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Predicting sleep apnoea syndrome from heart period: a time-frequency wavelet analysis.
F. Roche, V. Pichot, E. Sforza, I. Court-Fortune, D. Duverney, F. Costes, M. Garet,
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ABSTRACT: Heart rate fluctuations are a typical finding during obstructive sleep
apnoea, characterised by bradycardia during the apnoeic phase and tachycardia at the
restoration of ventilation. In this study, a time-frequency domain analysis of the
nocturnal heart rate variability (HRV) was evaluated as the single diagnostic marker
for obstructive sleep apnoea syndrome (OSAS).

The predictive accuracy of time-frequency HRV variables (wavelet (Wv) decom-
position parameters from level 2 (Wv2) to level 256 (Wv256)) obtained from nocturnal
electrocardiogram Holter monitoring were analysed in 147 consecutive patients aged
53.8¡11.2 yrs referred for possible OSAS.

OSAS was diagnosed in 66 patients (44.9%) according to an apnoea/hypopnoea index
o10. Using receiver-operating characteristic curves analysis, the most powerful
predictor variable was Wv32 (W 0.758, pv0.0001), followed by Wv16 (W 0.729,
pv0.0001) and Wv64 (W 0.700, pv0.0001). Classification and Regression Trees
methodology generated a decision tree for OSAS prediction including all levels of Wv
coefficients, from Wv2 to Wv256 with a sensitivity reaching 92.4% and a specificity of
90.1% (percentage of agreement 91.2%) with this nonparametric analysis.

Time-frequency parameters calculated using wavelet transform and extracted from
the nocturnal heart period analysis appeared as powerful tools for obstructive sleep
apnoea syndrome diagnosis.
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Obstructive sleep apnoea syndrome (OSAS) is a common
prevalent problem [1] (prevalence of 4% in middle-aged
males) with major health implications ranging from traffic
accident [2] to serious cardiac arrhythmias. OSAS is associ-
ated with increased risks of hypertension, myocardial infarc-
tion and stroke, and with increased mortality rates [3, 4].

Diagnosis of OSAS is usually performed by polysomno-
graphy in a sleep laboratory, consisting of the measurement
and recording of several signals used to analyse sleep and
breathing. Whereas polysomnography represented the "gold
standard" for the diagnosis, it is an expensive and time-
consuming procedure with important resources invested
in patients with mild-to-moderate disease. Moreover, the
laboratory environment often disturbs or interferes with the
patient9s sleep. Therefore, several strategies have been
developed to decrease the number of the sleep recordings,
including sleep questionnaires, ambulatory recordings, sim-
plified multichannel systems and nocturnal oximetry, all
showing a high specificity but a low sensitivity [5–7].

It is known that all through the night, recurrence of
apnoeas elicits a typical and cyclic heart rate pattern
consisting of cyclical brady/tachycardia [8], contrasting with
an altered diurnal control of the sinus node, and is related to
cyclic changes in vagal and sympathetic activity. To quantify
the unique heart rate rhythm induced by a successive
alternance of vagal stimulation and sympathetic discharge
[9, 10], spectral analysis of heart rate variability (HRV) has

been applied using short-term night-time recording. However,
such a technique encounters major difficulties like the
nonstationary pattern of data, the complex definition of the
appropriate spectral band to capture the pathological rhythm,
and the requirement of interpolation and resampling prior to
signal processing. To avoid the stationary requirements, the
time-frequency method of wavelet (Wv) transform has been
proposed [11]. From a physiological point of view, this
method, applied to RR interval time series, indicates a more
accurate adaptation to autonomic blockade and allows time
localisation of this adaptation. Using classical time-domain
analysis of HRV, the authors recently demonstrated that 24-h
monitoring may be a useful tool to diagnose OSAS and to
identify obstructive sleep apnoea during nonrapid eye move-
ment (NREM) sleep [12].

The goal of this study was to assess whether a time-
frequency method of Wv transform could yield essential
information on the diagnosis of OSAS. For that purpose, the
sensitivity and specificity of this methodology of HRV
analysis was evaluated during a full night9s electrocardiogram
(ECG) recording, in a large group of unselected patients
examined for possible sleep-related breathing disorders.

Subjects and methods

Study group

The population studied consisted of 147 patients (101 males
and 46 females) with a mean¡SD age of 53.8¡11.2 yrs,For editorial comments see page 870.
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referred to the university hospital for clinically suspected
OSAS. Exclusion criteria were permanent or paroxysmal
atrial fibrillation, diabetes mellitus, Shy-Drager syndrome,
and permanent ventricular or atrial pacing; none of them
received antiarrhythmic drugs or digitalis. The HRV analysis
and the polygraphic scoring were done by two independent
scorers, each one blinded to the results of the other.

Sleep study and polysomnography scoring

OSAS was diagnosed on the basis of clinical criteria and on
the polysomnography performed, following the recommenda-
tions of the American Sleep Disorders Association [13]. The
presence and stages of sleep were monitored using two pairs
of electroencephalographic leads (C4-A1, O2-A1), two pairs
of electro-oculographic leads and chin electromyographic
leads. Airflow was measured by an oronasal thermocoupler.
Respiratory efforts were monitored using inductive plethys-
mography, with transducers placed around the chest and the
abdomen. Arterial oxygen saturation (Sa,O2) was recorded
continuously by pulse oximetry (Criticare Systems Inc.,
Waukesha, WI, USA) during the whole night period. The
polysomnogram was scored manually according to standard
criteria [14, 15].

Respiratory events were scored using criteria proposed by
the American Academy of Sleep Medicine. Hypopnoeas were
defined as a o50% reduction in airflow from the baseline
value lasting for o10 s and associated with a 3% desaturation
or an arousal. Apnoeas were defined as the absence of oronasal
airflow lasting forw10 s. Obstructive apnoea was defined as the
absence of airflow forw10 s in the presence of persistent respira-
tory efforts. The apnoea/hypopnoea index (AHI) was estab-
lished as the ratio of the number of apnoeas and hypopnoeas
per hour of sleep. As an index of nocturnal hypoxaemia, the
total time with Sa,O2 v90% was considered. AHI o10 was
chosen as the threshold to identify the presence of OSAS.

Simultaneous electrocardiogram Holter monitoring and
heart rate variability analysis

The nocturnal recordings (duration 7.3¡1.1 h) were ana-
lysed on a Novacor system (Rueil-Malmaison, France) model,
equipped with the HRV module. To perform the analysis, each
QRS complex was validated and the length between each QRS
(RR interval) calculated. Only normal-to-normal beats were
considered for analysis with intervals excluded due to ectopy
or artefacts being replaced by holding the previous coupling
interval level throughout the time interval to the next valid
coupling interval. The ECG Holter system allowed extracting
the list of RR intervals with a precision of 1/200 s. Then, a
2.4 Hz resampling process was applied.

Wavelet analysis

Unlike Fourier, Wv transform is devoted to the analysis of
nonstationary signals [16, 17]. Thus, there is no prerequisite
regarding the stability of the frequency content along the
signal analysed. This analysis allows the extraction of the
characteristic frequencies contained along a signal, which, in
this case, was composed of consecutive intervals between RR
interval series. The decomposition of a signal by Wv trans-
form requires an adequate regular and localised mother
function. Starting from this initial function, a family of
functions is built by dilatation and translocation, which
constitutes the so-called Wv frame. The analysis consists of

sliding a window of different weights (corresponding to
different levels) containing the Wv function, all along the
signal. The calculation gives a serial list of coefficients named
Wv coefficients, which represent the evolution of the correla-
tion between the signal f and the chosen Wv at different levels
of analysis (or different ranges of frequencies) all along the
signal f. In this analysis, the Daubechies four Wv transform
was used [18]. For each record, the Wv coefficients were
calculated on sets of 512 RR intervals, giving eight separate
levels of analysis named Wv2, Wv4, Wv8, Wv16, Wv32,
Wv64, Wv128 and Wv256. Then, the variability power, level
by level, was calculated as the sum of squares of the
coefficients. Thus, for each recording, the variability power
for each level was obtained. The sum of Wv power coefficients
at levels 2, 4 and 8, approximately corresponds to the Fourier
high frequencies (an index of parasympathetic activity), Wv
power coefficients at levels 16 and 32 roughly corresponds to
the Fourier low frequencies, and Wv power coefficients at
levels 64 and 128 to the Fourier very low frequencies.

Statistical analysis

Differences were considered as significant for pv0.05.
Values were expressed as mean¡SD. Statistical analyses were
performed to evaluate the ability of the variables to dis-
criminate between affected (OSASz) and nonaffected (OSAS-)
status. Thus, the dependent variable was the diseased state
(OSASz). The independent variables analysed were Wv levels
from Wv2 to Wv256. Receiver-operating curve (ROC)
analysis was used [19, 20], with the areas under the curves
represented by the letter W. A W value of 0.5 means that the
distributions of the variables are similar in both populations.
Conversely, a W value of 1.0 means that the distributions
of the variables of two populations do not overlap at all.
Stepwise regression analysis was used to confirm the pre-
viously performed ROC curves analysis. The dependent
variable was represented by the AHI and the independent
variables included were the Wv levels, which demonstrated a
significant W value with ROC curves.

A classification tree was then built using the discriminant
variables as indicated by the ROC curves. The first variable
used was the one determining the best separation between
diseased and nondiseased subjects. The other variables were
then introduced according to a descending order of dis-
criminative capacity. For each continuous variable, the cut-
off value acting as a separator to make the decision was
chosen as that offering the smallest number of misclassifica-
tion, i.e. that which minimises the sum of false-positive and
false-negative results. Sensitivity, specificity and percentage of
agreement were calculated on a learning sample of this last
analysis. The principle of the Classification and Regression
Trees (CART) method is to look at all possible splits for all
variables included in the analysis i.e. the Wv levels. The
results are in the form of an inverted tree. CART begins with
a root node and, through a process of yes/no questions,
generates descendant nodes. Some nodes are terminal, mean-
ing that a final determination for classification is reached
while other nodes continue to be split until terminal nodes are
reached. The first topic addresses the method CART uses to
select its questions for splitting nodes. The next activity is to
rank order each splitting rule on the basis of a goodness-of-
split criterion. Once a best split is found, CART repeats the
search process for each child node, continuing recursively
until further splitting is impossible or stopped. Then, CART
proceeds by growing trees until it is not possible to grow them
any further. It generates a maximal tree and a set of subtrees.
Cross-validation was followed by dividing the learning sample
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into 10 approximately equal parts containing similar dis-
tributions for the dependent variable. The results of the 10
minitest samples were finally combined to form an error rate
for trees of any possible size; these error rates are applied to
the tree based on the entire learning sample. The outcome of
this complex process is a set of fairly reliable estimates of the
independent predictive accuracy of the tree.

Results

Table 1 summarises the clinical variables of the patient
group. OSAS was diagnosed in 66 patients (44.9%) using
polysomnography recording. No significant differences in

clinical characteristics, age and body mass index were found
between OSASz and OSAS- patients.

Wv decomposition of the HRV analysis during the night in
a typical OSAS patient (AHI 40) is illustrated in figure 1.
With a subjective, first, visual approach, an enhancement of
the coefficients for the levels Wv8, 16, 32, 64 and 128 can be
noted, compared with a nonapnoeic patient.

ROC curves (continuous data) were built separately for
each HRV variable (table 2). All time frequency-domain varia-
bles (Wv2 to Wv256) calculated over the full night9s recording
were able to separate OSASz from OSAS- status with
statistical significance (pv0.05). Three variables appeared as
outstanding separators: Wv32 (W 0.758, pv0.0001), Wv16 (W
0.729, pv0.0001) and Wv64 (W 0.700, pv0.0001).

Results of the optimal tree built using CART methodology
are presented in table 3. Figure 2 contains the essentials of the
CART classification analysis. The classification tree diagram
presents 20 terminal regions and 19 nodes of information. The
Wv32 level represents the most important variable (first node)
followed by Wv16, Wv8 and Wv64. Table 4 shows that the
number of misclassifications is very low on the learning
sample with a total number of eight false positives and of five
false negatives (fig. 2). The sensitivity reached 92.4%, the
specificity 90.1% and the percentage of agreement was 91.2%
in this population.

Discussion

The most important finding of this study was that the
recurrence of obstructive apnoeas determines a significant

Table 1. – Clinical characteristics of the population

Clinical characteristics OSASz OSAS- p-value

Subjects n 66 81
Age yrs 55.8¡11.2 54.9¡10.7 0.54
Male 51 (77.3) 50 (61.7) 0.23
BMI kg?m-2 28.9¡9.2 29.9¡9.9 0.15
AHI n?h-1 39.0¡19.5 2.6¡2.6 v0.001
Sa,O2 % 92.2¡4.7 95.2¡2.8 v0.001
Sa,O2 v90% (% of TST) 23.8¡9.2 9.2¡20.8 v0.001
Hypertension 25 (37.9) 21 (25.9) 0.15

Data are presented as mean¡SD or n (%) unless otherwise stated.
OSASz: patients with obstructive sleep apnoea syndrome; OSAS-:
patients without obstructive sleep apnoea syndrome; BMI: body mass
index; AHI: apnoea/hypopnoea index; Sa,O2: arterial oxygen saturation;
TST: total sleep time.

Fig. 1. – Wavelet (Wv) decomposition of the heart rate variability signal during the night in a) an obstructive sleep apnoea patient and b) a
patient without sleep-related breathing disorders during a 10-min sample duration.
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increase in the time-frequency components of the HRV. The
alteration in the power coefficient of level 8, 16 and 32 was
highly predictive of this sleep-related breathing disorder with
a high sensitivity and specificity. The high prediction of OSAS
based on the heart rate period analysis in these populations
suggests that this methodology may be a potential simple and
robust ambulatory screening method for diagnosis of OSAS
patients [21].

Based on the typical oscillations in heart rate, firstly
described by GUILLEMINAULT et al. [8], several devices have
been used to diagnose OSAS, including short-term, time-
frequency spectral analysis of the HRV shown as a diagnos-
tically accurate method for detection of OSAS. Recent data

on time-domain measurements published by the present
group clearly demonstrated that the analysis of the time-
domain HRV variables is a useful tool in OSAS screening
[12]. The accuracy of the present method was very high over
15-min selected periods of NREM sleep. In addition, the
specificity and sensitivity were found to be significantly
greater compared with published data using oximetry.
Interestingly, SHIOMI et al. [9] demonstrated that this
method is an easy tool not only for screening, but also for
follow-up evaluation, showing a significant decrease in the
very low-frequency component of HRV after mandibular
advancement treatment. Despite its validity, standard HRV

Table 2. – Time frequency-domain variables significantly asso-
ciated with obstructive sleep apnoea syndrome by receiver-
operating characteristic curve analysis

Variable W value p-value

Wv2 0.595 0.040
Wv4 0.609 0.025
Wv8 0.661 0.0009
Wv16 0.729 v0.0001
Wv32 0.758 v0.0001
Wv64 0.700 v0.0001
Wv128 0.642 0.0033
Wv256 0.633 0.006

Wv: wavelet power coefficients.

Table 3. – Relative importance of heart rate variability
evaluated using Classification and Regression Trees
methodology in order to predict obstructive sleep apnoea
syndrome with an apnoea/hypopnoea index threshold value of
10

Variable Relative importance %

Wv32 100
Wv16 78.10
Wv8 73.02
Wv64 70.21
Wv128 68.86
Wv4 58.26
Wv256 58.09
Wv2 36.60
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Fig. 2. – Operation tree illustrating the combination of threshold values of wavelet (Wv) levels, characterising patients in the study. Sensitivity
reaches 92.4% and specificity 90.1%. All individual numerical values are indicative of the number of subjects in each terminal node of the tree.
TP: true positive, n=61; FP: false positive, n=8; TN: true negative, n=73; FN: false negative, n=5.
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frequency-domain analysis did not appear an appropriate
tool to quantify variations in very low-frequency oscillations,
a stronger marker of obstructive apnoea. For this reason, it
was hypothesised that repetitive low-frequency oscillation,
frequency-domain analysis of the heart period could be a
better predictor of OSAS [22]. Compared with power spectral
density of the very low frequency components (interbeat
interval increment), Wv analysis gives a much higher speci-
ficity and also a higher sensitivity, without more intervention
from the user. Applying the time-frequency analysis in a large
group of unselected patients, this method was found to allow
a better quantification of the frequency components asso-
ciated with the obstructive apnoea events, with a highly
discriminant power of three new variables discriminating
patients with OSAS. Three levels of Wvs, Wv8, Wv16 and
Wv32, are clearly predictive of the oscillations generated by
the obstructive respiratory events. While the Wv8 level is
usually considered as a parasympathetically mediated fre-
quency [18], the Wv16 and Wv32 correspond to the low-
frequency component of the classical Fourier transform. If
Wv32 represents the first node of the regression tree for an
OSAS defined with an AHI of w10, Wv16 and Wv8 levels
appear in the ROC curve analysis as further strong predictive
variables in order to predict OSAS. It could seem surprising
that very low-frequency components (Wv64, Wv128) do not
represent the most appropriate spectral band to capture the
brady/tachycardia rhythm. The discordance in these results
could be explained by the observation by HILTON et al. [11]
that the low frequencies (0.01875–0.07383 Hz) correspond to
the authors9 Wv32 and Wv64 levels. From a practical point of
view, an evaluation based on these three combined param-
eters, at least, should probably be proposed in a future
prospective cohort of patients.

From the literature, Sa,O2 bears the same sensitivity but a
lower specificity than the present Wv analysis. Specificity
using Sa,O2 ranges 46–80% [5, 6]. Furthermore, the authors
did not intend to compare the sensitivity of Wv and Sa,O2 in
this study, since the cost-effectiveness of the nocturnal Sa,O2

analysis has already been largely described in sleep apnoea
syndrome detection.

Certain limitations of this study that could influence the
results need to be considered. The first consideration is that
patients with autonomic disorders or arrhythmias were
excluded to limit false-negative results. However, complete
polygraphy also carry some limitations and oximetry could be
misleading by being unable to identify nonapnoeic nocturnal
hypoventilation, as well as to underestimate the severity of
sleep-related breathing disorders. Secondly, patients sus-
pected of having OSAS were predominantly studied despite
them belonging to a heterogeneous group in terms of AHI.
Therefore, the sample may not fully represent the general
population of patients referred to clinicians, and those having
snoring or upper airway resistance syndrome. However,
STRADLING et al. [23], underlined that the autonomic arousals
related to OSAS were better quantified using blood pressure

variability [24, 25]. In addition, O9DONNELL et al. [26] demon-
strate that digital vascular tone, measured by peripheral
arterial tonometry, provides a reliable method to detect
airway obstruction and arousal, reflecting the blood pressure
and heart rate changes occurring during the upper airway
obstruction.

Even though the methodology used in the present study
may artificially increase the power of HRV analysis in OSAS
patients, more extensive studies including patients with a wide
range of sleep-disordered breathing could assess the validity
and the diagnostic prediction of HRV analysis. Finally, the
observed enhanced HRV found in these OSAS patients
reflects the role of three factors, i.e. increase in negative oeso-
phageal pressure, hypoxia and arousal occurring throughout
and at the end of apnoea, all of which induce a strong increase
in the parasympathetic system, followed by an abrupt
sympathetic activation due to the consecutive hypoxia [27,
28]. These cyclical and constant responses could be compared
with the primary slow oscillations in heart rate generated by
the central nervous system during Cheyne-Stokes or periodic
breathing patterns [29], probably reflecting a loop response of
the cardiopulmonary chemo- and/or baroreceptors. For these
considerations it would be interesting to examine patients
with central apnoeas in order to determine whether the same
Wv variables could predict the presence of altered respiration
during sleep.

In conclusion, time-frequency domain analysis of the
nocturnal heart rate variability using Wavelet decomposition
could represent an efficient marker of obstructive sleep
apnoea syndrome. Its added ease of use and of interpretation
is of interest considering the high prevalence of sleep-related
breathing disorders in a general middle-aged, at-risk popula-
tion. Further, studies considering larger populations, with a
wide spectrum of sleep-related breathing disorders, need to be
performed in order to determine whether this method may be
an easy tool to use for the diagnosis of the whole spectrum of
sleep-related breathing disorders on an ambulatory basis.
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