALA II

The blue line represents the suggestive significance line ($P < 1 \times 10^{-5}$). The red line represents the significance threshold ($P < 5 \times 10^{-8}$).

 λ is the genomic control value.

B)15 A)1 Hartford-PR GALA I Minor allele: A; MAF=0.31; OR=0.63; value -d)0150 Minor allele: A MAF=0.31; OR=0.63 =0.02 ORMDL3 ZPBP2 PSMD3-TCAP ZPBP; LRRC3C→ ← MED24 PNMT→ - MIEN ← MED2 - PGAPS GRB7 GRB7 37.9 37.9 38.1 37.8 37.8 38 Position on chr17 (Mb) 38 Position on chr17 (Mb) 38.1 38. **C)**15 D) GALA II Minor allele: A; MAF=0.32; OR=0.66; value=3.0x10 Minor allele: A; MAF=0.34; OR=0.87; P-value=0.092 TCA MED24 MED2 **IIEN** PNM - PGAP RB: 37.9 38 Position on chr17 (Mb) 38.1 37.8 37.9 . 38 ... chr17 (Mb) 37.8 38.1

Figure S6. GWAS results of Hartford-PR, GALA I, GALA II and HCHS/SOL on the chromosome 17 region

The relative location of genes and the direction of transcription are shown in the lower portion of the figure, and the chromosomal position is shown on the *x* axis. The light blue line show the recombination rate across the region (right *y* axis), and the left *y* axis shows the significance of the associations. The purple diamond shows the *P*-value for rs907092 that is the most significant SNP in the meta-analysis (Hartford-PR, GALA I, GALA II and HCHS/SOL). The circles show the *P*-values for all other SNPs and are color coded according to the level of LD with rs907092 in the 1000 Genome Project AMR population.

Figure S7. Results of the meta-analysis (Hartford-PR, GALA I and GALA II) on the chromosome 17 region

The relative location of genes and the direction of transcription are shown in the lower portion of the figure, and the chromosomal position is shown on the *x* axis. The light blue line show the recombination rate across the region (right *y* axis), and the left *y* axis shows the significance of the associations. The purple diamond shows the *P*-value for rs907092 that is the most significant SNP in the meta-analysis (Hartford-PR, GALA I and GALA II). The circles show the *P*-values for all other SNPs and are color coded according to the level of LD with rs907092 in the 1000 Genome Project AMR population.

Figure S8. The 17q21 region of Hartford-PR

The top portion shows the $-\log_{10}$ transformed *P*-values, the middle portion shows the relative location of genes, and the bottom portion shows the LD structure. The red color marked region shows the second LD block in this region.

Figure S9. The 17q21 region of GALA I

The top portion shows the $-\log_{10}$ transformed *P*-values, the middle portion shows the relative location of genes, and the bottom portion shows the LD structure. The red color marked region shows the second LD block in this region.

Figure S10. The 17q21 region of GALA II

The top portion shows the $-\log_{10}$ transformed *P*-values, the middle portion shows the relative location of genes, and the bottom portion shows the LD structure. The red color marked region shows the second LD block in this region.

Figure S11. The 17q21 region of Mexican subjects from GALA I and GALA II, and

European subjects from 1000 Genome Project.

Figure S12. The IL33 region of Puerto Ricans from Hartford-PR, Mexicans from 1000 Genome Project, and Europeans from 1000 Genome Project.

