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Methods: 

Study design  

This study analysed data from the recently-reported UBIOPRED cohort (1). 104 

participants (Supplementary Table S1) with moderate-to-severe asthma and 16 

healthy non-asthma volunteers (HV) from the U-BIOPRED cohort underwent sputum 

cell profile analysis (1). Pre- bronchodilator spirometry, exhaled nitric oxide (FeNO), 

skin prick tests, serum total IgE, serum periostin, and differential blood count were 

measured. The study was approved by the Ethics Committees of the recruiting centres. 

All participants gave written informed consent. The data and bioinformatic analyses 

are described below. Validation of the transcriptomic-associated clusters was 

performed using sputum transcriptomic data from the ADEPT asthma cohort (2). 

 

Microarray analysis of sputum transcriptome 

Sputum was induced by inhalation of hypertonic saline solution and sputum 

plugs were collected from which sputum cells and sputum supernatants were obtained 

as previously described(3). Cell pellets were stored in RNA stabilization buffer 

(Norgen Biotek, Thorhold, Canada). RNA purity (RIN >6) was measured by Agilent 

Bioanalyser (Agilent, Santa Clara, Calif). Expression profiling was studied using 

Affymetrix U133 Plus 2.0 microarrays (Affymetrix, Santa Clara, Calif). Raw data 

were quality assessed and pre-processed by robust multi-array average normalization. 

Probes of low expression were filtered by robust multi-array signal analysis for values 

<5 and also for batch/technical effects. The intensity of the raw probe sets were log 

base 2 transformed and normalized by the robust multi-array average (RMA) method 

(4).  A regression based method (R package limma) was used to analyse DEGs with 

respect to the groups of interest and batch/technical effects, age, sex and 

administration of oral corticosteroid were adjusted for as covariates in the linear 
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model.  False discovery rate (FDR) using the Benjamini and Hochberg method was 

applied for p-value adjustment in relation to multiple tests. 

 

SomaLogic Proteomic Technique 

The SOMAscan proteomic assay is an array-based method measuring 1,096 

proteins each assay run which had its technique described comprehensively 

elsewhere(5, 6). All proteomic measurements for sputum supernatants were 

performed by SomaLogic Inc., (Boulder, CO) blinded to all subjects’ clinical and 

transcriptomic data. Briefly, every protein measured in the assay has its own 

fluorophore-tagged SOMAmer (DNA) as a targeted reagent. SOMAmers that are in 

complexes with their cognate proteins are captured by automated partitioning steps. 

Using a custom Agilent hybridization chip designed as the antisense probe array 

specifically hybridizes to the SOMAmers, the measurement of proteins was 

transformed to the measurement of the fluorescent intensity of the hybridized 

SOMAmers. Protein concentrations were originally reported in relative fluorescence 

units (RFU) while this concentration were log10-transformed before statistical analysis 

to reduce heteroscedasticity. 

 

Pathway analysis of transcriptomic features  

We analysed 508 differentially-expressed genes (DEG) from a comparison of the 

three groups of the UBIOPRED cohort (Fig 1A, B; Supplementary Table S1). We 

defined a sputum eosinophil count ≥1.5% as being eosinophilic and a neutrophil count 

≥74% as neutrophilic, while pauci-granulocytic and mixed-granulocytic counts were 

below and above these thresholds, respectively (1). Three sets of differentially 

expressed genes (DEGs) from pairwise contrasts of sputum EOS and non-EOS 

phenotypes, and healthy volunteers (HV) were analysed in order to obtain disease 
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driver genes. A filtering criteria with a false discovery rate (FDR) <0.05 and log2 fold 

change >0.5 was applied. 

 

Computational and statistical analyses 

Datasets were uploaded and curated in the tranSMART system(7). Statistical 

analysis was performed using R environment for statistical computing. False 

discovery rate was used to address multiple test correction. Hierarchical clustering 

based on Euclidean distance was used for cluster exploration and a resampling based 

technique was conducted as a measurement of cluster number optimization. 

Supervised learning algorithms using the shrunken centroid method (8)  was applied 

to the cluster findings to determine predictive signatures for each cluster and feature 

reduction methods were implemented along with the learning algorithms to obtain a 

sparse model to facilitate interpretation. Kruskal-Wallis or ANOVA test was used for 

multiple group comparison of continuous variables. All categorical variables were 

analyzed using Fisher’s exact test and p-value <0.05 was considered statistically 

significant. 

 

Optimal cluster number determination 

In order to perform clustering of asthma subjects using transcriptomic features, 

we first determined the optimal cluster number from these 508 DEGs.  Consensus 

clustering, a resampling technique taking into account the cluster consensus across 

multiple runs of a clustering algorithm, was used to address the issue of optimal 

cluster number (9-11). This method analyzes the N subjects’ cluster consensus 

distribution based on an (N x N) matrix built under the proportion of clustering runs in 

which two subjects are clustered together. The optimal cluster number is therefore 

determined by finding a cluster number K where consensus matrix histogram 
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approximates a bimodal distribution at K cluster and a relative small increase of area 

under curve (AUC) of cumulative distribution function (CDF) at K+1 cluster. 

The consensus matrix for clusters between K=2 and K=5 are shown (Figure S1, 

upper & middle panel). We noted that the CDF curve of the consensus index at 

cluster number K=2 approximated a bimodal distribution (Figure S1, lower panel, 

left, red line) yet the increase of AUC at K=3 (Figure S1, lower panel, right) was 

very large. Cluster number K=3 (lower panel, left, yellow line) was an optimal choice 

where the consensus index still approached bimodal distribution while the increase of 

AUC at K=4 (Figure S1, lower panel, right) was relatively small. 

 

Shrunken centroid model to determine sputum gene and protein signatures 

The nearest shrunken centroid method (8) was used as a supervised learning 

algorithm to refine the signatures for the identified TACs. The centroids (average 

expression of each gene) for each TAC as well as the overall samples were calculated. 

Standardization of the centroids of each TAC was performed through dividing the 

difference of the cluster centroids and overall centroids by the within-cluster standard 

deviation of each signature. This standardized value was treated as an absolute value 

which was later shrunken by an amount Δ (threshold value). If the value of a given 

standardized centroid was shrunken to zero for all TACs, then this gene did not 

contribute to the signature model. Otherwise, a non-zero value of a standardized 

centroid after shrinkage was retained as a classifier for the given TAC. The amount of 

shrinkage was chosen by iterative cross-validation on the performance in terms of the 

accuracy (or error rate) produced by a set of centroids from the prediction of TAC 

classification of each sample. 

 

Signatures summarized by gene set variation analysis (GSVA) 
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We sought to evaluate gene expression related to a variety of disease mechanism 

of asthma using a priori knowledge. To this end, GSVA calculates sample-wise 

enrichment scores (ES) irrespective of any group labels thus enabled the 

implementation of null hypothesis based statistical analysis(12, 13). Therefore, by 

annotating each subject using summarization of the genes related to each disease 

mechanism GSVA addressed the need regarding to comparing the expression of a set 

of genes between groups. We compiled 9 gene sets each related to a specific aspect of 

asthma (Table S4) and the ES was calculated for each gene set for each subject. 

ANOVA was used to analyze the ES differences among group means and the 

Student’s t-test was applied to compare the ES differences between two means. 

 

Analysis of TACs in ADEPT cohort 

The sputum signature findings predictive of each TAC from U-BIOPRED were 

applied to sputum transcriptomic data obtained from the Disease Profiling of Asthma 

and Chronic Obstructive Pulmonary Disease (ADEPT) cohort(2) using GSVA (Table 

S5). Sputum samples from 38 asthmatic subjects with a range of asthma severity and 

9 healthy volunteers were analysed by Affymetrix U133 microarray (Affymetrix, 

Santa Clara, Calif). The baseline characteristics of study subjects is shown in Table 

S5. We annotated each subject in the ADEPT cohort using the TAC signatures derived 

in U-BIOPRED sputum samples.  An ES was calculated for each TAC signature 

using GSVA.  ANOVA was used to analyze the ES differences among group means 

and the Tukey HSD test was applied for subsequent pairwise comparison of ES 

differences between two means. 
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Table S1. Demographic and clinical characteristics of 104 asthmatics and 16 

healthy volunteers 

 

Variables
†
 Asthmatics Healthy volunteers 

Age (years) 51.3±13.4 38.1±13.3 

Female  60 (57.7) 4 (25.0) 

BMI 27.8±5.2 25.8±2.8 

Nasal polyp 34 (32.7) 1 (6.3) 

Allergic rhinitis 42 (40.4) 2 (12.5) 

Eczema 33 (31.7) NA 

Severe asthma  84 (80.8) NA 

Oral corticosteroid use  38 (36.5) NA 

Atopy 73 (70.2) 4 (25.0) 

Exacerbation numbers (per year) 1.0 (0-3.0) NA 

FEV1 (% predicted) 69.8 (53.9-85.7) 104.0(98.9-113.2) 

Total serum IgE (IU/ml) 102.0 (44.3-217.5) 39.5 (14.5-99.4) 

Blood leukocyte (10
3
/μl) 7.45 (6.06-9.88) 5.75 (4.73-7.75) 

Blood eosinophil (10
3
/μl) 0.25 (0.12-0.40) 0.10 (0.09-0.16) 

Blood neutroophil (10
3
/μl) 4.41 (3.50-6.47) 3.23 (2.78-5.11) 

Sputum eosinophil (%) 2.4 (0.2-12.5) 0 (0-0.2) 

Sputum neutrophil (%) 58.1 (34.8-78.7) 40.5 (19.6-68.9) 

FeNO (ppb) 26.0 (16.0-46.5) 17.0 (13.5-26.1) 

Serum periostin (ng/ml) 49.0 (39.7-59.4) 46.2 (43.9-51.5) 

CRP (mg/l) 3.0 (1.0-6.0) 1.0 (1.0-2.0) 

 

†: Data presented as N (%) and mean (SD) or median (IQR). BMI: Body mass 

index, FEV1
:
 Forced expiratory volume in 1 second, FeNO: Fractional exhaled nitric 

oxide, CRP: C-reactive protein 
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Table S2: Top 10 pathways from public ontology databases of the three DEG sets 

DEG set Database ID Name p-value
#
 

EOS vs. HV   

 GO:0006955 immune response 1.09E-09 

 GO:0001816 cytokine production 3.81E-06 

 GO:0002684 positive regulation of immune system process 6.43E-06 

 GO:0045321 leukocyte activation 6.62E-05 

 GO:0031347 regulation of defense response 0.0002 

 GO:0019221 cytokine-mediated signaling pathway 0.0007 

 GO:1904018 positive regulation of vasculature development 0.0052 

 CORUM:2790 ETS2-ETS1 complex 0.0167 

 REAC:168249 Innate Immune System 0.0258 

 CORUM:5465 IKB(epsilon)-RELA-cREL complex 0.0498 

non-EOS vs. HV   

 GO:0045321 leukocyte activation 4.69E-06 

 GO:0046649 lymphocyte activation 0.000153 

 CORUM:2790 ETS2-ETS1 complex 0.00553 

 
REAC:198933 

Immunoregulatory interactions between a 

Lymphoid and a non-Lymphoid cell 
0.00556 

 GO:0002252 immune effector process 0.00899 

 GO:0044194 cytolytic granule 0.009 

 KEGG:05202 Transcriptional misregulation in cancer 0.0125 

 GO:0016337 single organismal cell-cell adhesion 0.0192 

 GO:0007159 leukocyte cell-cell adhesion 0.0293 

 GO:0070489 T cell aggregation 0.0474 

EOS vs. non-EOS   

 GO:0045088 regulation of innate immune response 4.18E-09 

 GO:2000116 regulation of cysteine-type endopeptidase activity 1.19E-06 

 GO:0071723 lipopeptide binding 4.57E-06 

 GO:0002221 pattern recognition receptor signaling pathway 1.55E-05 

 GO:0034341 response to interferon-gamma 0.00109 

 REAC:166054 Activated TLR4 signalling 0.00161 

 GO:0072557 IPAF inflammasome complex 0.00241 

 GO:0050702 interleukin-1 beta secretion 0.00269 

 KEGG:04621 NOD-like receptor signaling pathway 0.00464 

 
GO:0043122 

regulation of I-kappaB kinase/NF-kappaB 

signaling 
0.00813 

 

DEG: differentially expressed gene, EOS: eosinophilic, HV: healthy volenteer, #: 

p-value by Bonferroni correction, GO: Gene Ontology, CORUM: Comprehensive 

Resource of Mammalian protein complexes, REAC: Reactom, KEGG: Kyoto 

Encyclopedia of Genes and Genomes 
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Table S3. Signatures of genes and proteins characteristic of each TAC 

TAC1 TAC2 TAC3 

Gene Protein Gene Protein Gene Protein 

IL1RL1 PAPPA CLEC4D TNFAIP6 SCARB2 CTSG 

PRSS33 ENTPD1 CXCR1 PLCG1 SUCLG2 CTSB 

CLC CCL4L1 IFITM1 PSMA1 ATP1B1  

GPR42 APOA1 MGAM CDH5 ZYG11B  

LGALS12 ITGAV  FPR2 ANP32B LINC01094  

SOCS2 ARSB KRT23 SRC TGOLN2  

ALOX15 POSTN FAM65B CAST HLA-DMB  

TARP SERPINA1 IL18RAP CAPG PLBD1  

ATP2A3 HGFAC VNN3 ARID3A SCOC  

TRGV9 TPSB2 VNN2 NAMPT OAS1  

FAM101B  SMCHD1 SERPING1 CSTA  

CD24        CLEC4E MAPKAPK3 TBC1D4  

CRLF2  DYSF ESD LSM6  

TRGC2  CREB5 PDIA3 PQLC3  

TPSB2  MSRB1 PGLYRP1 MRPL57  

OLIG2  CXCR2 TNFSF14 ZCRB1  

HRH4  LINC01093  PDCD2  

CPA3  CASP4    

CCR3  TSPAN2    

VSTM1  KCNJ15    

  IDI2-AS1    

  SULT1B1    

  TREML2    

  IFIT2    

  TNFAIP3    

  SPATA13    

  TLR1    

  TNFSF10    

  NMI    

  LIMK2    

  UBE2D1    

  SAMSN1    

  WDFY3    

  REPS2    
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  NAIP    

  DDIT4    

  IFITM3    

  MEFV    

  SLC7A5    

 

TAC: transcriptome-associated cluster 
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Table S4: Nine gene sets representing specific disease mechanisms of asthma 

Name of signature Details Reference 

IL13 Th2  CST1, CCL26, PRB2, PRB1, PRB3, POSTN, PRB4, ITLN1, 

ALOX15, SH2D1B, CA2, NOS2, FCGBP, FOXA3, SPDEF, 

CAPN14, DUOXA2, CLDN5, PADI3, TSPAN8, ALPL, KCNJ16, 

FETUB, B3GNT6, CDH26, LRRC31, MUC13, VSIG2, CSTA, 

FAM3B, SLC9B2, NTRK1, KLF4, HPDL, SOCS1, TRNP1, 

HS3ST1, VWF, DUOX2, CISH, ATP13A5, ZNF808, RNASE4, 

CCBL1, SDCBP2, TMPRSS2, HYAL1, CCDC109B, FAM83D, 

TRAK1, TPK1, SLC7A1, CYP2C18, CDC42EP5, KCNS3, 

ADRA2A, MRAP2, SLC2A10, PPARG, FAM26E, ADCY4, WNT3, 

SLCO4A1, ALDH1A2, C10orf99, WDFY2 

(14) 

ILC1   SIT1 CD3D CD3G CD4 CD6 TRAV13-1 CD5 CD27 C14orf64 

COTL1 CD8A IKZF3 LITAF CCR7 TRAV8-2 TRAV4 SYNE2..1 

MAL GZMM GZMK TC2N GZMA SH2D1A IFNG-AS1 PASK 

TRBV5-1 ADTRP TRAV9-2 CACNA1I CCL5 ACTN1 CXCR3 

BCL11B PYHIN1 CH25H LBH FBLN7 LINC00402 TRAV2 

TRBV2 IGFBP3 ANK3 IL6R LDLRAP1 ACSL6 TRAV41 MIAT 

TRBV20-1 LAG3 IFNG TRAV26-2 GABBR1 TSHZ2 SLC25A4 

AP000569.8..1 RASGRF2 TRAV8-4 RP11-664D1.1 TNFRSF10D 

PLEKHB1 TRAV12-2 

(15) 

ILC2   HPGDS KRT1 IL17RB TNFRSF19 PTGDR2 HPGD IL1RL1 

PKIB C10orf128 RP11-345M22.1 FSTL4 GAP43 MBOAT2 

KLRG1 CSGALNACT1 FCRL3 CLIC4 IL10RA HLF LGALS12 

ZP1 CHDH RP11-440I14.2 A2M BACE2 RP11-345M22.2 P2RY1 

FASLG NRIP3 MSRB3 NTRK1 LINC00340 PZP PPARG 

TNFRSF9 UBXN10 A2MP1 IFIT3 UTS2 CALCRL RAP1GAP2 

GRK5 

(15) 

ILC3   FCER1G SH2D1B NCR2 NRP1 LINC00299 KIAA1324 LST1 

AMICA1 IL23R PCDH9 VWA5A XCL1 SIGLEC7 PLCG2 KLRC1 

KLRC1 IL4I1 SLC4A10 KIT GSN IL1R1 TOX2 CD300LF 

TYROBP PTGDR KRT81 XCL2 LTA4H SPINK2 STAC MYO7A 

OTUD5 KLRF2 LIF AFF3 ATP8B4 ENPP1 IL2RB TMIGD2 

PRR5 ELOVL6 AC092580.4 TNFSF13B AFAP1L1 TGM2 

B3GNT7 COL23A1 ENG LDLRAD3 FGR TNFRSF18 HIP1 

APOL4 RP11-845M18.6 ITM2C PLCH1 LPAR1 RHOC NSMCE1 

NSMCE1 SCN1B ID2 SLC43A2 ABCB5 ADAM28 CAT 

RP11-563D10.1 TNFSF11 STARD3NL TNS3 COL4A4 RNF152 

(15) 
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CA2 TOX FES KIAA1217 B4GALNT1 VAV3 GPR82 DOCK5 

CD33 S100A13 SOST TLE1 PECAM1 BCAS1 RORC LRRN3 

TLE3 NCR1 SYK HDAC9 CRTAM DOK3 TNFSF4 CD300C 

RP11-330A16.1 FSD1 GNLY CLNK CXXC5 HPN GOLIM4 

AP000476.1 SPRY1 FAM179A MPG ABHD15 SPRED2 TRAJ45 

GPR68 PRAM1 PDE6G MATN2 AE000661.37 DOK7 ARMC9 

HOXA10 SERPINA11 PDZK1 ENTPD1 LINGO4 TTN CCL20 

CD81 HOXA5 AC017104.6 SERP2 TRGJP1 SNCA NEK10 TCF4 

TCF4 RP11-428G5.5 RGS9 KIAA0087 IRF4 DACH1 NCAM1 

IKZF2 CDR2L 03-Mar FCRL4 PVRL2 LTBR NLRP7 JAG2 

TRDJ2 RP11-91K8.1 S100B LDLRAD4..4 HOXA7..1 CHKA 

EFCAB4A SUOX KCTD11 RP11-31E23.1..1 RP11-98D18.9..2 

LIMK1 JUP RP11-15B24.5 KLRK1..1 KIFC3 RP11-98G13.1 

IGFBP4 BANK1 OPCML..1 DTWD2 REEP1 MEF2C ZFYVE9 

MECOM CARD9 GPRC5C MUC2 INPP1 MPV17L MYB 

SLC2A10 SLCO2A1 GRAMD1B CARD6 ARSJ CHMP4C 

SNAP91 KCNQ5 TSPAN13 NLRP2 LYN RP11-256L6.2 CXCL16 

CCDC102B GSN-AS1 C19orf35 MACC1 SORT1 GPR133 

CCDC171 ORAI3 SERPINH1..1 NPTXR PTPRD DERL3 

PPP1R9A B3GALT5 P4HA2 TRAJ44 MRC2 SLFN12 PLEKHN1 

ACP6 TIE1 TMED8 UNC93B1 RP11-279F6.3 RP11-510J16.3 

RP11-277P12.20 MS4A6A C9orf66 TRIO PRKAR2B CYP24A1 

KLRK1..4 MMP25 TST CTD-2325P2.4 MAN1A1 RPPH1 

PPFIBP1 KLRK1..6 UBE2E2 SORCS1 KIAA1456..1 COL24A1 

LRP1 TRAIP GPR97 FGD6 LMLN EHHADH ZNF461 CSF2 

TRPM8 MCAM CD38 FAM167A C1orf159 OSBPL6 

Th17   KLRB1 RORC PLXND1 CTSH ALOX5 PTPN13 IL4I1 C11orf75 

NEFL HLF JAKMIP2 DSE LIMS1 HLA-DRB1 LTK HLA-DRB4 

USP10 NR1D1 LCAT SAMD3 HSPG2 

(16) 

Neutrophil  ABTB1,AMPD2,C5orf6,CCR3,CDA,CKLFSF2,CLC,CREB5, 

CTBS,DcR1,EST,FCGR2B,FCGR3B,FLJ10298,FPRL1,FRAT2, 

GPR27,GPR43,HSPA6,IL8RA,IL8RB,KIAA0779,KIAA1126, 

KRT23,LENG4,LENG5,MAD,MGC10500,MGC14126, 

MGC16353,MPPE1,MSCP,NCF4,NRBF-2,PHC2,PROK2,RALB, 

RNF141,SEC14L1,SEPX1,STX3A,TM4-B,VMP1,VNN2,XPO6 

(17) 

Inflammasome IL1B, NLRP3, CASP1, CASP4, CASP5 (18) 

OXPHOS OXPHOS, ND1, ND2, ND3, ND4, ND4L, ND5, ND6, NDUFS1, 

NDUFS2, NDUFS3, NDUFS4, NDUFS5, NDUFS6, NDUFS7, 

(19) 
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NDUFS8, NDUFV1, NDUFV2, NDUFV3, NDUFA1, NDUFA2, 

NDUFA3, NDUFA4, NDUFA4L2, NDUFA5, NDUFA6, 

NDUFA7, NDUFA8, NDUFA9, NDUFA10, NDUFAB1, 

NDUFA11, NDUFA12, NDUFA13, NDUFB1, NDUFB2, 

NDUFB3, NDUFB4, NDUFB5, NDUFB6, NDUFB7, NDUFB8, 

NDUFB9, NDUFB10, NDUFB11, NDUFC1, NDUFC2, 

NDUFC2-KCTD14, SDHA, SDHB, SDHC, SDHD, UQCRFS1, 

CYTB, CYC1, UQCRC1, UQCRC2, UQCRH, UQCRHL, 

UQCRB, UQCRQ, UQCR10, UQCR11, COX10, COX3, COX1, 

COX2, COX4I2, COX4I1, COX5A, COX5B, COX6A1, COX6A2, 

COX6B1, COX6B2, COX6C, COX7A1, COX7A2, COX7A2L, 

COX7B, COX7B2, COX7C, COX8C, COX8A, COX11, COX15, 

COX17, ATP5A1, ATP5B, ATP5C1, ATP5D, ATP5E, ATP5O, 

ATP6, ATP5F1, ATP5G1, ATP5G2, ATP5G3, ATP5H, ATP5I, 

ATP5J2, ATP5L, ATP5J, ATP8, ATP6V1A, ATP6V1B1, 

ATP6V1B2, ATP6V1C2, ATP6V1C1, ATP6V1D, ATP6V1E2, 

ATP6V1E1, ATP6V1F, ATP6V1G1, ATP6V1G3, ATP6V1G2, 

ATP6V1H, TCIRG1, ATP6V0A2, ATP6V0A4, ATP6V0A1, 

ATP6V0C, ATP6V0B, ATP6V0D1, ATP6V0D2, ATP6V0E1, 

ATP6V0E2, ATP6AP1, ATP4A, ATP4B, ATP12A, PPA2, PPA1, 

LHPP 

Ageing MMACHC, PDE7B, CTSS, HLA-DRA, LUZP1, C3, C1QB, 

BRINP3, C1orf210, DENND6B, APOD, KHDRBS2, DHDDS, 

VWF, GPER1, CALHM2, MPEG1, FCGR2A, GPNMB, CLASP2, 

MSL3, C4A, MGST1, SHARPIN, APPBP2, AIP, IGJ, RNASET2, 

FCGR2B, ANTXR1, HIST1H1C, C1QA, RAB40B, CD74, LYZ, 

HMGN2, TLX3, SRPR, RORB, GFAP, ARRB1, MT2A, PTBP2, 

ABCB6, ARL11, KITLG, MMP10, UGT2B17, FXYD1, ANXA3, 

BIRC7, CDKN1A, AMH, NPC2, SH3GLB1, HBB, PCSK6, 

GSTA1 

(20) 

 

ILC: innate lymphoid cell. 
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Table S5. Demographic and clinical characteristics of ADEPT cohort 

Variables
†
 N (%) Asthmatics (n=38) HV (n=9) 

Age (years) 44.7±13.1 28.7±9.3 

Female  23 (60.5) 3 (33.3) 

Asthma severity    

  Severe 17 (44.7) NA 

  Moderate 11 (28.9) NA 

  Mild 10 (26.4) NA 

Sputum cell profile    

  EOS predominant 7 (18.4) NA 

  NEU predominant 10 (26.3) NA 

  Mixed granulocytic 7 (18.4) NA 

  Pauci-granulocytic 14 (36.9) NA 

 

EOS: eosinophil, NEU: neutrophil 
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Figure S1. Shrunken medoid analysis of TACs 

 

 

Figure S1 Panel A: Training of classifiers for the 3 clusters was evaluated by 

classification error using 10-fold cross-validation. A threshold of 3.95 (red broken line) 

was selected which enabled the reduction of classifiers to 76 genes at a 

cross-validated error <5%. Panel B: Centroid profile of the 76 signatures. Length of 

the centroid in each cluster denotes the relative amount the expression was deviating 

from the overall mean expression for each signature. Hence, the longer the bar in a 

given cluster, the higher the gene expressed with respect to the others. From top down, 

the centroids of each cluster were ranked in descending ordeer of magnitude. Panel C: 

Receiver Operating characteristic (ROC) curve showing the discriminative 

performance of the 76 signatures (mean AUC: 0.999) based on the probability model 

of cluster classification and one-vs.-rest approach. AUC under red, green and blue line 



19 
 

indicated classification performance of genes belonging to TAC1 (AUC: 1.000, 

p=8.1x10
-17), TAC2 (AUC: 0.998, p=1.0x10

-16) and TAC3 (AUC: 0.998, p=5.2x10
-21). 

Protein signatures characteritic of each TAC were analyzed using the same method for 

71 subjects who also had samples available for supernatant protein analysis and 28 

proteins were identified. The details of the 76 genes and 28 proteins characteritics of 

each TAC were shown in Table S3. 
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Figure S2. Enrichment of three TAC signatures according to asthma severity in 

ADEPT cohort.  

  



21 
 

 

Figure S3.  Correlation matrices built from all TAC signatures-related genes and 

proteins in sputum samples. 
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Figure S4.  Distribution of mean gene-protein correlation following 1000 iterations 

of random samplings without replacement.  
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