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ABSTRACT In the era of personalised cancer therapy, the demand for molecular profiling of the patient’s

tumour is steadily increasing. In advanced nonsmall cell lung cancer (NSCLC) patients, testing for

epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) gene

rearrangements has become an essential component of clinical practice to select patients who are most likely

to benefit from EGFR and ALK tyrosine kinase inhibitors, respectively. Furthermore, obtaining tissue

specimens from recurrent or metastatic tumours or from patients who develop resistance to initial effective

therapies are essential for our understanding of the molecular basis of tumour progression and development

of drug resistance. Therefore, the sampling of tumour tissue that is representative and is adequate in

quantity and quality for pathological diagnosis and genomic profiling is crucial. In this review, we will

discuss factors that should be considered in obtaining and processing biopsy specimens to enable routine

molecular analysis in NSCLC patients.
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Introduction
During past decades, extensive efforts have been devoted to overcoming the lethality of cancers. However,

the effectiveness of chemotherapeutic agents has reached a plateau [1]. Once cancers have metastasised, they

are rarely curable as they almost invariably recur following initial chemotherapies. The recent discovery of

driver mutations and their association with greater responsiveness to specific targeted agents led to a

paradigm shift in cancer treatment from conventional chemotherapy to biomarker-driven targeted therapy.

This new era of personalised therapy brings an increasing demand for characterisation of tumour genotypes

and phenotypes. More than two-thirds of patients with nonsmall cell lung cancer (NSCLC) are in an

advanced, inoperable stage at diagnosis [1]. Therefore, for most of them, small biopsy or cytology specimens

will be the only available tissue for both diagnosis and molecular profiling. Furthermore, many investigators

have recently focused on obtaining greater understanding of the molecular pathology of recurrent,

metastatic or drug-resistant tumours. Therefore, repeat biopsy is assuming a greater role as the next

generation of biological specimens. The latter can be defined as clinical specimens obtained from patients at

distinct time-points in the course of disease or during the treatment period for tumour analysis to decide

ongoing treatment options [2].

Mutations on the tyrosine kinase domain of epidermal growth factor receptor (EGFR) and rearrangement

involving the anaplastic lymphoma kinase (ALK) gene are closely associated with high response rates to

their respective targeted tyrosine kinase inhibitors (TKIs) [3–5] and, thus, are the major determinants for

therapeutic use of these TKIs [6–10]. Testing of patient tumour samples for EGFR mutations and ALK gene

rearrangement has become an essential component of clinical oncology and pathology practice, and is

currently considered a standard of care for advanced stage lung adenocarcinoma patients.

The first step for molecular genotyping is the sampling of adequate tumour tissue. The accuracy of

molecular tests depends on sample quality as much as the molecular analyses themselves, emphasising the

importance of good sample collection and proper processing techniques [11].

The selection of biopsy site
Selection of the lesions for biopsy is usually decided by the clinicians, surgeons or interventional

radiologists. The genetic analysis from a single biopsy specimen may not cover the entire tumour’s

characteristics and may under-represent the heterogeneous genetic profile of the tumour [12]. Recent

genomic studies have demonstrated the heterogeneity and genetic evolution in different regions of the same

tumour, between primary and metastatic tumours, and between different metastatic sites. Despite this

apparent heterogeneity, key driver mutations are well preserved in the metastatic as well as the primary

tumours [13–15]. This suggests that genomic profiles of the primary tumour are likely to reflect the

genomic spectrum of the metastasis, and the primary tumour tissue can be a surrogate for genomic

profiling of all tumours [14]. A majority of EGFR mutations and ALK gene rearrangements, as driver

mutations of NSCLC, appear to follow this pattern.

There has been controversy about the heterogeneity of EGFR mutations in primary tumours and between

primary and metastatic tumours [16]. Some systematic studies using laser-captured microdissection

reported that 24–50% of NSCLC showed a heterogeneous population of EGFR mutated and non-mutated

tumour cells [17–21]. Furthermore, patients with intra-tumoural EGFR heterogeneity had a tendency to

show lower response rates to EGFR-TKI treatment (table 1) [18, 20]. When applying highly sensitive

detection methods such as next-generation sequencing, subpopulations of EGFR exon 19 deletion showing

different deletion patterns from the main type were detected in 43% of NSCLCs, but only 4% of tumours

showed substantial subpopulations of deletions representing .2% of genomic DNA [25]. However, other

studies using manual microdissection failed to show intra-tumoural heterogeneity of EGFR mutations

[22–24]. In addition, studies comparing EGFR mutation status of biopsies and resection specimens revealed

no discrepancies (table 2) [26–28]. This suggests that, in some NSCLCs heterogeneous for EGFR mutation

[17, 29, 30], the number of tumour cells showing different mutational patterns in the primary tumour is

very small and, thus, easily obscured by the predominant population and not detectable with usual

methods. However, this intra-tumoural heterogeneity of EGFR mutations might partially account for the

discrepancies in clinical response to EGFR-TKIs in EGFR-mutated patients and for cases with unexplained

primary and secondary resistance [28, 31, 32]. In the clinical setting, the overall EGFR status of the cancer

tissue appears more important and, in most patients, intra-tumoural mutation heterogeneity may not

significantly affect the efficacy of EGFR-targeted treatment [28]; however, further confirmation is needed.

According to the recent College of American Pathologists (CAP)/International Association for the Study of

Lung Cancer (IASLC)/Association for Molecular Pathology (AMP) guideline on molecular testing in

NSCLC, EGFR testing of multiple different areas within a single tumour is not necessary [33]. By contrast,

for patients with multiple lung adenocarcinomas that seem not to originate from a single tumour, each
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tumour may be tested separately [33]. If EGFR mutation is identified in one synchronous lung primary

tumour, targeted therapy should be applied according to the therapeutic guidelines [34].

When considering heterogeneity between the primary tumour and corresponding metastases, the

percentage of discordant results of EGFR mutation status varied from 0% to 38.8% (table 3) [23, 32,

35–39]. The genetic profiles of metastatic tumours might evolve or be clonally selected when metastasis

occurs, and the time interval between primary tumour and metastasis is sufficiently long for outgrowth of

heterogeneous subpopulations. In addition, chemotherapy or TKI therapy may affect EGFR mutation status

by changing the overall frequency of EGFR mutant clones after drug treatment [19, 29]. Therefore, in a

small subset of patients, primary tumours may not be representative of the EGFR mutation status of the

metastatic tumours. The CAP/IASLC/AMP guideline suggested that EGFR mutation testing with cytological

or small biopsy samples from the primary tumour or its metastases might be equally suitable for tumour

genotyping [33]. In fact, in a population-based EGFR testing programme, SHIAU et al. [40] reported that

close to 80% of submitted archival samples are from the primary tumour. However, for other genomic

profiling studies, no guideline has been established as to whether the primary tumour or metastasis might

be appropriate for molecular analysis. The clinical significance of genetic heterogeneity remains to be fully

evaluated in future studies.

Among multiple candidate lesions, the selection of the biopsy site for molecular tests is usually based on

tumour size and accessibility [2, 41]. Imaging may be used to guide biopsy and avoid necrotic areas. Bony

metastases that require a decalcification process are not ideal for molecular analysis.

For a better understanding of the genetic mechanisms of response and resistance to targeted therapies, and

for procurement of biological specimens for further research, sequential tumour biopsies at different time-

points during the course of disease or treatment are encouraged [2]. If additional samples need to be

obtained, several clinical factors such as the patient’s overall clinical condition, accessibility of lesions,

radiographic features, responsiveness to previous therapies and the most proper time-point should be

considered [2, 33].

The type of sample for molecular testing
Pathological diagnosis and classification can be accurately made in most small biopsy and cytology

specimens with few tumour cells, as they depend mainly on recognising the morphological (qualitative)

features of the tumour cells. By contrast, molecular tests tend to require more tissue as assay sensitivity may

require minimum amount of material (e.g. DNA, RNA or tumour cells). More tumour tissue also provides

greater areas to enrich for the tumour cell contents by macro- or microdissection [33].

TABLE 2 Comparison of EGFR mutational status of biopsy and resected non-small cell lung cancer specimens

First author,
year [ref.]

Population
studied

Cases with
paired

biopsy and
resection n

Detection
methods

Tumour
enrichment

strategy

EGFR
mutation in
both biopsy

and resection

EGFR WT
in both

biopsy and
resection

EGFR
mutation in
biopsy and
EGFR WT in

resection

EGFR WT in
biopsy and

EGFR mutation
in resection

Discordance
rate between
biopsy versus

resection

SOLOMON,
2010 [26]

Stage I/II ADC
(neoadjuvant

gefitinib)

16 DS NA 31.3 68.7 0 0 0

MASAGO,
2008 [27]

Paired biopsy
and resection

specimens

19 DS MD 47.4 47.4 0 5.3# 0#

HAN,
2012 [28]

Paired biopsy
and resection

with

23 DS NA 52.2 47.8 0 0 0

.20% tumour
cellularity

PNA
clamping

52.2 30.4 17.4 0 17.4

Data are presented as %, unless otherwise stated. EGFR: epidermal growth factor receptor; WT: wild-type; ADC: adenocarcinoma; DS: direct
Sanger sequencing; NA: not available; MD: microdissection; PNA: peptide–nucleic acid. #: the amount of DNA from one biopsy specimen was not
sufficient and only one exon (exon 19) was sequenced and demonstrated to be wild type, and the corresponding resection specimen showed L858R
mutation in exon 21; therefore, this case was not counted as discordant.
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Less than 30% of NSCLCs are resectable at the time of presentation [1]. Therefore, most clinical samples

from patients with advanced-stage lung cancer available for molecular testing are small, formalin-fixed and

paraffin-embedded (FFPE) biopsies or cytological specimens. Paradoxically, while the number of

biomarkers for testing per specimen has been increasing, tumour sampling has moved towards favouring

less invasive procedures, which usually yield a smaller amount of sample. Small specimens may contain

limited amounts of tumour cells and a variable proportion of non-neoplastic cells, which can affect the

accuracy of the results (fig. 1). Therefore, limiting the use of ancillary diagnostic immunohistochemistry

markers and clinical prioritisation of molecular testing is important [42]. The requirement for larger and

multiple biopsy samples needs to be balanced by the risk of procedural morbidity, such as pneumothorax or

haemoptysis [43]. The data on the number of biopsies or cores that can be obtained from one lesion are

limited [43–45], despite guidelines emphasising the benefits of obtaining as much tumour tissue as possible [41].

Although using tissue specimens is the gold standard for molecular testing, a considerable fraction of

advanced stage NSCLC patients are diagnosed by cytology only [46]. Previous studies have demonstrated

that, if FFPE samples are not available, a cytology sample can be appropriate for accurate diagnosis as well as

for molecular testing [46, 47]. The detection rates of EGFR mutation with cytology specimens seem to be as

high as those with tissue samples [40, 47]. However, more sensitive mutation testing methods should be

applied when cytology samples have low tumour cell content [28]. Diagnostic fine needle aspiration (FNA)

specimens often have an inherently high proportion of tumour cells [48], as tumour cells are less cohesive

and, thus, are more easily aspirated out. FNA samples archived for a long time have been shown to yield

abundant genomic DNA suitable for molecular profiling [49]. A recent study demonstrated that the tumour

cells selectively scraped from smeared slides yielded high quality nucleic acid for molecular analysis [49],

and showed significantly higher overall tumour cell numbers and tumour cellularity than cell block

specimens [50]. However, cell block specimens are generally preferred over smear slides because tumour

cellularity in cell block sections can be easily assessed, the original diagnostic slides can be archived and

additional ancillary tests are possible when necessary [51].

In cases when biopsy or cytology samples cannot be obtained, the patient’s plasma might become an option.

Plasma samples may contain circulating free DNA released from the tumour cells or circulating tumour

cells. The concordance rates of the mutation status between plasma and tumour samples are variable from

33% to 87% according to the study design, the detection methods and the eligible patient groups [52–54].

Although technological advances have led to more accurate detection of cancer-associated alleles in the

blood, many hurdles still need to be overcome before routine clinical application [52]. Nevertheless, plasma

may provide information on the genetic landscape of tumours overcoming genetic heterogeneity and

offering the opportunity to assess tumour dynamics, such as detection of minimal residual disease, early

detection of recurrence and prediction of response to treatment in the advanced stage of lung cancer [12]. It

shows promise in providing the least invasive and most convenient and cost-effective way of obtaining

samples for molecular testing in the future.

The amount of tumour cells for molecular testing
In general, the amount of cells and the concentration of the extracted DNA is less of an issue in most

mutational analysis using frozen samples [55]. The cytology specimen, as well as small biopsy samples that

yield a very low amount of DNA, can detect mutations when using more sensitive detection methods

a) b)

FIGURE 1 The histological features of a) needle core and b) bronchoscopic biopsy samples. Some biopsy tissues contain
only small amounts of tumour cells (arrows) mixed with an overwhelming number of non-neoplastic cells including
bronchial epithelial cells, inflammatory cells and fibroblasts (haematoxylin and eosin stain; 1006 original magnification).
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[40, 42, 56–58]. However, with ,300 cells, the risk of an insufficient result increases due to a higher chance

of artifactual mutations in formalin fixed specimens [55]. The number of cells required for a successful

mutation test has not been well defined, but a range of 100–400 tumour cells in the specimen has been

suggested [41, 45, 59]. Another study reported that cytological specimens satisfying any of the following

three criteria: DNA concentration .25 ng?mL-1, .30 tumour cells or .30% tumour cellularity;

demonstrated 100% concordance with the corresponding tissue samples when using a pyrosequencing

method [50]. In population-based EGFR mutation testing of 2293 cases, SHIAU et al. [40] reported that

among surgical biopsy specimens tested, core biopsy of the primary lung lesions had the highest test-failure

rate (,10%). The highest test success-rate was associated with o30% tumour cellularity within the

macrodissection area, and a o2 mm tumour area marked for macrodissection. For cytology samples, only

overall cell content of the cell block, but not tumour cellularity, was correlated with test-success rates, with

minimal cell content cases reporting significantly lower test-success rates than cases with small clusters of

abundant cell content.

Specimen quality: tumour cellularity and tumour cell enrichment
Preservation and quality of the amplifiable DNA seemed to be more important than its quantity in the

samples [41, 60]. If multiple specimens are available for molecular testing, the choice of which sample is the

best for molecular assays should be based on the quality of the specimen, percentage tumour cellularity and

the validated specimen type in each laboratory [34]. False-negative results may be problematic when only

small samples are available for molecular testing, as the detection sensitivity may be further diminished by

the pre-analytical histological or cytological factors.

The relative proportion of tumour cells versus non-neoplastic cells is one of the important parameters that

determine the sensitivity of molecular testing [42, 60]. Yet, there is no definite consensus on optimal

tumour cellularity or how to assess it. Some groups have set thresholds for .60% tumour cellularity and

,20% necrosis for comprehensive genomic analysis [61–63]. For Sanger sequencing, if heterozygosity and

disomic tumour cells are considered, the suggested threshold for reliable results is 40–50% when tumour

cellularity is estimated and 30% when more accurate counting is performed [41, 56]. However, mutations

may also be detected in samples with ,40% tumour cellularity. The correlation between mutated allele

frequency and tumour cellularity is highly influenced by gene copy number changes, as EGFR-mutated

alleles are preferentially amplified [64–66].

As considerable variation in the tumour cellularity between samples may exist, a histological evaluation of

each sample to confirm the diagnosis and assess the tumour cellularity is critical [2]. However, estimation of

tumour cellularity can vary significantly among pathologists [56, 67–69], and visual assessment with

estimation of tumour cellularity may have a tendency to overestimate tumour cellularity when compared

with cell number counting [56, 68]. The training of pathologists with gold standard calibration specimens

might be helpful for more consistent estimations of tumour cellularity [33, 67]. The development of

computational image analysis systems for accurate counting of the cellular content may be an alternate

unbiased option for estimating tumour cellularity [70].

An ideal specimen for molecular testing would have a high proportion of tumour cells and a minimal

amount of mucin or necrotic cells. To obtain the best quality of specimens, techniques to enrich for tumour

cells can be applied. Pathologists can designate the tumour cell rich areas on the slides during the

histological review of the case and scrape off these areas from an unstained section, or alternatively core out

the marked area from the paraffin block. Flow cytometric sorting or laser-captured microdissection

techniques can be also used, but they are not practical or suitable in clinical practice.

With the rapid advance in detection methods with increasing sensitivity the analytical limitation of tumour

cellularity lessens, and samples with lower tumour cellularity can be molecularly profiled. The CAP/IASLC/AMP

guidelines recommended that, for EGFR-targeted therapy, sensitive molecular methods that can detect

mutations in specimens with as little as 10% tumour cells should be available [33]. Each laboratory should also

validate its sensitivity threshold for each assay and for each specimen type. However, the results of ultrasensitive

molecular assays with a sensitivity of below 1% should be carefully interpreted due to an increased chance of

artifactual mutations. The tumour cellularity of the samples and the detection limit of the molecular assay should

always be considered together [28, 69]. In addition, the significance of very low frequency EGFR mutations

detected with ultrasensitive methods should also be validated.

Pre-analytical processing of the specimens
The quality of a specimen is primarily influenced by pre-fixation time, the type of fixative and fixation time.

Significant biochemical alterations start to occur in tissues within 10 min after sampling or resection. The

pre-fixation time should be minimised to reduce the degradation of RNA and protein. The gross
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examination of the resected specimen and sectioning into thin slices should be performed as soon as

possible to facilitate the penetration of the fixatives [71].

Fresh, frozen, formalin-fixed or alcohol-fixed specimens can be used for molecular analysis. Fixation with

10% neutral-buffered formalin is routinely used to preserve clinical tissue specimens. However, formalin

fixation is not optimal for molecular analyses as it causes chemical cross-linking of proteins, and

fragmentation and chemical modification of nucleic acids [72, 73]. Random base alterations that generate

artefactual mutations can occur, typically in FFPE samples with low DNA concentration [55, 74].

Nevertheless, formalin fixation preserves morphological details and allows long-term storage of samples at

very low cost. Furthermore, most ancillary tests, including immunohistochemistry and molecular assays,

have now been optimised and validated for use on FFPE samples, and many high-throughput techniques

are being optimised for application to these samples [75, 76]. Clinical testing of EGFR mutations and ALK

gene rearrangement can be reliably performed using FFPE samples.

Frozen specimen provides a high quality of nucleic acids and proteins, and has been considered the most

optimal sample for most molecular analysis. However, freezing does not preserve the morphological details

of tissues well and the handling and storing of frozen samples requires highly controlled conditions and

costly infrastructure. Alcohol fixation generates a superior yield of nucleic acid compared with formalin, as

it does not cause the chemical changes found in formalin-fixed specimens [71, 77]. As most fixatives for

cytology preparation are alcohol bases, cytology specimens are appropriate for DNA-based molecular assays

[42]. However, they may alter the morphological details of the nucleus, and are not recommended for tests

that still depend on morphological evaluation, including fluorescent in situ hybridisation (FISH) [78].

Heavy metal fixatives are not suitable for most molecular analyses because they cause DNA fragmentation,

and the metals in the fixative compete with magnesium and interact with other enzymes that are critical in

molecular assays [79–81]. Bone is a common site for metastatic spread of lung cancer. Decalcification of the

specimens obtained from bony metastases should be avoided and tissues treated with decalcifying solutions

should not be used for molecular testing, as decalcifying solutions extensively degrade DNA [34]. This can

be overcome by using non-acid EDTA-containing decalcification solutions.

Optimal fixation time for molecular analysis is 6–12 h for small biopsy samples and 8–19 h for larger

surgical specimens [41]. The recent guidelines suggest that fixation times of 6–48 h are acceptable for

clinical molecular tests [33, 82]. A fixation time ,6 h is not recommended, since haematoxylin and eosin

staining, immunohistochemistry and FISH analysis are adversely affected. If the fixation time exceeds 48 h,

the quality of DNA deteriorates [72], and signals in FISH analysis become weaker [78].

TABLE 4 Recommendations for pre-analytical preparation for molecular analysis in advanced
lung cancer patients

Selection of biopsy site Primary tumour versus metastasis: equally suitable
Necrotic mass or bone metastasis: not suitable
Multiple synchronous primary tumours: each may be tested
Multiple-site biopsy in one tumour: not necessary
Sequential biopsies at different time point: optional

Sampling Biopsy is preferred over cytology
Obtain as much tumour tissue as clinically feasible
If only cytology is available, cell block is preferred
Plasma: needs further evaluation

Fixation Pre-fixation time should be minimised
Formalin fixation is recommended for biopsy specimen
Heavy metal fixatives or non-EDTA decalcifying solution should be avoided
Fixation time: ideally o6 h, but ,48 h

Pathologic diagnosis Limit the amount of immunohistochemistry for histological subtyping
Preserve maximum amount of specimen for molecular testing
ADC/NSCLC with ADC component and nonsmokers or light smokers: submit

specimen for EGFR and ALK testing
Tumour cell content o40% for Sanger sequencing

Lower tumour cell content acceptable with higher (1–10%) sensitivity
techniques

Tumour cell enrichment with macro- or microdissection: recommended

ADC: adenocarcinoma; NSCLC: nonsmall cell carcinoma; EGFR: epidermal growth factor receptor; ALK:
anaplastic lymphoma kinase.
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The role of the pathologists
In the era of personalised therapy, pathologists play an important role as a bridge between molecular testing

and the clinical oncologists. Communication between the pathologist and the clinician is very important in

determining the priority of the tests for individual patients. When the specimens are obtained, the clinical

data such as tumour stage and treatment plan are often not readily available. Therefore, it is judicious to

handle small diagnostic samples carefully, keeping in mind that they might be the only sample available for

molecular testing. The pathologists should be involved in all steps from sampling of the specimen to ensure

an adequate amount of specimen is obtained and to keep the specimens in good condition for molecular

analysis (table 4).

After the diagnosis of malignancy is established, further histological subtyping of lung cancer is relevant for

determining molecular testing strategies. Most tumours harbouring EGFR mutations as well as ALK gene

rearrangement are adenocarcinomas or nonsmall cell lung carcinomas with an adenocarcinoma component

[33]. A small biopsy or cytology sample showing histological subtypes other than adenocarcinoma does not

exclude the presence of an adenocarcinoma component in the non-biopsied lesion. Additionally, the

discrimination between adenocarcinoma and squamous cell carcinoma can be challenging in small biopsy

samples. Therefore, the guideline suggested that if the histological subtype is uncertain or when squamous

or small cell carcinoma patients have clinical features favouring EGFR mutation-positive subsets (e.g.

nonsmokers), it is best to send the sample for molecular testing [33].

Because EGFR and ALK testing are the most important steps for therapeutic decision making after a

diagnosis of adenocarcinoma is established, the CAP/IASLC/AMP guideline recommends preservation of a

maximum amount of specimen for potential molecular testing and limitation on the amount of

immunohistochemistry staining for histological subtyping [33]. For tumours with equivocal morphological

features, e.g. NSCLC with not otherwise specified feature, it has been recommended that only one or

two ancillary stains for each subtype be applied: thyroid transcription factor-1/napsin-A/mucin

for adenocarcinoma and p63/p40 or cytokeratin 5/6 for squamous differentiation [83, 84]. If the

immunohistochemistry study fails to result in a more specific diagnosis, the remaining tissue should be

submitted for molecular testing, rather than further exhaustion of specimen for subtyping [34]. All

specimens available from a patient including cytology samples should be considered for testing, and the

choice of which specimen would be the most adequate for testing should be determined by a pathologist

based on the specimen quality [33, 46, 47].

Reflex molecular testing ordered by the pathologist at the time of initial diagnosis would provide a more

readily available molecular profile when the oncologist sees the patient, but the pathologist should

communicate closely with institutional clinicians on which tests should be prioritised according to the

individual patient’s need. Reflex preparation of the block, which involves cutting multiple additional

unstained sections when the sample is processed initially in expectation of additional immunohistochem-

istry or molecular testing, may prevent waste of tissue by avoiding the re-cutting of blocks [34]. The

essential information should be shared among clinical oncologists, pathologists and molecular pathologists.

This can improve diagnosis accuracy and avoid waste of material that is intended for use in molecular analyses.

Conclusions
For the genomic profiling of lung cancer patients who will benefit from targeted therapy, sampling of

tumour tissue that can be taken as representative of the malignancy, and that is adequate in quantity and

quality is critical. Tumour specimens should be obtained as far as possible at the time of biopsy. A system of

rapid on-site evaluation by a pathologist or well-trained technician to assure adequacy of the sample is

desirable in cytological aspiration biopsies. Specimen quality such as tumour cellularity as well as

preservation and fixation status is crucial for optimal molecular analysis. The significance of genetic

heterogeneity of the tumour requires further investigation, and the significance and clinical application of

multiplex mutational analysis or next-generation sequencing is currently being evaluated in many centres.

The close communication between clinical oncologists, pathologists and molecular pathologists is critical to

ensure the most optimal way of obtaining adequate tumour tissues for accurate histopathological diagnosis

and molecular testing, and the proper guidance of treatment strategy for personalised cancer therapy.
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