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ABSTRACT Airway obstruction and parenchymal destruction underlie phenotype and severity in chronic

obstructive pulmonary disease (COPD). We aimed to predict, by clinical and pulmonary function data, the

predominant type and severity of pathological changes quantitatively assessed by computed tomography

(CT).

Airway wall thickness (AWT-Pi10) and percentage of lung area with X-ray attenuation values ,-950 HU

(%LAA-950) were measured in 100 (learning set) out of 473 COPD outpatients undergoing clinical and

functional evaluation. Original CT measurements were translated by principal component analysis onto a

plane with the novel coordinates CT1 and CT2, depending on the difference (prevalent mechanism of

airflow limitation) and on the sum (severity) of AWT-Pi10 and %LAA-950, respectively. CT1 and CT2,

estimated in the learning set by cross-validated models of clinical and functional variables, were used to

classify 373 patients in the testing set.

A model based on diffusing capacity of the lung for carbon monoxide, total lung capacity and purulent

sputum predicted CT1 (r50.64; p,0.01). A model based on forced expiratory volume in 1 s/vital capacity,

functional residual capacity and purulent sputum predicted CT2 (r50.77; p,0.01). Classification of

patients in the testing set obtained by model-predicted CT1 and CT2 reflected, according to correlations

with clinical and functional variables, both COPD phenotype and severity.

Multivariate models based on pulmonary function variables and sputum purulence classify patients

according to overall severity and predominant phenotype of COPD as assessed quantitatively by CT.
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Introduction
Chronic obstructive pulmonary disease (COPD) is diagnosed in the presence of a ratio of forced expiratory

volume in 1 s (FEV1) to forced vital capacity (FVC) ,70%, and assessed for severity according to the level

of expiratory airflow limitation as measured by FEV1 [1]. Clinical conditions whose pathogenetic

mechanisms and degrees of severity could substantially differ are unified under the term COPD by the

spirometric detection of airflow limitation. FEV1 alone and its ratio to FVC can be considered reliable

screening tools because they reflect both airway obstruction and emphysema. However, spirometry does not

provide by itself an overall evaluation of the complexity and the severity of COPD [2–6]. The concept that

expiratory airflow limitation, the hallmark of COPD, could be the common result of different lung

pathologic changes, such as the obstruction of the conductive airways, the destruction of the lung

parenchyma or various combinations of the two, has evolved from the seminal observations of the middle

decades of the twentieth century [7] to the current explosion of interest in identifying the clinical

phenotypes of COPD [8]. Recently, respiratory symptoms and prevalence of exacerbations have been

introduced as new dimensions for the definition and grading of COPD in individuals [9, 10].

Quantitative computed tomography (CT) studies of COPD opened a new era for the understanding of the

mechanisms underlying airflow limitation. CT can provide in vivo information to assess the severity of the

disease and to differentiate patients with predominantly conductive airway obstruction from those with

predominantly emphysematous destruction [11–17]. Recent software developments for CT data analysis have

increased the reliability of the measurements of the pathological changes occurring in COPD lungs. In general,

there is evidence that quantitative CT data identify the predominant phenotype [18–22] and assess the overall

severity [23–27] of COPD with considerable accuracy. However, considering the high prevalence of COPD in

the general population, the cost of the examination, and the risks associated with the radiation exposure

necessary to obtain a CT scan [28], it is evident that quantitative CT scan data cannot, at present, be obtained

in all patients affected by COPD. Further technological improvements of CT may possibly increase its use in

the future in patients, such those with COPD, in whom the age-related risk of radiation exposure could be

substantially low. It remains to be ascertained whether and to what extent evaluation by quantitative CT can be

related to the conventional characterisation of COPD by accurate clinical history and lung function evaluation

entailing, in addition to spirometry, static lung volumes and diffusing capacity.

The aim of this study was to establish a link between quantitative CT data on lung density and airway wall

thickening [22, 29] and clinical and whole pulmonary function evaluation in a series of patients affected by

COPD. In particular, by using a statistical approach allowing the classification of patients by large sets of

variables, avoiding a priori expectations about disease characteristics, we wanted to ascertain whether the

overall severity and the predominant type of the lung pathologic changes quantitatively assessed by CT

could be predicted by clinical and pulmonary function data.

Methods
Patients and study design
This single-centre cross-sectional study was approved by the Ethics Committee of the Florence University

Hospital (Florence, Italy). All participants provided written informed consent. From September 2010 to

September 2011 we recruited 473 outpatients (98 females) with COPD through the outpatient clinic.

Patients recruited are some of those participating in the Clinical Identification of the Phenotypes of COPD

study. Diagnosis of COPD was based on Global Initiative for Chronic Obstructive Lung Disease (GOLD)

guidelines [1]. We included patients aged 40–85 years with COPD in GOLD stages I–IV and a smoking

history of o10 pack-years who showed nonreversible post-bronchodilator airflow obstruction. We

excluded subjects within 1 month of an exacerbation or who had clinical conditions that could interfere

with the assessment of pulmonary function or chest CT quantitative parameters, including asthma, diffuse

bronchiectasis, cystic fibrosis, interstitial lung disease, acute heart failure, chemo-/radiation therapy, lung

cancer, lung surgery, known or suspected pregnancy and metal objects in the chest.

All patients underwent full clinical and functional lung evaluation. The study was designed to obtain in a

group of patients (the learning set) quantitative CT parameters evaluating lung density and airway wall

thickness. By means of a data-driven statistical procedure, we derived from the original CT parameters two

CT indexes that aimed to reflect both the underlying mechanisms of airflow limitation and the overall

severity of the disease. Considering clinical and functional data as independent variables, we developed two

multivariate models to predict the two CT indexes in the learning set. Model-predicted CT indexes were

then used to classify a second, larger group of patients not undergoing CT scanning (the testing set).

Inclusion in the learning or the testing set was not based on predefined selection criteria, but on the

patient’s willingness to participate in the CT study and on the availability of the CT equipment within 48 h

of the clinical and functional evaluation.
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Clinical and functional evaluation
Evaluation of patients consisted of a thorough clinical history focused on respiratory symptoms, such as

cough frequency and sputum characteristics, and administration of the modified Medical Research Council

(mMRC) questionnaire for the assessment of dyspnoea severity. Cough was scored as 0 if absent, 1 if

occasional and 2 if chronic. Sputum was scored as 0 if absent/occasional, 1 if chronic nonpurulent and 2 if

chronic purulent.

Static and dynamic lung volumes and single breath diffusing capacity of the lung for carbon monoxide

(DLCO) were measured by a mass-flow sensor and a multi-gas analyser (V6200 Autobox Body

Plethysmograph; Sensor Medics, Yorba Linda, CA, USA) according to American Thoracic Society (ATS)/

European Respiratory Society (ERS) guidelines, and expressed as percentages of the predicted values [30].

CT data acquisition and analysis
100 (learning set) out of the 473 patients underwent volumetric chest CT at full inspiration. Patients were

previously trained to inspire at total lung capacity (TLC) while lying in the CT acquisition bed. CT scans

were obtained by the same team of diagnostic radiology personnel using the same CT scanner (Sensation 64;

Siemens, Erlangen, Germany) to ensure uniformity of image acquisition. CT scans were acquired at

120 kVp, 200 mAs, standard B31f reconstruction kernel, slice thickness of 0.75 mm and slice interval of

0.5 mm. CT examinations were analysed using the software Apollo 1.1 (VIDA Diagnostics Inc., Coralville,

IA, USA). The extent of parenchymal destruction was assessed by measuring the percentage of lung area

with X-ray attenuation values , -950 HU (%LAA-950). To overcome possible errors deriving from sampling

bias and from different sizes of the airways in different individuals, the dedicated software standardises the

measure of airway wall thickness for each patient by plotting the square root of the airway wall area against

the internal perimeter of each airway cut in cross-section [31]. The resulting regression line is used to

predict the square root of the wall area for an arbitrary airway with an internal perimeter of 10 mm and to

calculate its average wall thickness (AWT-Pi10) [20, 29, 31, 32].

Statistical analysis
Pearson’s correlation analysis was used to study the association between quantitative variables; ANOVA was

used to analyse the relationships between quantitative and clinical categorical variables. t-test and ANOVA

were used to compare the means of quantitative variables among different subsets of patients. Chi-squared

test was performed to compare the prevalence of categorical variables. Significance was set at p,0.05.

Principal component analysis (PCA) [33] was used to derive two novel parameters (CT1 and CT2) from the

originally measured CT variables (%LAA-950 and AWT-Pi10), combining the information contained

therein. PCA is a data-driven statistical technique that can be applied to large sets of overlapping variables

to translate original data to a new coordinates system. In this instance, with two original variables, PCA

computes two novel coordinates (CT1 and CT2). CT1 is proportional to the difference between the original

CT variables (%LAA-950 and AWT-Pi10), hence representing the prevailing mechanism of airflow

limitation (parenchymal destruction or conductive airway obstruction) and, consequently, the COPD

phenotype. CT2 is proportional to the sum of the two original variables, hence representing COPD severity

resulting from both parenchymal destruction and conductive airway obstruction. Further details about PCA

and other statistical procedures are provided in the online supplementary material.

Two linear regression models were trained to estimate CT1 (phenotype) and CT2 (severity) of the learning

set using functional and clinical data as independent variables. The most significant models with the least

number of variables were selected by a forward stepwise process. Parameters were entered or removed from

the process according to F-statistics. Tenfold cross-validation was used to study the selected models’ R-

shrinkage and to get the cross-validated standard errors of prediction (error mean, error mode) [34].

Briefly, the original dataset of 100 patients was randomly partitioned into 10 subsamples. Each one of the

subsamples was used as an independent dataset for testing the model and the remaining nine subsamples

were used as training data. The cross-validation process was repeated 10 times with each of the subsets used

once as validation set. The best predictive models obtained were applied prospectively to predict by clinical

and functional data the phenotype (CT1) and the severity (CT2) in the testing set of 373 patients not

undergoing CT scanning. Patients included in the testing set were plotted in a bidimensional plane with

model-predicted CT1 and CT2 coordinates. Two perpendicular lines drawn through the centre point of the

diagram partitioned the testing set into four subsets.

Data analysis and statistics were performed using SPSS/PC WIN 11.5.1 (SPSS, Chicago, IL, USA), Mathcad

(version 2001; MathSoft, Cambridge, MA, USA), and C++ programming language.
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Results
Table 1 reports anthropometric data, smoking exposure, pulmonary function and CT data of the 100

patients of the learning set (23 of whom were female) and of the 373 patients of the testing set (75 of whom

were female). CT data are reported only for patients in the learning set. Noticeably, both in the learning set

and the testing set the value of FEV1/FVC was higher than that of FEV1/vital capacity (VC). Table 2 reports

the data on mMRC dyspnoea score and characteristics of cough and sputum. Patients of the learning set

were significantly younger, more obstructed and hyperinflated. Sputum purulence prevailed in patients of

the testing set. Cardiovascular disease and diabetes prevailed in patients of the testing set, while other

TABLE 2 Categorical variables (modified Medical Research Council (mMRC) dyspnoea score, cough, sputum) of 473 chronic
obstructive pulmonary disease patients

Learning set Testing set p-value

Subjects n 100 373
mMRC (none) 9 8 NS

mMRC 1 (slight) 23 18 NS

mMRC 2 (moderate) 33 39 NS

mMRC 3 (severe) 24 28 NS

mMRC 4 (very severe) 11 7 NS

Cough 0 (absent) 15 18 NS

Cough 1 (occasional) 36 27 NS

Cough 2 (chronic) 49 55 NS

Sputum 0 (absent/occasional) 39 32 NS

Sputum 1 (chronic nonpurulent) 31 20 ,0.05
Sputum 2 (chronic purulent) 30 48 ,0.01

Data are presented as %, unless otherwise stated. Dyspnoea on effort has been scored into five categories according to the mMRC dyspnoea scale.
None: not troubled by shortness of breath except with strenuous exercise; slight: troubled by shortness of breath when climbing a flight of stairs,
hurrying on the level or walking up a slight hill; moderate: walks slower than people of the same age on the level because of shortness of breath;
severe: stops for breath after walking ,100 yards or after a few minutes on the level; very severe: too breathless to leave the house or breathless
when dressing or undressing. NS: not significant.

TABLE 1 Continuous variables (anthropometric data, smoking, pulmonary function and computed tomography (CT)
measurements) of 473 chronic obstructive pulmonary disease patients

Learning set Testing set p-value

Subjects n 100 373
Age years 63¡10 68¡8 ,0.01
BMI 25.6¡4 26.3¡5 NS

Smoking pack-years 50.4¡36 48.5¡30 NS

FVC % pred 84.6¡24 85.4¡19 NS

FEV1 % pred 55.9¡24 60.9¡20 ,0.05
FEV1/VC 45.6¡14 50.7¡13 ,0.01
FEV1/FVC 53.1¡13 56¡12 ,0.05
TLC % pred 109.8¡17 106¡16 ,0.05
RV % pred 148.1¡53 138.7¡40 ,0.05
RV/TLC 51.2¡11 50.7¡10 NS

FRC % pred 131.7¡34 123¡30 ,0.05
VC % pred 92.2¡21 91¡18 NS

IC % pred 90.8¡26 92.8¡22 NS

DLCO % pred 69.2¡23 72.3¡23 NS

%LAA-950
# 15.7¡13

AWT-Pi10# 3.9¡0.1

Data are presented as mean¡SD, unless otherwise stated. BMI: body mass index; pack-years: number of packs of cigarettes per day multiplied by
the number of smoking years; FVC: forced vital capacity; % pred: % predicted; FEV1: forced expiratory volume in 1 s; VC: vital capacity; TLC: total
lung capacity; RV: residual volume; FRC: functional residual capacity; IC: inspiratory capacity; DLCO: single breath diffusion capacity of the lung for
carbon monoxide; %LAA-950: relative attenuation area with X-ray attenuation , -950 HU; AWT-Pi10: average wall thickness of an arbitrary airway
with an internal perimeter of 10 mm; NS: not significant. #: reported only for the 100 patients of the learning set who underwent CT scanning.
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common comorbidities of COPD, such as osteoporosis, obesity and depression, had the same prevalence in

the two sets of patients.

Figure 1a displays the relationships between the original CT measurements (AWT-Pi10 and %LAA-950) in

the 100 patients of the learning set. The two variables are associated (r50.25; p,0.01), but with great

dispersion of the data points. This indicates that in this series of patients conductive airway wall thickening

and parenchymal destruction make independent contributions to airflow limitation. Figure 1b shows the

results of the application of PCA to the original CT measurements; the information contained in AWT-Pi10

and %LAA-950 is merged in two components (CT1 and CT2). By definition (see the online supplementary

material), increasing CT1 values means that parenchymal destruction (%LLA-950 contribution) is

predominant on conductive airway obstruction (AWT-Pi10 contribution), and vice versa. Increasing CT2

values means that the overall severity is increased (combined contributions of %LLA-950 and AWT-Pi10).

As shown in table 3, there were significant relationships between CT1 and CT2 and lung function tests. CT1

had the highest correlation with DLCO and CT2 with FEV1/VC.

CT1 of the patients of the learning set progressively increased (p,0.01) from a mean value of -0.25 with

chronic cough to 0.13 with occasional cough and 0.52 with absent cough. CT1 progressively increased

(p,0.01) from a mean value of -0.45 with chronic purulent sputum to 0.09 with chronic nonpurulent

sputum and 0.42 with absent/occasional sputum. These results are compatible with a progressive prevalence

of emphysema over conductive airway obstruction with increasing CT1 values. CT2 progressively increased

(p,0.01) from a mean value of -0.73 with mMRC dyspnoea score zero to -0.06 with a score of 2 and 0.64

with a score of 4. Hence, increased values of CT2 are compatible with increasing severity of COPD resulting

from both emphysema and conductive airway obstruction and reflected clinically by worsening of

dyspnoea.
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FIGURE 1 a) Relationships between the original computed tomography (CT) measurements (average wall thickness of an
arbitrary airway with an internal perimeter of 10 mm (AWT-Pi10) and percentage of lung area with X-ray attenuation
values , -950 HU (%LAA-950)) in the 100 patients of the learning set; b) results of the application of principal
components analysis to the original CT measurements; the information contained in AWT-Pi10 and %LAA-950 is merged
into two components (CT1 and CT2).

TABLE 3 Pearson’s correlation coefficients between computed tomography indexes and pulmonary function variables
measured in the learning set of 100 patients

DLCO % FEV1 % FEV1/VC TLC % RV % FRC % FVC %

CT1 (phenotype) -0.48** -0.19* -0.33** 0.25* 0.20* 0.29** -0.04
CT2 (severity) -0.37** -0.55** -0.61** 0.44** 0.55** 0.58** -0.30**

CT1, CT2: numeric indexes resulting from the application of principal component analysis to the relationship of relative lung area with X-ray
attenuation , -950 HU and average wall thickness of an arbitrary airway with an internal perimeter of 10 mm. DLCO: single breath diffusion capacity
of the lung for carbon monoxide; FEV1: forced expiratory volume in 1 s; VC: vital capacity; TLC: total lung capacity; RV: residual volume; FRC:
functional residual capacity; FVC: forced vital capacity. *: p,0.05; **: p,0.01.
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Table 4 reports the multivariate models to estimate CT1 (phenotype) and CT2 (severity) by clinical and

lung function variables together with their respective regression coefficients and cross-validation predicted

errors. Cross-validated R-shrinkage was not significant. The variables entered in the multivariate model to

predict CT1 were DLCO %, TLC % and purulent sputum, while FEV1/VC, functional residual capacity (FRC

%), and purulent sputum entered in the model to predict CT2. The model coefficient for purulent sputum

was negative in the model predicting CT1 and positive in the model predicting CT2.

As shown in table 5, there were significant relationships between the pulmonary function variables

measured in the testing set and CT1 and CT2 predicted by multivariate regression models derived from the

learning set. The highest correlations were found between predicted CT1 and DLCO % and between

predicted CT2 and FRC %.

Predicted CT1 increased stepward in the testing set (p,0.01) from a mean value of -0.26 with chronic

cough to 0.23 with absent cough and from a mean value of -0.41 with chronic purulent sputum to 0.30 with

absent/occasional sputum. Predicted CT2 increased stepward (p,0.01) from a mean value of -0.64 with

mMRC dyspnoea score zero to a mean value of 0.25 with a score of 4.

Figure 2 displays the distribution of the 373 patients of the testing set, using as coordinates the values of

CT1 and CT2 predicted by linearly combining the coefficients of the models developed from the learning set

with the clinical and functional data of each patient of the testing set. Patients’ distribution is partitioned

into four subsets (A, B, C and D).

Table 6 shows the mean values of the pulmonary function indexes that are significantly different in each

subset with respect to all the others. Reported pulmonary function tests indicate that conductive airway

obstruction predominates over emphysema in patients whose predicted CT1 coordinate value is below zero

(subsets A and C), while emphysema predominates in the patients of the B and D subsets. Accordingly,

chronic cough and purulent sputum prevailed significantly (p,0.01) in subsets A and C, while the

TABLE 4 Predictive models of numeric indexes resulting from the application of principal component analysis to the
relationship of relative lung area with X-ray attenuation , -950 HU and average wall thickness of an arbitrary airway with an
internal perimeter of 10 mm (CT1 and CT2) by multivariate regression analysis of pulmonary function and clinical variables of
the learning set of 100 patients

Estimates Predictors Coefficients R/R2 Prediction errors

Mean Mode

CT1 (phenotype) DLCO % -0.018 0.64/0.40 6.7% 2.3%
Purulent sputum -0.580

TLC % 0.011
Intercept 0.324

CT2 (severity) FEV1/VC -0.030 0.77/0.59 6.2% 2.1%
Purulent sputum 0.775

FRC% 0.013
Intercept -0.575

DLCO: single breath diffusion capacity of the lung for carbon monoxide; TLC: total lung capacity; FEV1: forced expiratory volume in 1 s; VC: vital
capacity; FRC: functional residual capacity.

TABLE 5 Pearson’s correlation coefficients between computed tomography (CT) indexes predicted by multivariate regression
models from the learning set of 100 patients and pulmonary function variables measured in the testing set of 373 patients

DLCO FEV1% FEV1/VC TLC% RV% FRC% FVC%

Predicted CT1 (phenotype) -0.79** -0.39* -0.47** 0.43* 0.49* 0.50** -0.10
Predicted CT2 (severity) -0.38** -0.62** -0.76** 0.62** 0.72** 0.78** -0.20**

DLCO: single breath diffusion capacity of the lung for carbon monoxide; FEV1: forced expiratory volume in 1 s; VC: vital capacity; TLC: total lung
capacity; RV: residual volume; FRC: functional residual capacity; FVC: forced vital capacity; CT1 and CT2: CT indexes predicted by multivariate
regression models. *: p,0.05; **: p,0.01.
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prevalence of severe and very severe mMRC dyspnoea scores was significantly higher (p,0.01) in the B and

D subsets (see online supplementary table E1). The large number of patients (120 out of 373, 32%) of the

testing set whose location in the graph is close to the predicted CT1 zero line (between -0.25 and 0.25 CT1

values) may have intermediate mechanisms of airflow limitation. Irrespective of the pathogenetic

mechanism (predominant conductive airway obstruction in A and C and parenchymal destruction in B and

D), the severity of COPD progressively worsens with increasing values of predicted CT2.

Discussion
The main finding of this study is that pulmonary function and sputum characteristics can be used in

multivariate models to classify COPD patients according to the overall severity of the disease and the

prevailing mechanism of airflow limitation as assessed by quantitative CT analysis. Results have been

obtained using a data-driven statistical procedure. The models have been derived from a series of patients

undergoing clinical, pulmonary function and quantitative CT scan evaluation and have been cross-validated

and prospectively applied to classify in a bidimensional diagram a different larger series of patients

undergoing only clinical and functional evaluation. The coordinates of the diagram (predicted CT1

(phenotype) and predicted CT2 (severity)) can be estimated by measuring FEV1/VC, TLC, FRC and DLCO

and by determining whether the patient has chronic purulent sputum. CT parenchymal destruction and

conductive airway thickening progressively prevail as the main mechanism of airflow limitation with

positive or negative values of CT1, respectively. CT severity of the disease progressively increases with

increasing values of CT2.
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TABLE 6 Mean values of the pulmonary function tests in the four subsets of the 373 patients of the testing set subdivided
according to the values of predicted computed tomography (CT) indexes CT1 (phenotype) and CT2 (severity)

Subset

A B C D

Subjects n 143 77 80 73
Predicted CT index range CT1,0 CT2,0 CT1.0 CT2,0 CT1,0 CT2.0 CT1.0 CT2.0
FEV1 % 73 64 54 41
FEV1/VC 60 52 45 36
TLC % 97 103 110 123
RV % 112 128 150 189
FRC % 100 118 132 162
DLCO % 88 61 78 49

All values are significantly different (p,0.05) among the four subsets of patients. A, B, C, D: Subsets of patients subdivided according to the values
of predicted computed tomography indexes (CT1 and CT2) as shown in figure 2. FEV1: forced expiratory volume in 1 s; VC: vital capacity; TLC: total
lung capacity; RV: residual volume; FRC: functional residual capacity; ; DLCO: single breath diffusion capacity of the lung for carbon monoxide.

FIGURE 2 The distribution of the 373
patients of the testing set, using as coor-
dinates the values of indexes predicted
by multivariate regression models (CT1
(phenotype) and CT2 (severity))
computed by linearly combining the
coefficients of the models developed from
the learning set with the clinical and
functional data of each patient of the
testing set. Patient distribution is
partitioned into four subsets (A, B, C
and D) by two perpendicular lines drawn
from the zero values of CT1 and CT2.
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DLCO is the functional variable accounting for the greatest variance in estimating CT1. This indicates that

parenchymal destruction as assessed anatomically by reduced CT lung density and functionally by reduced

diffusing capacity is an important determinant of the clinical phenotype of COPD. FEV1/VC is the

functional variable accounting for the greatest variance in estimating CT2. This indicates that airflow

limitation, as assessed anatomically by both reduced CT density and increased airway wall thickness and

functionally by FEV1/VC, is an important determinant of COPD severity. FEV1/VC instead of FEV1/FVC is

entered in the model predicting COPD severity. This indicates that the use of VC at the denominator of the

ratio could increase its sensitivity and accuracy in defining the severity of expiratory airflow limitation.

Functional indexes of hyperinflation (TLC and FRC) subsequently enter in both models and slightly reduce

the variance left after the first step of the multivariate regression process. Among the clinical variables, only

chronic purulent sputum enters in both models. However, the regression coefficient connected with sputum

purulence is negative for CT1 (phenotype) and positive for CT2 (severity). This indicates that presence of

chronic purulent sputum, besides being an important determinant of the COPD clinical phenotype, namely

predominant chronic inflammatory obstruction of the conductive airways, is also a marker of increased

COPD severity.

Hence, the position assumed in the bidimensional CT1–CT2 diagram classifies each patient in relation to

the prevailing mechanism of airflow limitation and the severity of the disease. The wide distribution of

patients obtained in the present study is in agreement with the notion that COPD can have a continuous

and wide spectrum of presentations in terms of clinical phenotype and disease severity. The strong

relationships of model-predicted CT2 with indexes of both airflow obstruction and hyperinflation measured

in the testing set (table 5) indicates that this parameter does reflect the overall lung dysfunction that

characterises COPD. Further convincing support for the use of CT2 as an indicator of COPD severity

should be obtained by comparing this variable with other markers of disease severity such as 6-min walking

test, frequency of exacerbations and long-term survival.

The complexity of COPD cannot reliably be reflected by simple spirometric determinations of FEV1 [1] or

by adding symptoms scores and exacerbation frequency to FEV1, as has been suggested [10]. The approach

presented here seems to have the advantage of predicting at the same time the predominant COPD

phenotype (conductive airway obstruction with negative CT1 values, intermediate with CT1 values close to

zero and parenchymal destruction with positive CT1 values) and the degree of severity (ranging from mild

to very severe with CT2 values progressively increasing from negative to positive). Prediction of CT1 and

CT2 can be obtained objectively by the numerical values of pulmonary function evaluation and by the

answer to the question about presence or absence of chronic purulent sputum. The resulting information

could possibly be used to identify disease subgroups that may have different responses to treatment, and this

may accelerate progress toward the development of specifically targeted therapeutic strategies, as currently

recommended [18, 35].

Numerous studies have related clinical and full pulmonary function testing with quantitative CT in COPD

[2, 11–14, 18, 22–27, 36]. Published relationships, however, are not readily comparable with the results

obtained in this study, since, to the best of our knowledge, only the present report combines, via a data-

driven statistical procedure, quantitative CT data with overlapping relationships, such as parenchymal

destruction and conductive airway thickening.

The main limitation of this paper is that the series of patients from which CT1 (phenotype) and CT2

(severity) have been derived (learning set) is relatively small to be considered representative of the whole

spectrum of COPD lung structural changes and, in this context, it is probably necessary to derive predictive

multivariate models from larger samples of patients which could represent more accurately the general

population of COPD. However, the multivariate models derived from the present learning set were able to

prospectively classify a larger testing set differing in age and COPD severity. Another limitation of the paper

is that the enrolment of patients on the basis of a post-bronchodilator FEV1/FVC ,70% according to

GOLD guidelines [1], instead of using the lower limit of normality as suggested by the ATS/ERS guidelines

[30], could have introduced a selection bias leading to overdiagnosis of COPD in male elderly nonsmokers

and underdiagnosis in young smokers of both sexes [37].

Definite strengths of this work are related to the acquisition and analysis of functional and CT scan data. In

fact, all data were obtained by specifically trained personnel working under standardised acquisition rules

with the same pulmonary function and CT equipment and were analysed by an unbiased statistical

procedure.

In summary, the data presented provide evidence that lung structural changes measured by CT scan are

associated with clinical and lung function changes that may be used for an objective classification of the

predominant phenotype and the severity of COPD. If these or similar multivariate models are confirmed in
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larger population studies, each COPD patient, despite being the individual expression of a wide and

continuous spectrum of clinical presentations, after full pulmonary function testing and a short question

about sputum characteristics, could be located on a diagram whose coordinates may indicate the type and

severity of the structural changes underlying the mechanism of expiratory airflow limitation.
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