European Respiratory Society Annual Congress 2013

Abstract Number: 7088 Publication Number: P3901

Abstract Group: 3.3. Mechanisms of Lung Injury and Repair

Keyword 1: ARDS (Acute Respiratory Distress Syndrome) **Keyword 2:** Mechanical ventilation **Keyword 3:** Lung mechanics

Title: The biological impact of different transpulmonary pressures during mechanical ventilation in experimental acute respiratory distress syndrome

Ms. Cynthia 662 Samary cynthiasamary@gmail.com¹, Ms. Raquel 663 Santos rss.quelzinha@gmail.com¹, Dr. Cíntia 664 Santos cintialsvet@gmail.com¹, Ms. Nathane 668 Félix nathanefelix@gmail.com¹, Ms. Maíra 669 Ramos mairamos7@gmail.com¹, Prof. Dr Cristiane 667 Baez-Garcia crisbaezgarcia@gmail.com¹, Dr. Pedro 670 Silva pedroleme@gmail.com¹, Prof. Paolo 665 Pelosi ppelosi@hotmail.com² and Prof. Dr Patricia 666 Rocco prmrocco@gmail.com¹. ¹ Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 21931560 and ² IRCCS AOU San Martino-IST, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.

Body: Low tidal volume (V_{τ}) and plateau pressure of the respiratory system (Pplat,rs) have become the cornerstone of protective mechanical ventilation in acute respiratory distress syndrome (ARDS) patients, reducing ventilator-associated lung injury (VALI). However, the key variable in determining pulmonary overdistension is delta transpulmonary pressure (ΔP ,L). Since, the importance of V_T versus PEEP as VALI determinants remains controversial, we investigated the effects of different $\Delta P,L$ generated by the combination of V_T and PEEP in experimental ARDS. Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24h, rats were randomized into groups according to ΔP ,L: low (7.5cmH2O), mean (10cmH2O), or high (12cmH2O). Different combinations of V_T and PEEP were applied: Δ P,Llow (V_T=6ml/kg, PEEP=3cmH₂O); Δ P,Lmean (V_T=6ml/kg, PEEP=9.5cmH₂O or V_T=13ml/kg, PEEP=3cmH₂O); Δ P,Lhigh (V_T=6ml/kg, PEEP=11cmH₂O or V_T=20ml/kg, PEEP=3cmH₂O), during 1h. ΔP ,Llow led to alveolar collapse and deterioration in gas exchange. Conversely, ΔP ,Lmean with PEEP=9.5 cmH₂O yielded alveolar hyperinflation and higher expression of markers related to hyperinflation [Amphiregulin and type III procollagen (PCIII)], inflammation (IL-6) and damage inflicted to type I pneumocyte (RAGE). In the ΔP , Lhigh groups, higher PEEP resulted in alveolar hyperinflation but PCIII, IL-6 and RAGE were lower compared to ΔP ,Lmean with PEEP=9.5cmH₂O whereas amphiregulin expression remained elevated. In conclusion, our results suggest that the smallest dynamic alveolar inflation preserved the integrity of the barrier reducing VALI.