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ABSTRACT The aerobic Gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen

responsible for life-threatening acute and chronic infections in humans. As part of chronic infection

P. aeruginosa forms biofilms, which shield the encased bacteria from host immune clearance and provide an

impermeable and protective barrier against currently available antimicrobial agents.

P. aeruginosa has an absolute requirement for iron for infection success. By influencing cell–cell

communication (quorum sensing) and virulence factor expression, iron is a powerful regulator of

P. aeruginosa behaviour. Consequently, the imposed perturbation of iron acquisition systems has been

proposed as a novel therapeutic approach to the treatment of P. aeruginosa biofilm infection.

In this review, we explore the influence of iron availability on P. aeruginosa infection in the lungs of the

people with the autosomal recessive condition cystic fibrosis as an archetypal model of chronic P. aeruginosa

biofilm infection. Novel therapeutics aimed at disrupting P. aeruginosa are discussed, with an emphasis

placed on identifying the barriers that need to be overcome in order to translate these promising in vitro

agents into effective therapies in human pulmonary infections.
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Introduction
Pseudomonas aeruginosa is an aerobic Gram-negative bacterium which is widespread in the terrestrial

environment. It is extremely robust and capable of surviving in challenging and varied environmental

niches, as exemplified by its isolation from jet plane fuel and bottles of disinfectant fluid [1]. This

adaptability is conferred by its large genome (approximately 6 Mb) and ability to survive as either a

planktonic organism or as a member of a codependent bacterial community within the confines of a

‘‘biofilm’’ [2, 3].

The genetic plasticity and biofilm-forming attributes of P. aeruginosa make it a highly successful pathogen

in multiple disease settings in eukaryotes. In humans, P. aeruginosa is an opportunistic pathogen, which is

responsible for life-threatening acute infections in burn victims and other critically ill patients, as well as

chronic infections and acute exacerbations in patients with respiratory diseases [4–6].

Iron is essential to the survival of virtually all prokaryotes and eukaryotes. The importance of iron to

P. aeruginosa is exemplified by the fact that 6% of its transcribed genes are iron-responsive [7]. The

concentration of bioavailable iron is a powerful regulator of P. aeruginosa behaviour, influencing

intercellular communication and biofilm formation [7].

In this review we explore how iron availability within the lung influences the development of chronic

P. aeruginosa biofilm infection in people with the autosomal recessive genetic disorder cystic fibrosis (CF),

and examine current research into how the iron dependency of P. aeruginosa may be targeted

therapeutically.

The susceptibility of the CF airway to infection
The CF airway is inherently prone to infection. In health, the luminal surface of the respiratory epithelium is

coated with airway surface liquid (ASL), comprised of mucins, immune cells and antimicrobial peptides.

ASL traps and kills inhaled pathogens which are then rapidly cleared by the mucociliary escalator. In CF,

impaired function of the CF transmembrane conductance regulator (CFTR) on respiratory epithelial cells

results in increased reabsorption of water from the airway lumen and dehydration of the ASL, with

consequent slowing of mucociliary clearance [8]. In addition, defective CFTR-mediated bicarbonate export

has been shown in animal models to result in a fall in ASL pH and further inhibition of ASL antimicrobial

activity [9]. A similar acidic environment exists in human disease [10]. These alterations in the biophysical

properties of ASL are compounded by deficits in airway innate immune defences, including defective iron

sequestration and degradation of antimicrobial peptides by high concentrations of endogenous and

bacterial-derived proteases, which produce an environment conducive to chronic infection [11, 12].

As CF lung disease progresses, plugging of distal airways by dehydrated, inspissated mucus creates

microaerobic or frankly anaerobic pockets within the normally aerobic environment [13, 14]. This low

oxygen environment drives phenotypic adaptation in incumbent bacteria and promotes the survival of

bacteria capable of existing at low oxygen tensions [13]. Bacterial respiration may further lower oxygen

tensions and potentially contribute to alteration in the pH of ASL, which will further impair the bactericidal

effects of several antibiotics (especially aminoglycosides) commonly used in CF [13, 15].

Respiratory tract infections in CF begin very early in life [16]. Initial intermittent infections are typically

caused by the common respiratory pathogens Staphylococcus aureus and nontypeable Haemophilus

influenzae [17]. By adulthood, a chronic polymicrobial airway infection develops, with P. aeruginosa

becoming the dominant pathogen in 80% of cases [17, 18]. Chronic P. aeruginosa infection leads to an

increased rate of lung function decline, morbidity and mortality [19]. Recent culture-independent

(metagenomic) microbiological techniques suggest that a wide range of additional bacterial species may also

infect the CF airway (including anaerobes), although little is currently known about the pathological

significance of these microbes [20, 21]. A key factor in the interplay between host tissues and bacterial

pathogens is the management of iron metabolism. The lung is exposed daily to a high oxygen concentration,

and unbound iron in atmospheric particulate matter can potentially catalyse the formation of reactive

oxygen species, as can ferrous and ferric iron in ASL. This provides the lung with unique challenges with

regards to iron homeostasis [22]. Airway cells rapidly sequester iron to prevent the generation of damaging

free radicals, and to withhold this key nutrient from inhaled pathogens. This is achieved through uptake of

nonprotein-bound iron by divalent metal-ion transporter 1 on the apical surface of bronchial epithelial cells

and by the secretion of the iron chelating proteins lactoferrin and transferrin into ASL [23].

The lung is highly adept at iron detoxification and iron is barely detectable in normal airway secretions. The

resulting lack of accessible iron inhibits the growth of infectious bacteria. However, respiratory secretions

and sputum from patients with CF contain micromolar concentrations of iron, making this micronutrient

more readily available to inhaled pathogens (airway iron indices from existing studies are presented in
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table 1) [24–28]. In vitro data suggest that this increase in lung iron may partly be due to defective iron

handling by CF bronchial epithelial (CFBE) cells [12].

Neutrophils represent the first line of cellular defence against bacterial pathogens and also participate in

iron-withholding by secreting lactoferrin and lipocalins. Lipocalin 2 binds and inactivates bacterial-derived

iron scavenging molecules (siderophores), although it is not thought to bind to the P. aeruginosa-derived

siderophores [29, 30]. The role of lipocalin 2 in the setting of polymicrobial infection has not been explored

in CF, although serum levels increase when patients develop an increased infective burden [31].

The development of P. aeruginosa biofilms in CF airways
Following initial airway infection, planktonic P. aeruginosa undergoes rapid phenotypic and genotypic

adaptation to prevent immune recognition. This is achieved by the formation of a biofilm, which offers

physical protection and downregulation of virulence factors [2, 32].

Biofilms comprise an extracellular matrix (ECM) of exopolysaccharides, extracellular DNA (eDNA) and

proteins produced by the resident bacteria. By trapping essential nutrients and providing a physical barrier

to host immune attack, biofilms offer a survival advantage to embedded bacteria. In the CF lung it is

proposed that P. aeruginosa binds abnormal mucins present in ASL to form biofilm ‘‘rafts’’ which float on

the respiratory epithelium [32]. Established biofilm infections cannot be eradicated with currently available

antibiotics or by the host’s neutrophilic inflammatory response [33].

Biofilm development is largely determined by its environment and available nutrients [34]. In vitro, biofilms

develop complex three-dimensional structures containing phenotypically distinct subpopulations of

bacteria connected by water channels formed within the ECM [35]. Iron is essential as a bacterial nutrient,

and lack of iron interferes with biofilm development [36]. Iron also contributes to the structural integrity of

the biofilm by cross-linking exopolysaccharide strands [37].

P. aeruginosa biofilm development is dependent on cell–cell communication. Quorum sensing is a

population density dependent form of communication employed by bacteria to control the synthesis of key

regulatory proteins. Quorum sensing is integral to all activities of the bacterial community, including

biofilm formation. P. aeruginosa employs three quorum sensing systems (Las, Rhl and Pseudomonas

quinolone signal (PQS)), each of which is iron responsive [38–41].

Under conditions of limited iron availability, both the Las and Rhl systems are activated [38, 39]. The

relationship between the PQS system and iron is complex. PQS is able to operate as an iron chelator,

thereby controlling the activation of the Las and Rhl systems through iron limitation [42]. Conversely, PQS

synthesis is increased under conditions of both iron limitation and excess [40].

An important gene cluster under the control of Rhl is the rhlAB operon that regulates production of the

biosurfactant rhamnolipid. Rhamnolipid acts as a ‘‘wetting agent’’, reducing surface tension and promoting

surface-associated movement (twitching motility). Correctly timed production of small quantities of

rhamnolipid is critical for the production of water channels within the core of mature P. aeruginosa

biofilms, through which motile bacteria are able to travel. In vitro, inhibition of rhamnolipid production

leads to the formation of flat, thick, immature biofilms [43]. In contrast, excessive rhamnolipid promotes

the dispersal of mature biofilms and causes newly formed biofilms to be thin and flat [44, 45]. When iron

availability is limited, increased rhamnolipid production and twitching motility prevents biofilm

development, or triggers biofilm dispersal, depending on the stage of biofilm maturation [44, 46].

Paradoxically, supraphysiological iron concentrations appear to be detrimental to biofilm development.

Normal human plasma contains 20–25 mM of iron, ,1 mM of which is protein-bound. Biofilms grown in

medium containing 100 mM of iron contain less eDNA, fail to develop complex macrocolonies and are

more susceptible to antimicrobials compared with biofilms grown in an equivalent 1 mM iron medium [47].

Similarly, exposing established biofilms to medium containing 200 mM of ferric ammonium citrate triggers

dispersal events and facilitates antibiotic killing [48].

Iron acquisition by P. aeruginosa
P. aeruginosa may take up iron from either haem or nonhaem iron sources (fig. 1). Two haem uptake

systems have been described in P. aeruginosa (Phu and Has) [49]. The Phu system relies on direct binding of

haem or haem-containing proteins to a membrane-bound receptor, whereas the Has system secretes a

haem-binding protein (HasAp) which is reabsorbed through the Has receptor (HasR) when bound to haem

[50, 51]. The P. aeruginosa genome contains a third haem receptor-encoding gene (hxuC); however, its

functional regulation has yet to be characterised [52]. It is unknown whether haem uptake systems are

employed by P. aeruginosa within the CF lung; however, patients frequently have frank blood in their

sputum and subclinical bleeding into the airway is probably common.
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Haem is an uncommon iron source in the natural environment and P. aeruginosa must also be capable of

scavenging nonhaem iron, which under aerobic conditions is most probably present in the poorly soluble

ferric (Fe3+) form. P. aeruginosa (and other bacteria and fungi) therefore produces high-affinity iron

chelating siderophores [53]. Siderophores are secreted by P. aeruginosa into the local environment to chelate

free iron and ‘‘strip’’ iron from host iron-binding proteins.

Two distinct siderophores have been characterised in P. aeruginosa: pyoverdine and pyochelin. .50 distinct

pyoverdine subtypes have been characterised and are responsible for the distinctive yellow-green

fluorescence of certain pseudomonads [54]. Pyoverdines are the primary siderophore produced by

P. aeruginosa, with one of three distinct subclasses being produced by individual strains [55].

Pyochelin is considered a secondary siderophore in P. aeruginosa, having a much lower iron binding affinity

than pyoverdine [52, 53]. Pyochelin appears to have less influence on the biofilm forming capacity of

P. aeruginosa than pyoverdine, and its importance for iron acquisition during clinical airway infections is

unclear [36, 53]. In addition to acquiring iron using autologous siderophores, P. aeruginosa has a high

capacity to take up iron-laden siderophores produced by other bacteria and fungi [52].

P. aeruginosa, while naturally an aerobic bacterium, is capable of adapting to low oxygen environments such

as those encountered within plugged CF airways. Within these regions of low oxygen tension and low pH

there is potential for the redox status of iron to change to the more ‘‘soluble’’ ferrous (Fe2+) form, but there

are currently no data on this scenario in CF lung disease. Ferrous iron may be acquired by P. aeruginosa by

passive diffusion or uptake through the FeoB receptor, although the role of these mechanisms in the clinical

setting is at present unclear [56].

P. aeruginosa iron acquisition systems are tightly controlled by the ferric uptake regulator (Fur). Fur acts

both directly and indirectly, through extracytoplasmic sigma factors (including PvdS), to limit iron

absorption [57]. Under iron-replete conditions, Fur binds ferrous iron and attaches to a consensus sequence

(Fur-box) in the promoter region of genes instrumental in iron acquisition, thus suppressing their

transcription [58]. In the presence of iron, Fur inhibits iron conservation strategies by suppressing the

production of two small RNAs (PrrF1 and PrrF2) [59]. In the absence of iron these small RNAs are

Airway lumen
Aerobic

Haem

Biliverdin

Xenosiderophore
Transferrin

Pyoverdine

Pseudomonas
aeruginosa

Biofilm
?Low pH/anaerobic

FpvA

Has
receptor

Phu
receptor

FeoB
HasAp

Fe3+

Fe2+

FIGURE 1 Pseudomonas aeruginosa iron acquisition pathways.
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synthesised and facilitate inhibition of genes that encode ‘‘nonessential’’ iron-containing proteins, thereby

maintaining the cytoplasmic iron pool for essential use [60]. Under low iron environments siderophore

synthesis increases and nonessential iron-consuming processes are downregulated. Several excellent

comprehensive reviews of the iron acquisition systems employed by P. aeruginosa have recently been

published [36, 52, 53, 57, 60], but the above overview highlights the central role of iron in P. aeruginosa

biofilm development.

Targeting bacterial iron acquisition as a therapeutic strategy
The critical role of iron in P. aeruginosa survival and biofilm formation may represent a potential ‘‘Achilles’

heel’’ in the defensive armamentarium of this fastidious pathogen. Thus considerable research endeavours

on a variety of fronts are being undertaken to develop novel therapeutic strategies based on disruption of

bacterial iron homeostasis. These therapeutic strategies may be particularly important in CF where host iron

homeostatic mechanisms appear to be abnormal.

Delivering toxic amounts of iron to P. aeruginosa
In vitro studies have suggested that iron-laden synthetic chelators can be utilised to deliver high

concentrations of iron to biofilm-dwelling P. aeruginosa with resultant biofilm disruption [61]. While this

approach demonstrates promise in vitro, the high redox activity of iron and potential for harmful reactive

oxygen species generation within the human airway must be considered. Animal studies suggest that iron

loading can potentiate proinflammatory cytokine responses to P. aeruginosa lipopolysaccharide and increase

lung injury, highlighting the potential danger of iron therapy [62]. Furthermore, detrimental effects of iron

in the lung are well described [63], and this may potentially be accentuated in the CF lung where iron

handling appears to be defective [12].

Iron mimetics
Gallium (Ga3+) has a similar ionic radius to Fe3+ and is mistaken for Fe3+ by many biological systems.

However, Ga3+ lacks the redox activity of iron and consequently competitively inhibits iron-dependent

processes [64]. In vitro studies have shown that Ga3+ can prevent the growth of planktonic and biofilm-

dwelling P. aeruginosa and disperse established biofilms, with transcriptomic analysis suggesting that this

effect is mediated through inhibition of iron acquisition systems including repression of pvdS gene [65].

Mouse infection models have demonstrated ‘‘cure’’ of P. aeruginosa-induced pneumonia and wound

infections by local application of Ga3+ [65, 66]. A preparation of gallium conjugated to the siderophore

desferrioxamine is undergoing in vitro and animal studies. This preparation aims to utilise the siderophore

to improve delivery of gallium to biofilm-dwelling bacteria. Initial studies indicate that this agent has

powerful anti-P. aeruginosa biofilm actions, in particular when combined with the aminoglycoside

antibiotic gentamicin [67].

Gallium salts have established medical applications in the systemic treatment of malignant hypercalcaemia

and in the diagnostic imaging of haematological malignancies [68]. Currently licensed preparations have

poor oral bioavailability and are associated with a risk of nephrotoxicity, diarrhoea, hypocalcaemia,

microcytic anaemia and immunosuppression when administered systemically [68]. Although the risk of

toxicity is acceptably low when Ga3+ is used in short courses for currently licensed indications, little is

known about its cumulative toxicity when used in long-term maintenance regimens as would probably be

required to prevent P. aeruginosa infection in the CF airway. A safety study of intravenous gallium nitrate

(Ganite; Genta Inc., Berkeley Heights, NJ, USA) (dose regimen 100 or 200 mg?m-2?day-1 for 5 days) in

patients with CF was commenced in April 2010 and the results of this study are awaited (clinicaltrials.gov/

ct2/show/NCT01093521).

An inhalational preparation of gallium would potentially overcome the obstacle of poor bioavailability and

deliver high concentrations to biofilms while limiting systemic toxicity, but there are limited data about the

safety of this approach. Gallium arsenide is utilised in the microelectronics industry and has undergone

toxicological studies to assess the risk to workers from inhalation exposure [68]. Reported changes induced

by gallium arsenide inhalation or tracheal instillation in animal models include epithelial hyperplasia,

squamous metaplasia, benign and malignant lung tumours, and haematological malignancy [68]. Although

these side-effects may be attributed to arsenide, a potentially toxic effect of gallium must also be considered.

To the best of our knowledge the safety of gallium nitrate by inhalation in animal models has only been

reported in abstract form [69]. In this single study, no excess toxicity was demonstrated; however, dosing

was limited to a single 6-h exposure.

CYSTIC FIBROSIS | D.J. SMITH ET AL.

DOI: 10.1183/09031936.001240121728



Iron chelators
Exogenously administered, high-affinity iron chelators may be utilised to out-compete P. aeruginosa

siderophores for available iron. Two such approaches have been proposed, first through the use of naturally

occurring biological chelators such as lactoferrin, and secondly through the administration of entirely

synthetic compounds.

Biological iron chelators
Lactoferrin
Lactoferrin is an antimicrobial glycoprotein with iron chelating properties. Lactoferrin represents a major

endogenous antimicrobial constituent of airway secretions [70]. In addition to iron chelation, lactoferrin

may induce bacterial cell lysis through interactions with lipopolysaccarhide and it may also prevent bacterial

invasion of epithelial cells through competitive binding and proteolytic degradation of surface associated

adhesion proteins [71].

In the presence of intense neutrophilic inflammation, as seen in CF airway infection, lactoferrin

concentrations would be expected to be greatly elevated in respiratory secretions. However, the CF lung

displays relatively low levels of lactoferrin, which are most depleted in the presence of P. aeruginosa [72].

This reduction is due partly to proteolytic degradation by high concentrations of proteases present in the CF

airways, which serves to increase susceptibility to P. aeruginosa infection and promote biofilm growth [72].

In vitro, lactoferrin is capable of inhibiting P. aeruginosa biofilm development; however, there is conflicting

evidence over whether or not this is mediated through iron chelation [73–75]. In pivotal studies conducted

by SINGH [75] and others, lactoferrin induced twitching motility and repressed biofilm formation in a

manner similar to that seen with iron limitation. Similarly, the biofilm-disrupting effects of apo-lactoferrin

were neutralised by pre-loading lactoferrin with iron, suggesting that at least some of the effect was

mediated by iron chelation [74, 75]. However, O’MAY et al. [73] demonstrated that the efficacy of

lactoferrin in biofilm disruption was augmented at higher iron concentrations (250–500 mM), suggesting an

iron chelation-independent method of biofilm disruption.

The efficacy of lactoferrin supplementation in vivo is beginning to be investigated. However, the potential

for proteolytic degradation may impact on the clinical efficacy of this therapeutic approach in vivo.

Lactoferrin combined with hypothiocyanate
Production of hypothiocyanate in ASL is another important innate immune defence strategy that appears to

be defective in CF lung [11]. Hypothiocyanate is normally formed by the oxidation of thiocyanate, but CF

epithelial cells do not secrete thiocyanate [11]. A combination preparation of lactoferrin and hypothiocyanate

(Meveol; Alaxia, Lyon, France) delivered by inhalation is undergoing development (www.alaxia-pharma.eu/

meveol), and has been granted orphan drug status to promote clinical trials. To date, in vitro and animal data

demonstrating its antimicrobial actions have only been presented in abstract form.

Synthetic iron chelators
Synthetic iron chelators developed primarily for the treatment of conditions associated with systemic iron

overload display much higher iron binding affinities than biological iron-carrying proteins and therefore

potentially offer greater competition to bacterial siderophores. A number of authors have reported on the

ability of these agents to disrupt P. aeruginosa biofilms; however, the bacterial strains studied, chelators

employed and culture models utilised have varied between studies (table 2).

MOREAU-MARQUIS et al. [76] investigated the effects of the currently licensed iron chelators deferasirox and

deferoxamine on P. aeruginosa biofilms grown on CF epithelial cells. These studies indicated that both

agents were able to prevent biofilm growth as well as disrupt established biofilms. Their efficacy was further

enhanced when they were co-administered with the antipseudomonal antibiotic tobramycin.

In addition to demonstrating the antibiofilm properties of a number of synthetic chelators, O’MAY et al.

[73] showed an increased efficacy of these agents against anaerobically grown biofilms, highlighting the

important role that local environmental conditions may play when these interventions are deployed in vivo.

In similar experiments, BANIN et al. [30] demonstrated disruption of P. aeruginosa PAO1 biofilms by EDTA,

which was augmented by the aminoglycoside gentamicin. However, in contrast, LIU et al. [77] suggested

that EDTA administered alone could potentiate PAO1 biofilm formation, yet it inhibited biofilm growth

when co-administered with the efflux pump inhibitor phenyl-arginine-b-naphthylamide. Possible

explanations for the different findings in these two studies include differences in biofilm model, the

ability of EDTA to chelate multiple divalent cations in addition to Fe2+ and the chelator concentrations used

(14.6 mg?mL-1 versus 5 mg?mL-1) [30, 77].
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Siderophore–antibiotic conjugates and the ‘‘Trojan horse’’ approach
Reduced membrane permeability, antibiotic efflux pumps and antimicrobial inactivating enzymes (e.g.

b-lactamases) are defence strategies employed by biofilm-dwelling bacteria which augment the physical

protection offered by the ECM. The essential requirement for iron trafficking mediated by siderophores in

biofilm-dwelling pseudomonads has driven the concept of ‘‘hijacking’’ this system to circumvent the

protection offered by the ECM and cell membrane impermeability. As a result, siderophore–antibiotic

conjugates (SACs) have been developed which may function as ‘‘Trojan horses’’ [78–80].

Naturally occurring SACs termed sideromycins were discovered many years prior to the description of

siderophore trafficking [80]. Sideromycins are produced by Actinomyces and Streptomyces species as

antimicrobials against competing micro-organisms. These agents rely heavily upon their recognition by the

iron uptake system of the target species and, disappointingly, they display limited activity against

P. aeruginosa [81, 82].

Penicillin–siderophore conjugates have been proposed as leading candidates for synthetic SACs. These

compounds have the advantage of having a distinct antibiotic active site and siderophore conjugation site,

which means that there is no need for the antibiotic to dissociate from the siderophore to exert its effect.

Furthermore, the antibacterial action of penicillin is exerted through attachment to penicillin binding

proteins located in the periplasm. Thus, the conjugated molecule needs only traverse the bacterial outer

membrane to be effective. Recent in vitro and mouse model data have demonstrated that an ampicillin-

based SAC has superior antibacterial actions against a range of laboratory and clinical strains of

P. aeruginosa (and other Gram-negative bacteria) compared to the commonly prescribed antipseudomonal

antibiotics meropenem, imipenem and ciprofloxacin [83]. Similar in vitro experiments performed with

b-lactam antibiotics conjugates have yielded mixed results [78, 84]. A sulfactam-containing SAC has

demonstrated potent activity against multi-antibiotic resistant P. aeruginosa strains (minimum inhibitory

concentration required to produce 90% inhibition 8 mg?mL-1), whereas a monobactam SAC demonstrated

only modest improvements in minimum inhibitory concentrations against ‘‘epidemic’’ CF P. aeruginosa

strains when compared to established antipseudomonal antibiotics [78, 84].

TABLE 2 In vitro studies employing synthetic iron chelators in the treatment of Pseudomonas aeruginosa biofilms

First author [ref.] Year Iron chelators Adjuvant
treatment

Biofilm model
employed

Outcomes

LIU [77] 2010 2DP
Acetohydroxamic

acid
EDTA

PabN Coverslip EDTA, 2DP and acetohydroxamic acid each
worked synergistically to reduce biofilm
growth

EDTA alone increased biofilm growth
MOREAU-MARQUIS [76] 2009 Deferasirox

Deferoxamine
Tobramycin CFBE cell-lined flow

cells
Static CFBE cells

Abiotic static culture

Deferasirox and deferoxamine reduced biofilm
growth on CFBE cells and potentiated the
effects of tobramycin

Deferasirox and deferoxamine acted
synergistically with tobramycin to disrupt
biofilms grown on CFBE cells

Neither deferasirox nor deferoxamine disrupted
biofilms on abiotic static surfaces

O’MAY [73] 2009 DPTA
Deferoxamine

2DP
EDDA
EDTA

Borosilicate glass
tubes (aerobic and

anaerobic)
Flow cells

2DP, DPTA and EDTA impaired biofilm growth
2DP disrupted established biofilms
Antibiofilm effects of all iron chelators were

greatest against anaerobically cultured
biofilms

BANIN [30] 2006 EDTA Gentamicin Disk reactor
Flow cells

EDTA reduced biofilm-associated cells by .99%
EDTA increased biofilm dispersal events
Coadministration of gentamicin increased

bacterial killing
Antibiofilm effects were overcome by divalent

cationic Mg2+, Ca2+ and Fe2+

2DP: 2,2,dipyridyl; PabN: phenyl-arginine-b-naphthylamide; CFBE: cystic fibrosis bronchial epithelial; DTPA: diethylenetriaminepentacetic acid;
EDDA: ethylenediamine-N,N9-diacetic acid.
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Other potential targets based on iron homeostasis
Additional potential strategies to disrupt P. aeruginosa iron homeostasis include competitive inhibition of

siderophore uptake through the use of siderophore mimetics or monoclonal antibodies, which bind to

bacterial siderophore receptors but do not deliver bioavailable iron [85, 86]. These techniques are in their

infancy and there is little published work on the effect of these strategies with regards to P. aeruginosa. Such

therapies are likely to be very expensive.

Advances in crystallography are defining the structural composition of enzymes involved in bacterial

siderophore synthesis, which may lead to targeted inhibitors of these pathways. Characterisation of the

structure of salicylation enzymes involved in the synthesis of siderophores by Mycobacterium tuberculosis

and Yersinia pestis have resulted in the development of the synthetic compound 5-O-(N-salicylsulfamoy-

l)adenosine (salicyl-AMS), which has been shown to inhibit the growth of both M. tuberculosis and Y. pestis

under iron-limiting conditions [87]. The design of similar agents that are active against P. aeruginosa has yet

to be described, although they are likely to be developed in time.

Finally, iron acquisition pathways may be targeted in vaccine development. Attempts to develop clinically

efficacious vaccines against P. aeruginosa have, to date, been unsuccessful [88]. Obstacles include

P. aeruginosa’s multiple antigenic determinants, multiple serotypes of these determinants between clinical

strains and the different expression of determinants under different conditions (e.g. planktonic and biofilm

growth) [89]. Application of proteomic and bioinformatics techniques to the study of uropathogenic

Escherichia coli identified six highly conserved iron uptake surface membrane receptors [90]. Deployment of

a polyvalent vaccine against three of these receptors in a murine model resulted in effective protection

against urinary tract infection [90]. P. aeruginosa iron-regulated outer membrane proteins are also

immunogenic, but their potential as vaccine targets has not been explored [91].

Strategies to limit iron in the setting of a polymicrobial infection
Any new intervention directed against P. aeruginosa must consider the potential impact on copathogens, as

suppression of the dominant pathogen may allow the emergence of other, potentially more harmful, infections.

In common with P. aeruginosa, other commonly isolated CF airway pathogens, including S. aureus,

H. influenzae and Burkholderia cepacia complex (BCC), are capable of biofilm development and each have

an absolute requirement for iron [92–96].

In a single published study on the effect of gallium on planktonic and biofilm grown BCC, strains were

exposed to gallium nitrate at concentrations of up to 64 mg?L-1 (,250 mM Ga3+) [97]. Disappointingly,

there was little effect seen on either planktonic or biofilm growth. These results have been challenged on the

basis that the concentration of gallium used was lower than could be safely administered therapeutically

[98]. However, in a similar study examining the effects of gallium maltolate on the growth of S. aureus and

S. epidermidis biofilms, equally disappointing results were reported, and minimal inhibitory concentrations

far in excess of those that could be safely administered systemically (.3000 mg?L-1) were needed to achieve

biofilm inhibition [99].

There are few studies of iron chelator effects on CF bacterial pathogens other than P. aeruginosa (table 3)

[100–103]. The effect of the synthetic chelators deferiprone and deferoxamine against a number of

staphylococcal species grown in broth cultures has been examined [103]. Deferiprone inhibited growth of

all species studied, but desferrioxamine promoted growth in a number of staphylococcal species [103].

Similarly, it has been demonstrated that S. aureus can take up iron hydroxamates such as desferrioxamine

and utilise them as an iron source to promote biofilm growth [101, 104].

Translational research and the challenges of targeting P. aeruginosa iron
homeostasis in the human lung
Despite the early promise of a number of the agents discussed above in vitro, important questions remain to

be answered about their safety and efficacy before advancing to human trials.

The majority of the work presented above has been performed using common laboratory-adapted strains of

P. aeruginosa, which vary both genetically and phenotypically from clinical strains isolated from the CF

lung. Additionally, studies have considered only a limited number of environmental variables and often use

conditions that are distinct from those within the CF lung, where there is reduced oxygen tension,

significant amounts of extracellular iron, low pH and a hostile milieu replete with proteases and free radicals

[2, 10, 13]. In the very limited work performed with clinical isolates, different responses to iron-targeted

therapies have been reported, both between clinical and laboratory strains, and between clinical isolates

from different patients [73].
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Although there have been no studies of treatments targeting bacterial iron homeostasis under ‘‘CF lung

conditions’’, factors including pH, glucose source and oxygen availability have been shown to affect the biofilm-

forming capacity of airway pathogens [32, 73, 101]. Consequently, if new agents are to be successful they must

remain active over a wide pH range, and compete with both ferrous and ferric iron acquisition systems.

Iron limitation in vitro triggers the dispersal of motile planktonic bacteria with increased virulence

compared to their biofilm-dwelling counterparts, and thus the potential for biofilm disruption to trigger an

acute host inflammatory response [105]. To better understand the inflammatory potential of these agents

testing in an animal model is desirable; however, representative models of CF airway infection are limited.

Mice containing the major CFTR gene mutations (e.g. DeltaF508, G551D) do not develop spontaneous

airway infections and P. aeruginosa has to be introduced directly into the mouse lung where it is either

spontaneously cleared or results in overwhelming infection [106, 107]. Successful chronic mouse airway

infection has been achieved by introducing P. aeruginosa bound to agar beads into the trachea and by

contaminating drinking water with P. aeruginosa [108], but how closely this reflects human disease is

debated. More recently, pig and ferret models of CF have been developed, which may more closely mimic

human respiratory disease [109, 110].

Finally, the route of administration must be considered. The concentrations of gallium required for activity

against S. aureus and BCC biofilms are well above those considered safe for systemic delivery in humans,

suggesting that inhalation may be the only viable option to safely administer the required dose. Similarly, in

vitro studies suggest iron chelators delivered directly to biofilms grown on the apical membrane of CFBE

cells inhibit growth more effectively than when they are applied to the basal membrane, suggesting that

direct delivery to the airway may also be the preferred mode of delivery for these compounds [76]. The

possibility of localised delivery of chelators is supported by in vitro modelling, which has suggested that

chelated iron may be effectively aerosolised to a particle size suitable for lung delivery [61].

Conclusions
As our understanding of the biology of bacterial biofilms expands, new therapeutic possibilities present

themselves. Given the absolute requirement for iron of P. aeruginosa and other CF airway pathogens,

disrupting iron utilisation is an exciting avenue for further research. The results of the safety trial of

intravenous gallium are eagerly awaited. Future studies of iron chelation therapy will need to test the

efficacy of these agents against clinically relevant P. aeruginosa strains and establish their safety within

animal models, before proceeding to human trials.

TABLE 3 The effect of iron chelators on common cystic fibrosis airway pathogens

First author
[ref.]

Year Bacteria tested Iron chelators Culture model employed Outcomes

AGUILA [102] 2001 S. aureus (clinical and
laboratory isolates);

MRSA

Lactoferrin Broth cultures in iron
depleted minimal media or

normal human serum

Lactoferrin was bacteriostatic against
most clinical and laboratory strains,
including many antibiotic-resistant
strains

PERCIVAL [100] 2005 S. aureus; S. epidermidis;
P. aeruginosa; MRSA;
E. coli; K. pneumoniae

EDTA Silicon tubing, central venous
catheter model

Exposure of catheter-related biofilm to
EDTA for 25 h inhibited biofilm
growth of all bacterial species

KIM [103] 2009 S. aureus; S. epidermidis;
S. saprophyticus

DFO
Deferiprone

Broth culture in minimal
media

DFO promoted the growth of some
species (especially S. aureus)

Deferiprone inihibited the growth of all
species tested

AL-AZEMI [101] 2011 S. aureus# EDTA
DFO

Coverslip static biofilm EDTA impaired biofilm growth
DFO at low concentration (100 mM)

stimulated biofilm growth
DFO concentrations .1 mM inhibited

growth
EDTA and DFO displayed synergistic

antibiofilm effects

S. aureus: Staphylococcus aureus; MRSA: methicillin-resistant S. aureus; S. epidermidis: Staphylococcus epidermidis; P. aeruginosa: Pseudomonas
aeruginosa; E. coli: Escherichia coli; K. pneumoniae: Klebsiella pneumoniae; S. saprophyticus: Staphylococcus saprophyticus; DFO: desferrioxamine B.
#: Panton–Valentine leukocidin-positive community-acquired methicillin-sensitive S. aureus.
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