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ABSTRACT Obesity is both a cause and a possible consequence of obstructive sleep apnoea (OSA), as
OSA seems to affect parameters involved in energy balance regulation, including food intake, hormonal
regulation of hunger/satiety, energy metabolism and physical activity. It is known that weight loss
improves OSA, yet it remains unclear why continuous positive airway pressure (CPAP) often results in
weight gain.

The goal of this systematic review is to explore if and how CPAP affects the behaviour and/or
metabolism involved in regulating energy balance.

CPAP appears to correct for a hormonal profile characterised by abnormally high leptin and ghrelin
levels in OSA, by reducing the circulating levels of each. This is expected to reduce excess food intake.
However, reliable measures of food intake are lacking, and not yet sufficient to make conclusions.
Although studies are limited and inconsistent, CPAP may alter energy metabolism, with reports of
reductions in resting metabolic rate or sleeping metabolic rate. CPAP appears to not have an appreciable
effect on altering physical activity levels. More work is needed to characterise how CPAP affects energy
balance regulation.

It is clear that promoting CPAP in conjunction with other weight loss approaches should be used to
encourage optimal outcomes in OSA patients.

@ERSpublications
CPAP in sleep apnoea patients affects some aspects of energy balance regulation, which can affect
body weight http://ow.ly/6ATZ303KXRv
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Introduction
Obesity is among the leading risk factors for obstructive sleep apnoea (OSA), and percentage body fat, visceral
adiposity and body mass index (BMI) are found to be significantly related to the apnoea–hypopnoea index
(AHI) [1–4]. OSA and obesity appear to exist in a reciprocal relationship, whereby OSA plays a role in
promoting further weight gain [5]. Considering the effects of sleep disruption on factors regulating body
weight, namely food intake, the hormonal regulation of hunger/satiety, energy metabolism and physical
activity, it is expected that the arousals, sleep fragmentation and disrupted sleep architecture that characterise
OSA will be associated with behavioural, metabolic and/or hormonal changes favouring weight gain [6].

There is some evidence for a dysregulation of hunger/satiety-regulating hormones in OSA, with increased
leptin levels, suggestive of leptin resistance [7–16], and increased ghrelin [9, 17–19] relative to controls.
OSA is associated with a hormonal profile that may encourage low satiety (via leptin resistance) and high
hunger (via ghrelin) and therefore excessive energy intake. Although food intake has rarely been studied in
OSA, in children AHI is positively associated with the caloric, fat and carbohydrate content of a
self-selected meal [20], and in adults, liking for high-fat food was associated with greater OSA severity
[21]. In terms of energy expenditure, OSA appears to be characterised by lower levels of physical activity,
as assessed subjectively by questionnaire [22] and objectively using accelerometry [23]. In addition, OSA
may affect energy metabolism, with reports of elevated resting metabolic rate (RMR) [24], sleeping energy
expenditure [25] and 24-h energy expenditure in patients versus controls [26].

It appears that OSA does have an effect of altering energy balance, i.e. the quantifiable relationship
between energy intake and energy expenditure, in such a way as to promote weight gain. An increased
understanding of how OSA and its treatment affect energy balance is important, as it can help improve
body weight management in patients. For instance, it is known that body weight changes are related to
OSA, as a 10% increase in weight predicted a 32% increase in AHI and similar weight loss predicted a
26% decrease in AHI over 4 years of follow-up [27]. Randomised controlled trials (RCTs) consisting of
reduced caloric intake [28, 29] or combined reduced caloric intake and prescribed physical activity [30]
demonstrated the effectiveness of behavioural lifestyle interventions which induce weight loss to improve
OSA. The first-line treatment for OSA is continuous positive airway pressure (CPAP). However, whether
CPAP treatment affects body weight in OSA patients is controversial. Weight loss has been shown in some
[31, 32], but not all CPAP intervention studies [33, 34], and some investigations suggest that CPAP use
promotes weight gain [35, 36]. A recent meta-analysis of 25 controlled trials (n=3181 patients) reported
that CPAP results in a significant increase in body weight, although the magnitude of weight gain was
relatively small (Hedges’ d=0.17) [37]. The reasons remain unclear, but probably involve the
aforementioned energy balance-related factors.

The current goal is to explore whether and how CPAP affects behaviour and/or metabolism involved in
regulating energy balance, including energy intake and energy expenditure. This review focuses on
observational and laboratory-based studies that investigated outcomes such as food intake, the hormonal
regulation of hunger/satiety, physical activity and energy metabolism in OSA patients using CPAP, to
determine if CPAP affects these energy balance-related parameters.

Methods
Search strategy
Articles that investigated energy intake and/or energy expenditure in OSA patients in response to CPAP were
identified using a systematic search of the published literature. Web-based searches were conducted for
manuscripts in the PubMed/Medline, Embase and Cochrane Library databases. Specific search terms reflect
the treatment/intervention (CPAP) and outcomes (energy balance-related parameters). For treatment/
intervention, search terms included CPAP or positive airway pressure. For energy intake outcomes, search
terms included caloric intake; food intake; food preference; dietary quality; macronutrient; hunger; appetite;
satiety; hunger hormone; appetite hormone; and satiety hormone. For energy expenditure outcomes, search
terms included energy expenditure; thermogenesis; energy metabolism; and physical activity. Key terms were
searched in all possible combinations using Boolean logic operators. A manual search of all bibliographies of
the included articles was conducted to identify relevant references missed by automated searches. EndNote
X7 (Thomson Reuters, New York, NY, USA) was used to index and manage all references.

Eligibility criteria
Specific inclusion criteria were required for selection. The criteria included: 1) original research
investigations; 2) conducted in humans; 3) conducted in adults; 4) include patients diagnosed with OSA of
at least mild severity; 5) include administration of CPAP for ⩾1 day; and 6) include at least one energy
balance-related outcome (food intake, hunger/appetite, energy expenditure, energy metabolism or physical
activity). Studies were excluded if they were only comparisons between OSA patients and non-OSA
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controls and/or were limited to untreated OSA patients. Design of CPAP studies could be pre-versus
post-treatment or placebo-controlled trials. No restriction on length of follow-up for CPAP treatment was
included (range 1 day to 11 months). If a study contained CPAP treatment combined with a lifestyle
intervention of prescribed low-calorie diet and physical activity recommendations, only the control CPAP
group with no lifestyle intervention was included [38], as the lifestyle intervention would necessarily affect
primary outcomes.

No date limitations or restrictions on country of research or publication were imposed in an effort to
reduce source selection bias. To be included, specified energy balance-related parameters could be
secondary or minor outcomes within the reports. Reviews, editorials and commentaries were excluded.
Conference abstracts were included, but were excluded from the final synthesis if no data were presented
[39–42], if they presented data that were subsequently presented in a full manuscript otherwise included
[43–45] or if the methodology was not adequately described [46]. In addition to a “forward” (utilising
databases and search terms) search strategy, a “backward” or ancestry search strategy was used, such that
the bibliography of all relevant reports was searched for references missed by web-based/database searches.

Data items
To be selected, studies must have explored at least one relevant energy balance-related parameter in OSA
patients after CPAP treatment. For energy intake, this included circulating hormones known to regulate
hunger, satiety or appetite (leptin, ghrelin, etc.), and measures of food intake, habitual dietary patterns (test
meals, food diaries or dietary preference scales) or eating behaviours. For energy expenditure, this included
measures from indirect calorimetry (resting/basal metabolic rate, sleeping metabolic rate or 24-h energy
expenditure), accelerometry (step counts or metabolic equivalent units) and questionnaires on physical
activity levels. Data on changes in body weight and/or composition after CPAP were not included, and are
the topic of a recent meta-analysis [37].

Reviewing procedure and data extraction
Database searches were conducted in March 2016. All obtained references were reviewed, and if retained,
data extraction was conducted by a single author. The first level of review was title and abstract screening.
Irrelevant references were removed. Potentially relevant studies were further assessed for inclusion by
reading the full text and checking against pre-specified eligibility criteria.

For each reference, the following variables were systematically extracted and entered into a summary table:
1) authors; 2) publication year; 3) journal; 4) criteria and cut-offs used to define OSA; 5) sample size;
6) baseline age, BMI and Epworth sleepiness scale (ESS) score; 7) study design; 8) duration of CPAP use in
the treatment; 9) CPAP compliance (duration of use during treatment phase); 10) outcome variables
assessed, including time of assessment and if performed under fasting conditions; and 12) main findings.
The principal summary measures were differences in means for energy balance-related outcomes. Studies
included consisted of pre-versus post-CPAP comparisons (baseline to post-treatment) and placebo-
controlled trials (active versus sham CPAP or CPAP versus another non-CPAP control).

Results
Search results and selection of references
A summary of the numbers of studies screened, assessed and included is presented in figure 1. After
screening and assessment, 42 references were included in the final synthesis. Studies were classified based
on their primary outcomes: one study on food intake, 22 studies on hormones affecting food intake, six
studies on energy expenditure assessed via indirect calorimetry and 13 studies on physical activity. Several
studies also described relevant secondary outcomes, and therefore had data that were included in other
categories. Specifically, the one study included in the energy intake category also contained data on physical
activity [47]. One of the studies in the indirect calorimetry category also contained data on energy intake,
hormones and physical activity [48]. Two studies in the physical activity category also contained data on
energy intake [38, 49].

Food intake
To date, four studies have investigated the effects of CPAP on energy intake or food preference either as
primary [47] or secondary outcomes [38, 48, 49] (table 1). A large group of participants with AHI ⩾10
events·h−1 (n=230) were randomised to sham or active CPAP as part of the Apnea Positive Pressure
Long-term Efficacy Study (APPLES) [47]. Active versus sham groups in this RCT were matched for sex, BMI
and ESS, and participants completed the food frequency questionnaire (FFQ) to assess typical food intake
after treatment. In the 4-month follow-up to baseline assessment, the only significant effect of active CPAP
was a reduction in trans-fatty acid consumption in women [47]. It should be noted that after randomisation,
men in both groups had lower BMIs than women. Another RCT in which participants either received a
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confirmed 8-h duration of nightly CPAP for 2 weeks, or an oral placebo, reported no between-group
differences in self-reported food intake by daily meal log [49]. In a third RCT, participants either received
CPAP combined with behavioural lifestyle intervention or just CPAP as control [38]. Focusing on the
control group, CPAP did not affect consumption of vegetables, fruits/berries, fish/shellfish or sweets from
baseline to the 6-month follow-up, as assessed using an eating habits questionnaire [38]. In that study, after
6 months of treatment the control group had a reduced score on the emotional eating component of the
Dutch eating behaviour questionnaire, indicating that these participants reduced their emotional approach to
eating [38]. Finally, dietary habits were assessed using a self-administered diet history questionnaire at
baseline and after 3 months of treatment [48]. No changes in energy intake were observed for the entire
group. However, when stratified by changes in body weight after treatment, those who gained weight had a
significantly higher total caloric intake at follow-up versus those who did not gain weight.

Hormonal regulation of food intake
Findings on the effects of CPAP on the hormonal regulation of food intake are summarised in table 2.
Several within-patient studies have investigated the effects of CPAP on leptin levels by comparing baseline
to post-treatment values, with 12 reporting significant reductions in leptin after treatment [7, 9, 10, 32, 33,
50–56] and six reporting no change [17, 18, 48, 57–59]. In most cases, leptin was sampled in the morning
after an overnight fast [7, 9, 10, 17, 18, 32, 33, 48, 50–52, 55–59], and in one case, which did report
post-treatment reductions, it was sampled throughout the night [53]. The duration of treatment from
baseline to follow-up ranged from 1 day to 6 months, and does not seem to contribute to disparate
findings. Importantly, it appears that only two studies to date have utilised placebo-controlled RCT
designs, and reported no change in leptin levels between active and placebo CPAP conditions after 2 [60]
or 3 months [61] of treatment.

Five within-patient studies investigated plasma ghrelin levels at baseline and after CPAP. Four of these
reported a significant reduction in ghrelin levels after treatment duration of 2 days [9], 1 month [18],
3 months [17] and 6 months [58]. In the study with the 1-month follow-up, despite significantly reduced
levels at the end-point, ghrelin levels were not changed at a proximal follow-up after 3–4 days of treatment
[18]. One study observed no change in ghrelin after treatment of 1 day or 3 months [48]. Each of the
aforementioned studies sampled ghrelin levels in the morning in fasted conditions. The one study with
negative results had similar CPAP compliance (∼4.5 h per night) as the investigations showing a reduction
in ghrelin, so nightly CPAP use is unlikely to contribute to the inconsistency.

Findings on the effects of CPAP on orexin (a hypothalamic neuropeptide which increases food intake) are
inconsistent, owing mainly to the small number of studies, which varied in design [62–64]. In a
within-subject pre–post comparison, treatment with CPAP of 3–4 months was found to reduce plasma

Records excluded, due to eligibility 
criteria
n=410

n=201: not OSA/CPAP
n=86: OSA/CPAP but not EE or EI
n=66: reviews/editorials
n=25: OSA but no CPAP
n=21: not humans
n=8: conference abstracts
n=3: children

Additional records identified
through other sources

n=19

Records identified through
database searching

n=729

Records after duplicates removed
n=452

Records 
assessed for 

eligibility
n=452

Studies included in
qualitative synthesis

n=42

FIGURE 1 Flow chart for the selection of references included in the systematic literature review. OSA:
obstructive sleep apnoea; CPAP: continuous positive airway pressure; EE: energy expenditure; EI: energy intake.
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TABLE 1 Summary of effects of continuous positive airway pressure (CPAP) on food intake in obstructive sleep apnoea (OSA) patients

First author [ref.] Year Participants AHI cut-off
events·h−1

Sample
size

Age
years M/F

Baseline BMI
kg·m−2 M/F

Baseline
ESS M/F

Design CPAP
duration

CPAP
compliance h per

night M/F

Outcomes Main findings:
effect of CPAP

BATOOL-ANWAR [47] 2014 Active CPAP ⩾10 117 54.0±13.0/
55.0±13.0

33.0±6.3*/
36.0±11.0

10.0±4.0/
10.7±4.6

Sham-controlled,
parallel; RCT

4 months 4.0±2.9**/
3.5±2.8

Food
frequency

↓ servings of
trans-fatty acids in

Sham CPAP ⩾10 114 55.0±14.0/
54.0±13.0

31.0±5.5*/
34.0±8.8

9.7±4.3/
9.7±3.7

4 months 2.6±2.6**/2.9±2.6 questionnaire women after
treatment

IGELSTROM [38] 2014 OSA ⩾15 35 53.0±11.0 33.6±4.3 N/R Baseline
to post-treatment;

RCT

6 months >4 in 73% of
participants

Food intake
questionnaire
Dutch eating
behaviour

questionnaire

↔ food intake
patterns

↓ emotional
eating score after

treatment

PAMIDI [49] 2015 CPAP

Oral
placebo

⩾5

⩾5

26

13

53.8±6.2

55.2±8.4

36.8±7.8

32.7±4.3

10.0±5.9

10.9±5.0

Placebo-controlled,
parallel; RCT

2 weeks

2 weeks

8 Daily food
log

↔ in food intake
between groups
after treatment

TACHIKAWA [48] 2016 OSA >20 63 60.6±10.0 27.9±3.8 8.7±5.3 Baseline to
post-treatment

1 day;
3 months

4.5±1.6 Diet history
questionnaire

↔ energy intake
after treatment for

entire group
↑ energy intake

after treatment in
weight gainers

Data are presented as n or mean±SD, unless otherwise stated. AHI: apnoea-hypopnoea index; M: male; F: female; BMI: body mass index; ESS: Epworth sleepiness scale; RCT: randomised
controlled trial; N/R: not reported. ↑: significant increase; ↓: significant decrease; ↔: no difference. *: p<0.05 M versus F; **: p<0.05 versus sham within males.
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TABLE 2 Summary of effects of continuous positive airway pressure (CPAP) on hormones regulating food intake in obstructive sleep apnoea (OSA) patients

First author [ref.] Year Participants AHI cut-off
events·h−1

Sample
size

Age
years M/F

Baseline BMI
kg·m−2 M/F

Baseline
ESS M/F

Design CPAP
duration

CPAP
compliance h per

night M/F

Outcomes Main findings:
effect of CPAP

Leptin
BARCELO [7] 2005 OSA obese ⩾20 12 47±9.6# 34.9±3.4# 11±4.9# Baseline to

post-treatment
3 months;
12 months

5.7±1.4 Leptin,
a.m.,
fasted

↓ leptin in
nonobeseOSA

nonobese
⩾20 14 50±9.8# 25.9±2.0# 13±4.8#

CHIN [32] 1999 OSA >20 21 52.2±3.3 29.3±1.1 N/R Baseline to
post-treatment

3–4 days;
1 month;
6 months

N/R Leptin,
fasted

↓ leptin after
3–4 days, 1 month
and 6 months

CHIN [50] 2003 OSA N/R 23 47±12.0¶ 31.0±4.0 N/R Baseline to
post-treatment

1 day
(n=23);
1 month
(n=8)

4.3±1.4 Leptin,
a.m.,
fasted

↓ leptin after
1 day and
1 month

CHIHARA [17] 2015 OSA ⩾20 21 54.6±12.4# 26.5±3.9# 11.1±5.5# Baseline to
post-treatment and
between groups

3 months 4.5±2.0 Leptin,
a.m.,

fasted, p.p.

↔ leptin

Control <15 15 54.3±14.3 26.2±3.0# 10.4±5.3#

CUHADAROGLU [33] 2009 OSA-CPAP
compliant

⩾15 31 53.9±9.7+ 32.3±4.7 11.3±5.7 Baseline to
post-treatment

2 months >4.0 in all Leptin,
a.m.,
fasted

↓ leptin

DRUMMOND [57] 2008 OSA >20 98 53.3±10.7 33.2±5.0 N/R Baseline to
post-treatment

1 week;
6 months

5.8±1.6 Leptin,
a.m.,
fasted

↔ leptin

GARCIA [58] 2011 OSA ⩾15 20 59.7±8.9 36.5±8.0 14.6±4.5 Baseline to
post-treatment

6 months 5.3±0.4 Leptin,
a.m.,
fasted

↔ leptin

HARSCH [9] 2003 OSA ⩾30 30 52±11.0 32.6±5.5 11±2.2 Baseline to
post-treatment and
between-group

2 days;
2 months

>3.0 Leptin,
a.m.,
fasted

↓ leptin after
2 months;

↔ control versus
treatment

Control <5 30 51±5.5 30.6±3.3 5.1±1.6

HARSCH [51] 2004 OSA x̄ = 46 30 56.4± 11.1 32.3±6.5 12.9±3.6 Baseline to
post-treatment

2 days;
3 months

5.2±0.9 Leptin,
a.m.,
fasted

↔ leptin at
2 days;

↓ leptin trend
(p=0.058) after

3 months

HARSCH [54] 2004 OSA x̄ = 43 40 53.8±11.8 32.8±6.9 12.9±3.6 Baseline to
post-treatment

2 days;
3 months

5.2±0.9 Leptin,
p.m.,
fasted

↔ leptin at
2 days;

↓ leptin at
3 months

Continued
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TABLE 2 Continued

First author [ref.] Year Participants AHI cut-off
events·h−1

Sample
size

Age
years M/F

Baseline BMI
kg·m−2 M/F

Baseline
ESS M/F

Design CPAP
duration

CPAP
compliance h per

night M/F

Outcomes Main findings:
effect of CPAP

HOYOS [61] 2012 Active CPAP ⩾20 34 51.0±12.3 31.6±5.3 10.0±4.0 Sham-controlled,
parallel; RCT

3 months N/R Leptin,
a.m.,
fasted

↔ leptin after
treatment

↔ leptin between
groups

Sham CPAP ⩾20 31 46.4±10.4 31±5.1 10.2±4.8 3 months N/R

IP [10] 2000 OSA ⩾5 9 43.6±10.1# 27.0±2.9# N/R Baseline to
post-treatment

6 months N/R Leptin,
a.m.,
fasted

↓ leptin at
6 months

KRITIKOU [60] 2014 OSA x̄ = 38 35 Range
41.7–66.3

28.6±0.6 10.4±0.9 Sham-controlled,
crossover; RCT

2 months Active:
6.1±1.2
Sham:
5.3±1.2

Leptin,
a.m.,
fasted

↔ leptin at
2 months or

between groups

MURRI [59] 2009 OSA ⩾10 78 52.3±11.3 32.2±5.2 15.3±5.5 Baseline to
post-treatment

1 month N/R Leptin,
a.m.,
fasted

↔ leptin at
1 month

SAARELAINEN [55] 1997 OSA N/R 7 53.6±6.2 34.4±4.9 N/R Baseline to
post-treatment

3 months 5.6 Leptin,
a.m.,
fasted

↓ leptin at
3 months

SANNER [52] 2004 OSA ⩾5 68 57.5±11.0§ 31.2±5.6§ N/R Baseline to
post-treatment

6 months 5.3±1.4 Leptin,
a.m.,
fasted

↓ leptin at
6 months with

effective
treatment (AHI

<5)

SHIMIZU [53] 2002 OSA ⩾20 21 45.0±11.0 28.9±3.7 N/R Baseline to
post-treatment

1 day N/R Leptin,
p.m.,

unfasted,
overnight

↓ leptin at 03:00 h
and 06:30 h after

treatment

TACHIKAWA [48] 2016 OSA >20 63 60.6±10.0 27.9±3.8 8.7±5.3 Baseline to
post-treatment

1 day;
3 months

4.5±1.6 Leptin,
a.m.,
fasted

↔ leptin after
treatment

TAKAHASHI [18] 2008 OSA x̄ = 46¶ 14 53.2±8.8 28.5±3.7 N/R Baseline to
post-treatment

3–4 days;
1 month

N/R Leptin,
a.m.,
fasted

↔ leptin after
treatment

TRENELL [56] 2007 Regular
CPAP

>30ƒ 19 49.0±12.0 36.0±8.0 11.0±5.0 Baseline to
post-treatment

3 months 6.0±1.0 Leptin,
a.m.,
fasted

↓ leptin in regular
users

Irregular
CPAP

>30ƒ 10 51.0±13.0 32.0±4.0 12.0±6.0 2.0±2.0 ↔ leptin in
irregular users

Continued
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TABLE 2 Continued

First author [ref.] Year Participants AHI cut-off
events·h−1

Sample
size

Age
years M/F

Baseline BMI
kg·m−2 M/F

Baseline
ESS M/F

Design CPAP
duration

CPAP
compliance h per

night M/F

Outcomes Main findings:
effect of CPAP

Ghrelin
CHIHARA [17] 2015 OSA ⩾20 21 54.6±12.4# 26.5±3.9# 11.1±5.5# Baseline to

post-treatment and
between groups

3 months 4.5±2.0 Ghrelin,
a.m.,

fasted, p.p.

↓ fasted, p.p.
after treatment;
↔ fasted p.p. in
OSA versus
control

Control <15 15 54.3±14.3 26.2±3.0# 10.4±5.3#

GARCIA [58] 2011 OSA ⩾15 20 59.7±8.9 36.5±8.0 14.6±4.5 Baseline to
post-treatment

6 months 5.3±0.4 Ghrelin,
a.m.,

fasted, p.p.

↓ fasted ghrelin
↔ p.p. ghrelin

HARSCH [9] 2003 OSA ⩾30 9 54±6.0 33.0±4.2 12.2±2.1 Baseline to
post-treatment and
between groups

2 days >3.0 Ghrelin,
a.m.,
fasted

↓ ghrelin after
2 days;

↔ control versus
treatment

Control <5 9 49±6.0 33.9±3.9 5.1±1.6

TACHIKAWA [48] 2016 OSA >20 63 60.6±10.0 27.9±3.8 8.7±5.3 Baseline to
post-treatment

1 day;
3 months

4.5±1.6 Ghrelin,
a.m.,
fasted

↔ ghrelin after
treatment

TAKAHASHI [18] 2008 OSA x̄ = 46 21 52.5±8.7 28.8±3.8 N/R Baseline to
post-treatment

3–4 days;
1 month

5.5±1.3 Ghrelin,
a.m.,
fasted

↔ after 3–4 days;
↓ ghrelin after

1 month
Orexin
BUSQUETS [62] 2004 OSA

Control
x̄ = 54
N/R

27
13

52±10.4
46±7.2

31±5.2
24±3.6

10±15.2
3±3.6

Between groups ⩾1 year

4.5±0.5

Orexin,
12:00 h

↓ orexin in CPAP
versus control

OSA-CPAP x̄ = 8 14 57±11.2 36±3.7 5±3.7

IGARASHI [63] 2003 OSA >20 12 45.3±13.7# 28.6±4.9# 13.2±3.8# Baseline to
post-treatment

3–4 months N/R Orexin,
a.m.,
fasted

↓ orexin after
treatment

SAKURAI [64] 2005 OSA, AI ⩾60 ⩾20 11 50.2±17.2 28.9±5.6 17.1±2.6 Baseline to
post-treatment

3–6 months >4.0 in all Orexin,
a.m.,
fasted

↑ orexin after
treatment

OSA, AI <60 ⩾20 16 57.5±10.4 26.0±2.8 10.8±2.8 ↔ orexin after
treatment

NPY
BARCELO [7] 2005 OSA obese ⩾20 12 47±9.6# 34.9±3.4# 11±4.9# Baseline to

post-treatment
3 months;
12 months

5.7±1.4 NPY,
a.m.,
fasted

↓ NPY in obese
and nonobese at

12 months
OSA

nonobese
⩾20 14 50±9.8# 25.9±2.0# 13± 4.8#

Data are presented as n or mean±SD, unless otherwise stated. AHI: apnoea–hypopnoea index; M: male; F: female; BMI: body mass index; ESS: Epworth sleepiness scale; NPY:
neuropeptide Y; N/R: not reported; p.p.: post-prandial; RCT: randomised controlled trial; AI: arousal index. ↑: significant increase; ↓: significant decrease; ↔: no difference; #: values
represent full OSA group at baseline, not just CPAP; ¶: values represent full CPAP group, not just those with leptin sampling; +: values represent full group including compliant and
noncompliant CPAP users; §: values represent full OSA treatment group, not just those treated with CPAP; ƒ: cut-off based on respiratory disturbance index not AHI.
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orexin when sampled in the morning in the fasted state [63]. In a comparison between controls, untreated
OSA patients and OSA patients who had used CPAP for ⩾1 year, levels were significantly lower in both
treated and untreated patients versus controls, suggesting CPAP is not associated with a normalisation of
orexin levels [62]. However, because of the cross-sectional between-group nature of the study, it is difficult
to conclude an effect of treatment. A third study stratified OSA patients based on having an arousal index
of ⩾60 (group A) or <60 (group B) [64]. The authors reported that compared to baseline, orexin levels
were significantly increased in group A but not group B after 3–6 months of treatment [64]. Participants
in the study that demonstrated an increase in orexin in severe OSA after treatment all had good
compliance (>4 h per night) [64], whereas the study that demonstrated a decrease in orexin after treatment
did not report on duration of nightly CPAP use [63].

The single study to date which investigated neuropeptide Y (NPY) (another hypothalamic neuropeptide
that increases food intake) in response to CPAP compared values obtained in the morning under fasting
conditions at baseline, and after 3- and 12-month follow-ups in obese and nonobese OSA patients [7].
NPY levels were found to decrease significantly after 12 months under CPAP in both obese and nonobese
patients [7].

Energy expenditure via indirect calorimetry
Findings on the effects of CPAP on energy expenditure assessed using indirect calorimetry are summarised
in table 3. The effects of CPAP on RMR were investigated in three studies using ventilated hood/canopy
indirect calorimetry [48, 65, 66], and findings are mixed. After a single night of CPAP, RMR values
remained significantly higher than controls, indicating a lack of treatment effect in lowering RMR [65].
However, the between-group design and short duration of treatment in that study make a conclusion on
the effect of treatment difficult. A comparison of baseline versus 2-month [67] and 3-month [66]
follow-up found no effect of treatment on RMR, whereas a pre–post design observed a significant
reduction in basal metabolic rate after 3 months of treatment, but not 1 day, compared to baseline in 63
patients with AHI >20 [48]. It should be noted that the baseline BMI of participants in the studies that
did not observe changes in RMR [66, 67] were higher than in the study that did [48], possibly accounting
for discrepancies (table 3).

When measured using whole-room indirect calorimetry (WRIC), RMR was found to be unchanged after
3 months CPAP versus baseline [26]. However, that same study did observe that compared to baseline,
3 months of CPAP resulted in a significant reduction in sleeping metabolic rate (SMR), despite unchanged
24-h energy expenditure [26]. Contrasting results were observed in a recent pilot study which also utilised
WRIC to determine the effects of CPAP on energy expenditure [68]. In that crossover placebo-controlled
trial (not randomised), 2 months of active CPAP resulted in significantly increased SMR and 24-h energy
expenditure versus placebo CPAP [68]. The findings were interpreted to suggest that CPAP may correct for
the OSA-related adaptive decreased in thermogenesis. However, the pilot study suffered from a small
sample size (n=3) and a lack of randomisation (all patients received active followed by sham), so findings
should be replicated.

Energy expenditure via physical activity
Findings on the effects of CPAP on physical activity-related energy expenditure are summarised in table 4.
Three studies utilised subjective, questionnaire-based measures of physical activity [47, 69, 70], and 12
studies [34, 38, 48, 49, 71–78], including three conference abstracts [72, 73, 75], assessed physical activity
using objective measures.

Subsequent to the APPLES baseline study mentioned above [79], participants matched for sex, BMI and ESS
and with AHI ⩾10 events·h−1 were randomised to receive sham or active CPAP in an RCT, and physical
activity was assessed at follow-up using the Arizona activity frequency questionnaire [47]. In the 4-month
follow-up assessment (n=114 sham; n=117 active), no difference was observed in total energy expenditure;
however, recreational calories expended were significantly increased in women in the CPAP group at
4 months versus baseline [47]. Collecting physical activity data using the general practitioners physical
activity questionnaire in CPAP-compliant patients (⩾4 h per night for ⩾70% of a 2-week period) at 2 weeks,
3 months and 6 months post-baseline follow-up, significant increases in the number of daily hours of
activity were observed during all follow-up time points versus baseline [69]. In an RCT comparing 3 months
CPAP treatment with conservative treatment control, no between-group difference in physical activity
quantified as minutes per week, based on the international physical activity questionnaire was found [70].

A double-blind, randomised, sham-controlled CPAP trial monitored physical activity levels via SenseWear
(BodyMedia, Pittburgh, PA, USA) at baseline and after 4 weeks [71]. Both active and sham groups showed
increased physical activity at follow-up, but the active group had more steps than the sham group,
indicating increased physical activity after active versus sham CPAP. It should be noted that the active group
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TABLE 3 Summary of effects of continuous positive airway pressure (CPAP) on energy expenditure via indirect calorimetry in obstructive sleep apnoea (OSA) patients

First author
[ref.]

Year Participants AHI cut-off
events·h−1

Sample
size

Age years Baseline
BMI kg·m−2

Baseline
ESS

Design CPAP
duration

CPAP
compliance h
per night

Outcomes Main findings:
effect of CPAP

FEKETE [65] 2015 OSA-CPAP
Control

⩾15#
N/R

62
19

46.5±11.4
50.8±11.7

33.9±5.2
28.3±3.1

13.0±6.1
8.5±3.4

Between groups 1 day N/R REE using
indirect

calorimetry,
pre-sleep and
after awakening

↑ REE and REE/
LBM in

OSA-CPAP
versus control

RYAN [66] 1995 OSA >30 10 45.0±10.0¶ 39.8±6.5¶ N/R Baseline to
post-treatment

3 months 5.0±1.0 REE using
indirect

calorimetry, a.
m., fasted;
TEF after

liquid test meal

↔ REE after
treatment
↔ TEF after
treatment

SHECHTER [68] 2015 OSA x̄ = 28 3 50.7±4.5 32.1±1.4 10.0±1.7 Sham-controlled,
crossover

2 months N/R WRIC for 24-h
energy

expenditure
and sleeping

energy
expenditure

↑ mean daily
energy

expenditure and
sleeping energy
expenditure in
active versus

sham

SMURRA [67] 2001 OSA x̄ = 31 10 49.2±8.7 33.0±3.8 N/R Baseline to
post-treatment

2 months 6.4±0.8 Indirect
calorimetry for
basal energy
expenditure

↔ basal energy
expenditure

after treatment

STENLOF [26] 1996 OSA ⩾20+ 5 46.0±13.0 34.0±7.0 N/R Baseline to
post-treatment

3 months N/R WRIC for 24 h
energy

expenditure;
BMR in a.m.,
fasted; SMR

↓ SMR/FFM
after treatment
↔ BMR or 24 h

energy
expenditure

TACHIKAWA [48] 2016 OSA >20 63 60.6±10.0 27.9±3.8 8.7±5.3 Baseline to
post-treatment

1 day;
3 months

4.5±1.6 Indirect
calorimetry for
BMR in a.m.,

fasted

↓ BMR after
3 months but not

1 day

Data are presented as n or mean±SD, unless otherwise stated. AHI: apnoea–hypopnoea index; BMI: body mass index; ESS: Epworth sleepiness scale; N/R: not reported; REE: resting
energy expenditure; LBM: lean body mass; TEF: thermic effect of food; WRIC: whole-room indirect calorimetry; SMR: sleeping metabolic rate; FFM: fat-free mass; BMR: basal metabolic
rate. ↑: significant increase; ↓: significant decrease; ↔: no difference. #: included AHI ⩾15 with no symptoms or ⩾5 with symptoms (daytime sleepiness, poor sleep or snoring/gasping);
¶: full OSA group at baseline, not just CPAP. +: cut-off based on respiratory disturbance index, not AHI.
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had a significantly higher baseline AHI than the sham group (50.2 versus 26.5 events·h−1). Two studies were
conducted by investigators utilising wrist-worn accelerometry to document physical activity levels in a
randomised, sham-controlled CPAP trial of 3 months of treatment [77, 78]. No between-group difference
was seen when focusing on the most active and least active periods of the day [78] or over the 24-h
recording [77]. For both studies, mean CPAP use during treatment periods in both groups was low (<4 h
per night) [77, 78], which may account for a lack of effect. However, a separate study which included only
compliant CPAP users (>5 h per night) and compared baseline to follow-up (range 6–11 months) reported
no changes post-CPAP in physical activity or energy expenditure as derived from ankle-bound
accelerometry [34]. Consistent with this, an RCT which ensured high compliance of 8-h nightly CPAP use
for 2 weeks found no difference in wrist accelerometry-derived physical activity levels compared to oral
placebo [49]. Two studies also failed to note changes in objective physical activity levels after 3 [48] or
4 months [76] of treatment (both RCTs), whereas a longer RCT of 6 months of treatment observed a
decrease in sedentary time but no accompanying increase in moderate-to-vigorous physical activity levels or
steps per day [38].

The findings of conference reports suggest a positive effect of CPAP, with trends for increased physical
activity and daily energy expenditure [73], as well as increased nonexercise activity thermogenesis [75].
However, these preliminary findings, which are based on small sample sizes and are less fully described,
should be expanded upon. Another conference abstract described a significantly increased number of
pedometer-recorded steps per day in 62 participants with at least mild OSA after CPAP for 3 and
7 months compared to baseline [72].

Finally, a decrease in wrist-actigraphy derived physical activity during the night, indicative of reduced
movement arousals during sleep, was reported in patients after 2 months of CPAP versus baseline [74].
These findings are in accordance with a reduced AHI, and may be functionally related to the aforementioned
findings of reduced SMR [26].

Discussion
Summary and considerations
Food intake
Measuring food intake is critical when considering how CPAP affects energy balance. The effects of CPAP on
energy intake have been under-studied, with only four published investigations to date [38, 47–49]. In general,
CPAP has not been found to affect energy intake [47, 80], although increased energy intake was seen in
individuals who gained weight after treatment [48]. A positive feature of the energy intake studies is that most
were from RCTs. This strengthens the designs, although the small number of investigations suggests that more
RCTs on this topic should be conducted. It should be noted that a major limitation in these investigations is
that the monitoring of food intake was conducted with self-reported measures, such as the FFQ and food logs.
Based on its subjective nature, the FFQ has been criticised as an inaccurate measure, characterised by a
systematic underestimation of actual energy intake [81]. Similar under-reporting of actual food intake based
on 2-week self-reported food records [82] and diet diary techniques [83] have been reported. It was suggested
that these subjective tools may lead to inaccurate conclusions and, accordingly, should be abandoned [81]. A
critical future step is to conduct systematic investigations of food choice and intake in response to CPAP using
objective measures under both real-life and controlled laboratory conditions.

Hormonal regulation of food intake
Considerable work has been undertaken to investigate how CPAP affects hunger/satiety hormones. Findings
of reduced leptin levels after CPAP, even without concurrent weight loss, were described by some [7, 9, 10,
32, 33, 50–56], but not all prospective observational CPAP studies [17, 18, 48, 57–59]. Importantly, the only
two sham-controlled RCTs conducted to date investigating the effects of CPAP on leptin reported no effect
of treatment [60, 61]. Since leptin is secreted by adipose tissue, with concentrations increasing with adipose
mass [84], an effect of CPAP on body fat content could also influence leptin levels. The RCT by HOYOS et
al. [61], as well as the findings of a recent meta-analysis [85], indicates that CPAP does not reduce visceral
fat, and therefore changes in body fat are unlikely to be influencing leptin secretion after CPAP. An
alternative explanation is that leptin levels may decrease after CPAP use because of a reduced need to
stimulate ventilatory drive [86]. Specifically, hypoxaemia enhances leptin expression [87], and it has been
suggested that elevated leptin in OSA occurs as a consequence of hypoxia as opposed to fat accumulation
[88]. Similar to leptin, most of the prospective studies have demonstrated that CPAP treatment for as little
as 2 days [9] to as long as 6 months [58] is effective in reducing ghrelin versus baseline. Taken together, it
appears that a potential decrease in the leptin-associated satiety signal, and therefore risk of increased food
intake, is compensated for by the concomitant decrease in ghrelin levels after CPAP. Alternatively, an
alleviation of leptin resistance (i.e. reduced efficacy of leptin’s satiety-inducing effects due to a
hypersecretion) together with a concomitant decrease in ghrelin secretion after CPAP may be occurring.
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The findings of an improvement in the hunger/satiety hormones are therefore encouraging from a clinical
perspective.

In terms of methodology, more RCTs should be conducted, since only two leptin studies were RCTs, and
no other investigations of hunger/satiety hormones. It is critical to control for BMI, as well as time of
sampling and feeding state, as many of the hunger/satiety-regulating hormones either show a diurnal
variation or are responsive to food intake. Leptin [89, 90], orexin [91] and possibly ghrelin [92] show
diurnal/circadian rhythms. Leptin levels are stimulated by food intake [93], whereas ghrelin levels decrease
after a meal [94], so investigators should control for this confounding factor. Although the data provide a
potential mechanistic basis involving leptin, ghrelin, orexin and/or NPY for an improvement in food
intake within OSA patients after CPAP, more studies are required to convincingly link the hormonal
control to food intake patterns after CPAP.

Energy expenditure via indirect calorimetry
Like energy intake, it is essential to consider energy expenditure to understand how CPAP affects body
weight regulation. Also like energy intake, the effects of CPAP on indirect calorimetry-derived measures of
energy expenditure such as RMR and SMR have been under-studied, with only six trials conducted to
date. Studies have varied in methodology (canopy versus whole-room), treatment duration (1 day versus
2 months versus 3 months), baseline BMI and comparison groups (pre–post treatment versus
placebo-controlled). No RCTs on indirect calorimetry-derived energy expenditure have been conducted to
date. In terms of methodology used to measure energy expenditure, it is important to note whether
indirect calorimetry is done via canopy or WRIC. This is because RMR assessments via the canopy/hood
system will mainly be determined by participant fat-free mass [95], whereas the WRIC assessments will
additionally register energy expenditure from nonexercise activity thermogenesis and possibly exercise
energy expenditure, depending on protocol [68]. Interestingly, whereas no changes in visceral fat were
observed in the RCT by HOYOS et al. [61], CPAP was found to increase lean mass, which has the potential
to favourably influence energy metabolism and exercise capacity.

In addition to observations of no change in response to treatment, CPAP may either correct for an
abnormally high OSA-related energy expenditure by reducing sleeping [96] or resting energy expenditure,
or alternatively, it may act to increase daily and sleeping energy expenditure [68] as a means of correcting
for an OSA-related decrease in thermogenesis. While placebo-controlled trials are often viewed as the gold
standard for determining intervention effects, the use of sham CPAP has been found to increase arousal
index and reduce sleep efficiency [97]. It is therefore possible that this unintentional sleep disruption may
affect sleeping energy expenditure, or possibly next-day RMR. This may also account for the discrepancies
between findings of effects of CPAP on SMR, described earlier. Another important consideration is
baseline BMI, as this parameter is known to influence energy metabolism. Finally, the majority of studies
on indirect calorimetry-derived energy expenditure described here were performed primarily on male
participants. Specifically, four of the six studies included 100% male OSA patients [26, 44, 67, 68], with
the remaining studies composed of 92% [66] or 81% [48] male OSA patients. Accordingly, there may be
important sex-based effects which are not apparent based on the current literature. Based on the limited
number of studies and inconsistencies, more studies should be conducted before definitive conclusions can
be made. It is still too early to conclude that CPAP use causes weight gain because of a reduction in
energy expenditure, as has been suggested [35, 48].

The regulation of energy expenditure is multifactorial, as total energy expenditure is the summation of
several components, including RMR, the thermic effect of food (i.e. energy associated with absorption and
metabolism of food) and physical activity [98]. Therefore, full 24-h assessments of energy expenditure
should be performed in response to CPAP under controlled conditions, as was done in two investigations
[26, 68]. Another option to measure total energy expenditure after CPAP is with the use of doubly labelled
water [99, 100], which is suited for measures of long-term free-living energy expenditure. Such an
approach may be favourable for investigators who do not have access to WRIC facilities. Furthermore, it
was observed that free-living energy expenditure estimated with doubly labelled water is 15% greater than
total energy expenditure measured via WRIC [101]. This potential underestimation of energy expenditure
from the latter method is likely due to the confines of the small metabolic chambers, in which
participants’ physical activity levels are relatively restricted.

Energy expenditure via physical activity
A large and important component of total energy expenditure is physical activity. Physical activity levels in
response to CPAP were assessed either subjectively via questionnaire [47, 69, 70] or objectively via
accelerometer [34, 38, 48, 49, 71–78]. Importantly, of the 12 studies that objectively monitored physical
activity levels, half were RCTs. Whereas objective monitoring is preferable, the site of attachment of
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TABLE 4 Summary of effects of continuous positive airway pressure (CPAP) on physical activity levels in obstructive sleep apnoea (OSA) patients

Author [ref.] Year Participants AHI cutoff
events·h−1

Sample
size

Age
years M/F

Baseline
BMI kg·m−2

Baseline
ESS

Design CPAP
duration

CPAP
compliance h per

night M/F

Outcomes Main findings:
effect of CPAP

Questiornnaire-based
assessment
BATOOL-ANWAR [47] 2014 Active CPAP

Sham CPAP

⩾10

⩾10

117

114

54.0±13.0/
55.0±13.0

55.0±14.0/
54.0±13.0

33.0±6.3*/36.0
±11.0

31.0±5.5*/
34.0±8.8

10.0±4. 0/
10.7±4.6

9.7±4.3/
9.7±3.7

Sham-controlled,
parallel; RCT

4 months 4.0±2.9**
/3.5±2.8

4 months

Physical activity
questionnaire

2.6±2.6**/2.9±2.6

↔ total energy
expenditure;
↑ recreational

calories expended in
females in CPAP
group at 4 months

BILLINGS [69] 2013 OSA-CPAP
compliant

⩾15 21 50.5±2.0 36.0±2.0 15.4±0.7 Baseline to
post-treatment

2 weeks; 3
months; 6
months

2 weeks 5.2±0.3
3 months 5.1±0.3
6 months 5.7±0.3

Physical activity
questionnaire

↑ daily
hours of activity;

↑ strenuous weekly
activity

SALORD [70] 2015 CPAP

CT

>30

>30

42

38

48.5±8.6

44.6±9.4

45.7±5.0

49.3±6.6*

7.9±4.5

7.9±5.2

Placebo-controlled,
parallel; RCT

3 months

3 months

5.4±1.6 Physical activity
questionnaire

↔ METS min per
week between groups

Accelerometry-based
assessment
CHASENS [71] 2014 Active CPAP ⩾10 23 55.6±10.6 35.5±6.2 11.4±4.6 Placebo-controlled,

parallel; RCT
4 weeks 96–489 min per

night
SenseWear
armband

↑ steps walked in
active versus sham

CPAP
Sham CPAP ⩾10 12 10.6±3.7 8 weeks

DIAMANTI [34] 2013 OSA-CPAP
compliant

⩾15 24 51.9±10.6 34.4±6.5 8.3±4.0 Baseline to
post-treatment

6–11
months

6.3±0.8 Ankle
accelerometer

↔ energy expenditure
or steps per day after

treatment

IGELSTROM [38] 2014 OSA ⩾15 35 53.0±11.0 33.6±4.3 N/R Baseline to
post-treatment; RCT

6 months >4 in 73% of
participants

SenseWear
armband

↓ sedentary time after
treatment

↔ MVPA or steps per
day

JEAN [72] 2015 OSA >5 62 53.0±13.0 38.0±11.0 N/R Baseline to
post-treatment

3 months
7 months

>4 in 73% of
participants

Pedometer ↑ steps per day at 3
and 7 month
follow-up

KERLEY [73] 2012 OSA N/R 15 54.7 N/R N/R Baseline to
post-treatment

3 months N/R SenseWear
armband

Trend toward ↑ total
daily energy

expenditure and
physical activity

Continued
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TABLE 4 Continued

Author [ref.] Year Participants AHI cutoff
events·h−1

Sample
size

Age
years M/F

Baseline
BMI kg·m−2

Baseline
ESS

Design CPAP
duration

CPAP
compliance h per

night M/F

Outcomes Main findings:
effect of CPAP

LEMMER [74] 2016 OSA >30 7 60.5±8.1# 35.0±4.7# N/R Baseline to
post-treatment

2 months N/R Wrist
accelerometer

↓ sleep movement
arousals after
treatment

MANSUKHANI [75] 2012 OSA x̄ = 16 3 44.0±7.0 N/R N/R Baseline to
post-treatment

1 month N/R Accelerometer Trend toward ↑
nonexercise activity

thermogenesis
(p=0.08) and upright
motion (p=0.07) after

treatment

MENDELSON [76] 2014 CPAP, SC >15 42 63.0±9.0¶ 30.2±5.7¶ 8.7±4.5¶ Placebo-controlled,
parallel; RCT

4 months 4.16±2.8 SenseWear
armband

↔ steps per day;
energy expenditure
(kcal) or METS after
treatment in either

group

CPAP, TM >15 40 62.0±9.0¶ 29.6±3.0¶ 7.2±4.3¶ 3.12±3.0

PAMIDI [49] 2015 CPAP ⩾5 26 53.8±6.2 36.8±7.8 10.0±5.9 Placebo-controlled,
parallel; RCT

2 weeks 8 Wrist
accelerometer

↔ physical activity
levels between groups

Oral placebo ⩾5 13 55.2±8.4 32.7±4.3 10.9±5.0 2 weeks

TACHIKAWA [48] 2016 OSA >20 63 60.6±10.0 27.9±3.8 8.7±5.3 Baseline to
post-treatment

1 day; 3
months

4.5±1.6 Wrist
accelerometer

↔ physical activity
levels

WEST [77] 2007 Active CPAP N/R+ 19 57.8±10.4 36.6±4.9 14.7±3.5 Placebo-controlled,
parallel; RCT

3 months 3.6±2.8 Wrist
accelerometer

↔ physical activity
levels during most
active least active

periods

Sham CPAP N/R+ 21 54.5±9.4 36.8±4.6 13.6±3.5 3.3±3.0

WEST [78] 2009 Active CPAP N/R+ 16 57.2±11.2 37.4±4.4 13.4±2.6 Placebo-controlled,
parallel; RCT

3 months 3.8±2.8 Wrist
accelerometer

↔ mean hourly
physical activity over

24 h
Sham CPAP N/R+ 20 54.1±9.8 36.2± 4.3 13.3±3.4 3.7±2.9

Data are presented as n or mean±SD, unless otherwise stated. AHI: apnoea–hypopnoea index; M: male; F: female; BMI: body mass index; ESS: Epworth sleepiness scale; RCT:
randomised controlled trial; METS: metabolic equivalents; CT: conservative treatment; N/R: not reported; MVPA: moderate-to-vigorous physical activity; SC: standard care; TM:
telemedicine. ↑: significant increase; ↓: significant decrease. #: full OSA group at baseline, not just those with physical activity measures; ¶: full groups at baseline, including dropouts;
+: >10 dips·h−1 in oxygen saturation of >4%. *: p<0.05 M versus F; **: p<0.05 active versus sham within males.
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accelerometer devices, either at the upper arm, ankle or wrist, may influence recorded activity levels,
thereby obscuring results. These differences in methodology should be considered when accounting for
reported discrepancies. Furthermore, it has been suggested that combining heart rate monitoring with
accelerometry data can improve the precision and accuracy of physical activity assessments [102]. This has
not yet been done in the studies of physical activity after CPAP, which suggests a limitation of the current
studies and a suggestion for improvement in future investigations.

Findings on physical activity are mixed, probably owing to methodological differences described earlier, as
well as study design (pre–post comparisons versus sham-controlled). Some have described an effect of
CPAP on improving objectively measured physical activity outcomes, including steps per day [71, 72].
Overall, however, it appears that CPAP has minimal effects on improving free-living physical activity
levels. These conclusions are based on subjective, questionnaire-based assessments [47, 70] and objective
assessments from pre–post comparisons [34, 48] and sham-controlled studies [49, 76–78]. The United
States Department of Health and Human Services recommends that adults obtain ⩾150 min of
moderate-intensity physical activity or 75 min of vigorous-intensity physical activity each week for optimal
health. Therefore, methods to increase physical activity in OSA patients have the potential to not only
reduce body weight, but also to improve cardiovascular health and fitness [103]. Efforts should be made
by clinicians to promote lifestyle modifications to increase physical activity levels in addition to CPAP use.

Future directions
Future studies should include RCTs on topics that expand on those described here. For example, recent
work suggests an effect of CPAP on circulating levels of glucagon-like protein-1, a satiety hormone [104].
Interestingly, an animal model of OSA found that induced intermittent hypoxia in mice caused alterations
in microbiota composition and diversity [105], suggesting the testing of CPAP on this outcome. Based on
findings that sleep restriction can affect brain regions involved in motivation and reward in the context of
food stimuli [106], new work should also extend beyond the hormonal/homeostatic control of energy
intake, to determine how CPAP affects the hedonic and cognitive control of food intake in OSA patients,
using functional brain imaging.

Conclusions
This article describes the current state of the literature on energy balance regulation in response to CPAP
in OSA patients. Based on a systematic review of the literature, it is not yet fully apparent whether CPAP
has an appreciable effect on influencing energy expenditure and energy intake to promote changes in
energy balance. Yet the question remains as to why alleviating the symptoms associated with OSA is
sometimes associated with changes in body weight. Indeed, a recent meta-analysis of RCTs indicates that
CPAP treatment actually promotes weight gain [37]. The regulation of energy balance in OSA is complex
and multifactorial, involving food intake, hormonal regulation of hunger and satiety and energy
expenditure via metabolism and free-living physical activity. As has been described, it appears that CPAP
may reduce energy expenditure via metabolism but that it does not induce a compensatory increase in
physical activity to offset these reductions. Furthermore, although it may alter hormones in a way expected
to reduce hunger and food intake, it remains to be seen whether energy intake is in fact reduced by CPAP.
Thus, the full picture of energy balance regulation in response to CPAP is still incomplete. Understanding
how the components of energy balance are affected by CPAP will allow clinicians to more effectively guide
overall treatment approaches to optimise weight loss and symptom amelioration in OSA patients.
Promoting CPAP in conjunction with other weight loss approaches, such as intensive lifestyle intervention,
could be used to encourage optimal outcomes for weight management in OSA patients.
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