Variations in airways impedance during respiratory cycle derived from combined measurements of input and transfer impedances

W. Tomalak*, R. Peslin**, C. Duvivier**

Variations in airways impedance during respiratory cycle derived from combined measurements of input and transfer impedances. W. Tomalak, R. Peslin, C. Duvivier. ©ERS Journals Ltd 1998.

ABSTRACT: Simultaneous measurement of input (Zin) and transfer impedances (Ztr) allows separation of airway and tissue properties at a single frequency, without making assumptions concerning the structure of the two compartments. This approach offers the possibility of studying the variation in airway impedance (Zaw) during the respiratory cycle.

 Z_{in} and Z_{tr} were measured at frequencies of 10, 20, 30 and 40 Hz in eight healthy subjects to study the variations in Z_{aw} according to a modification of the Rohrer's equation: $X=K_1+K_2(V'a_0)-K_3V$, where V is volume and V'ao the flow at the airway opening.

The results showed that Z_{aw} could be modelled as a simple resistance-inertance pathway. Variations in airway resistance (R_{aw}) with flow were greater during expiration than during inspiration with K_2 values varying from 0.76–0.90 hPa·s²·L² during inspiration and 0.84–1.47 hPa·s²·L² during expiration, independently of frequency. R_{aw} was negative volume dependent; it decreased more with increasing volume during inspiration than during expiration. Airways inertance calculated from the imaginary part of Z_{aw} also underwent systematic variations during the respiratory cycle, but, in contrast to R_{aw} , flow dependence was negative during both phases.

In conclusion, the approach used in this study allows flow and volume dependencies of airways mechanical properties to be studied and can also provide indices of airway patency independently of flow, which is of great potential interest for studying variations in airway resistance during bronchomotor tests. *Eur Respir J 1998; 12: 1436–1441.*

The forced oscillations technique, described by DuBois et al. [1] in 1956 can be used to explore the mechanical properties of the respiratory system in various ways. The most common measurement is the relationship between pressure (P_{ao}) and flow (V'_{ao}) at the airway opening (input impedance (Zin) = Pao/V'ao), when pressure oscillations are applied at the mouth. Another approach consists of relating the pressure applied at one point of the system, either the body surface or the airway opening, to the flow measured at the other point; this provides respiratory system transfer impedance (Z_{tr}) , which has been shown to be the same whether the pressure is applied at the mouth and flow measured at the body surface (V'bs) or vice versa [2]. Both Zin and Ztr are related to the mechanical properties of the airways and of the tissues, and, for many physiological and clinical applications, it would be of interest to separate these two components. While this cannot be achieved by analysing Zin data in humans, whatever the frequency range over which it is measured [3], the separation may be done reliably by analysing Ztr data over a wide enough frequency range [4, 5] using a six-coefficient model proposed by DuBois et al. [1]. An alternative approach is to measure simultaneously Zin and Ztr, which may be done by recording both V'ao and V'bs when pressure oscillations are applied at the airway opening [6, 7]. Indeed, based on the T-network model of DuBois et al. [1] (fig. 1) which features

*National Institute for Tuberculosis and Lung Diseases, Paediatric Division, Rabka, Poland. **Unité 14 INSERM de Physiopathologie Respiratoire, Institut National de la Santé et de la Recherche Medicale, Université H. Poincaré Nancy I, Vandoeuvre-les-Nancy, France.

Correspondence: W. Tomalak National Institute for Tuberculosis and Lung Diseases Paediatric Division 34-700 Rabka Polna 3 str Poland Fax: 48 182677025 Keywords: Airways impedance flow dependence

forced oscillations volume dependence

Received: October 20 1997 Accepted after revision July 25 1998

W. Tomalak was the recipient of a European Respiratory Society Grant for Young Researchers from Underprivileged Countries.

airways impedance (Z_{aw}) and tissue impedance (Z_t) separated by the shunt impedance of the alveolar gas (Z_g), it may be shown that:

$$Zt = Zg \left(Ztr/Zin - 1 \right)$$
(1)

$$Z_{aw} = Z_{in} - Z_g \left(1 - Z_{in}/Z_{tr}\right)$$
(2)

As Z_g may easily be computed from thoracic gas volume (TGV):

2

Fig. 1. – DuBois T-network model of the respiratory system. V'ao, V'bs: flow at airway opening and body surface, respectively; Zaw: airway impedance; Zt: tissue impedance; Zg: alveolar gas impedance.

$$Z_g = -j (BP - PH_2O)/(TG \times \omega)$$
(3)

where *j* is the unit imaginary number, BP the barometric pressure, PH_2O is a water vapour pressure and $\omega = 2\pi f$ with f the oscillation frequency; equations 1 and 2 provide a convenient means of obtaining Zt and Zaw. This approach offers two specific advantages: 1) the separation is achieved without making assumptions about the nature of the mechanical properties of the airways and of the tissues, i.e. without modelling Zaw and Zt; and 2) the separation may be done from the data obtained at a single frequency, which provides the best possible time resolution, and, should the system be nonlinear, avoids the interference between frequencies which may happen with signals containing several components. Equation 2 was used recently to measure Zt in normal subjects and it was shown that tissue elastance exhibits large variations during the respiratory cycle [8]. The aim of the present investigation was to assess the potential of that approach to study airway properties and their variations during quiet breathing.

Material and methods

The study was performed on a group of eight healthy adults (five males and three females) recruited from the laboratory staff. They were all trained in respiratory manoeuvres. Their biometric characteristics and lung volumes are shown in table 1.

Equipment

The experimental set-up has been described in detail previously [8]. In brief, the subject was seated in a 350-L flow-type body plethysmograph (Emerson, Cambridge, MA, USA) and breathed from the outside through a Fleisch 2 pneumotachograph (METABO, Switzerland). The flow element of the box was made of two layers of metal screen (area 144 cm², resistance 0.083 hPa·s·L⁻¹) and its time constant (screen resistance times gas compressibility) was about 18 ms. V'bs was derived from box pressure measured with a Validyne MP45 ± 2 cmH₂O differential transducer (Validyne, Northridge, Ca, USA). The pressure drop across the pneumotachograph, which provided V'ao, as well as Pao, were measured with similar transducers. Us-ing appropriate connecting tubes, all three transducers were matched within 2° of phase and 1% of amplitude up to 40 Hz. The flow channels were calibrated before each series of measurements by the integral

Table 1. – Biometric characteristics and lung volumes of the subjects

Subject No.	Sex	Age yrs	Height cm	Weight kg	FRC L	VC L
1	М	50	168	92	1.96	5.13
2	F	34	171	70	3.28	4.27
3	Μ	58	168	66	2.82	4.33
4	Μ	65	168	71	2.69	4.84
5	F	40	155	48	3.12	3.54
6	F	40	160	60	2.60	3.80
7	Μ	58	178	55	5.39	5.09
8	Μ	34	187	84	3.45	6.10

M: male; F: female; FRC: functional residual capacity; VC: vital capacity.

method using a 1-L syringe and *P*_{ao} was calibrated using a slanted fluid mano-meter.

Pressure oscillations with a peak-to-peak amplitude of about 2 hPa were applied at the airway opening by a 100 W loudspeaker connected to the distal end of the pneumotachograph; the loudspeaker was supplied with computergenerated sinusoidal signals through a power amplifier. The subjects breathed through a low resistance–high-inertance side-tube, branched in parallel with the loudspeaker and connected to a small reservoir where the inspired gas was conditioned to body temperature and ambient pressure, and saturated with water vapour (BTPS) to eliminate any difference between Z_{in} and Z_{tr} related to differences in temperature and P_{H_2O} of the gas.

During the measurements V'_{ao} , V'_{bs} and P_{ao} were digitized at 360 Hz by a 12-bit analogue/digital conversion board (Digimetrie-PCLab, Perpignan, France) and stored on the disk of a 486-type computer for later analysis.

Protocol

The measurements were made in triplicate at oscillation frequencies of 10, 20, 30 and 40 Hz in random order. The subjects supported their cheeks firmly with their palms. V'ao and lung volume (V; obtained on-line by digital integration of V'_{ao}) were displayed on the computer screen to help the subject perform the manoeuvres. The measurements consisted of recording 4-8 tidal breaths followed by a slow vital capacity (VC) manoeuvre serving to provide a volume reference. At the beginning and at the end of each measurement, zero flow offsets were recorded to correct the flow signal for any drift. The flows were also measured while the subject was off the mouthpiece for several seconds; the corresponding relationship between V'ao and V'bs (V'ao/V'bs) represented the equipment flow transfer function (FTFeq) and was used to correct the data for the relative frequency responses of the pneumotachograph and of the plethysmograph.

Since the vibrations of upper airway walls may be responsible for errors in both Z_{in} and Z_{tr} , upper airway wall shunt impedance (Z_{uaw}) was also measured in all subjects during Valsalva manoeuvres [9] at the same four frequencies; this was performed using the same equipment as above to record P_{ao} and V'_{ao} . Total lung capacity was also measured in each subject using a constant-volume body plethysmograph which, in conjunction with the abovementioned VC manoeuvres, permitted the calculation of TGV and Z_g (equation 3) at any time during breathing.

Data analysis

To correct for any departure from BTPS conditions of inspired air or for any small difference in gain between the flow channels, the slope of the relationship between V'_{ao} and V'_{bs} during the slow VC manoeuvres was computed by linear regression and the V'_{ao} data were divided by this value. The correction factor ranged 0.996–1.040. After elimination of their low-frequency component [10], the Fourier coefficients of the signals at the frequency of interest were computed on a cycle-by-cycle basis and combined to obtain Zin and Zin/Ztr. Zin was corrected for the 2.1 ms time constant of the pneumotachograph [10] and

Zin/Ztr for FTFeq. Both were also corrected for the flow shunted through upper airway walls according to:

$$Z_{in,c} = Z_{in} \times Z_{auw} / (Z_{uaw} - Z_{in})$$
 (4)

$$(Zin/Ztr)c = (Zin/Ztr-H)/(1-H)$$
(5)

where H=Zin/Zauw and c refers to corrected values. Finally, Zaw was computed according to equation 2, using values of Zg computed from the instantaneous TGV (equation 3).

Results

A time plot of V'ao, V, the real (R_{aw}) and the imaginary ($Z_{aw,im}$) parts of Z_{aw} obtained with an oscillation frequency of 20 Hz in a representative subject is shown in figure 2. The four curves have been low-pass filtered at 1 Hz to eliminate the high frequency components of V'ao and V and smooth the impedance data. It can be seen that both R_{aw} and $Z_{aw,im}$ undergo systematic variations during the respiratory cycle. R_{aw} increases during the early part of both inspiration and expiration and decreases during the latter part. R_{aw} was usually slightly greater at end-expiration than at end-inspiration. That pattern was similar in all subjects. The variations of $Z_{aw,im}$ almost mirrored those in R_{aw} , exhibiting a decrease in the early part of both phases and an increase in the latter part.

Using similar time plots, ensemble-averaged cycles were built for all variables and for all subjects with 32 points per respiratory cycle (16 for each phase). The mean values of R_{aw} and $Z_{aw,im}$ over the whole cycle in the eight subjects at the four oscillation frequencies are shown in figure 3. R_{aw} tended to increase slightly with increasing frequency, rising from 1.51 ± 0.79 hPa·s·L⁻¹ at 10 Hz to 1.80 ± 1.10 hPa·s·L⁻¹ at 40 Hz; that trend, however, was not statistically significant by one-way analysis of variance. In contrast, $Z_{aw,im}$ increased almost linearly with

Fig. 2. – Time plots of flow, volume, real $(R_{aw}; ---)$ and imaginary $(Z_{aw,im}; ---)$ parts of airway impedance (Z_{aw}) at 20 Hz in a representative subject.

increasing frequency, rising from a mean value of $0.81\pm$ 0.13 hPa·s·L⁻¹ at 10 Hz to 3.59 ± 0.57 hPa·s·L⁻¹ at 40 Hz (p<0.001). This increase is consistent with the usual assumption that the airways may be modelled as a resistance–inertance pathway [1], so that Zaw,im=Iaw× ω , with Iaw the airway inertance. Iaw, as obtained from that relationship, did not vary significantly with increasing frequency; it averaged 1.29±0.21 Pa·s²·L⁻¹ at 10 Hz and 1.40± 0.23 Pa·s²·L⁻¹ at 40 Hz.

The time dependence of R_{aw} and I_{aw} was analysed by studying their relationship to V'_{ao} and V. This was done by fitting the data from the block-averaged cycles to the following equation by multiple linear regression:

$$X = K_1 + K_2 \times abs(V'ao) + K_3 \times V$$
(6)

where X stands for either R_{aw} or I_{aw} , abs(V'ao) is the absolute value of V'ao, K_2 and K_3 express the dependence of X over the absolute flow and lung volume, respectively, and K_1 is the value of X at zero flow and zero volume (arbitrarily taken at midtidal volume). The analysis was made separately for the inspiratory and expiratory phases and the results are presented in tables 2 and 3.

Equation 6 usually gave a good fit to R_{aw} data; the residuals averaged 0.03–0.07 hPa·s·L⁻¹ and the multiple r^2 0.94–0.98. R_{aw} was slightly, but not significantly, larger during expiration than during inspiration at 10–30 Hz; this was not due to any difference in K_1 , but to a substantially

Fig. 3. – Frequency (f) dependence of a) airway resistance (R_{aw}) and b) imaginary airway impedance ($Z_{aw,im}$) in eight subjects. Subjects are represented by the same symbols in both graphs. Values are means calculated over the entire respiratory cycle.

	Inspiration				Expiration			
fos Hz	10	20	30	40	10	20	30	40
$\frac{\text{Mean } R_{\text{aw}}}{K_1} Pa \cdot s^2 \cdot L^{-1}$	1.43±0.65	1.44±0.63	1.60±0.99	1.80±1.07	1.60±0.96	1.57±0.96	1.70±1.09	1.80±1.13
	1.10±0.52	1.06±0.52	1.27±0.90	1.48±1.05	1.12±0.52	1.05±0.50	1.28±0.90	1.52±1.07
$ \begin{array}{l} K_2 \text{Pa} \cdot \text{s}^{3} \cdot \text{L}^{-2} \\ K_3 \text{Pa} \cdot \text{s}^{2} \cdot \text{L}^{-2} \end{array} $	0.82±0.38	0.90±0.40	0.83±0.44	0.76±0.36	1.39±1.25	1.47±1.13*	1.30±0.87	0.84±0.76
	-0.35±0.22	-0.34±0.24	-0.39±0.32	-0.35±0.30	-0.20±0.47	-0.03±0.32*	-0.17±0.42*	-0.18±0.40

Table 2. – Mean values of airway resistance (R_{aw}), K_1 , K_2 and K_3 for inspiration and expiration at four oscillating frequencies (f_{os})

Values are means \pm SD. K_1 : value of R_{aw} at zero flow and zero volume; K_2 and K_3 : dependence of R_{aw} over the absolute flow and lung volume, respectively. *: p<0.05 for difference between inspiration and expiration (paired t-test).

larger flow dependence during the expiratory phase (p< 0.05 at 20 Hz). K_2 did not vary significantly with the oscillation frequency; it was statistically significant in all subjects and at all frequencies, except in one subject at 10 Hz during expiration. K_3 was also significant in most instances; on average, it was negative at all frequencies, *i.e.* R_{aw} tended to decrease with increasing lung volume, and this trend was stronger during the inspiratory phase.

Equation 6 also gave a good fit to I_{aw} data; the residuals averaged 0.01–0.04 Pa·s⁻²·L⁻¹ and the multiple r^2 0.96– 0.99. The mean I_{aw} and K_1 were similar during inspiration and expiration. As for R_{aw} , the flow dependence was stronger during the expiratory phase but, in contrast to R_{aw} , I_{aw} decreased with increasing absolute flow; K_2 was significant in all instances during both phases. Although statistically significant in most instances, the volume dependence was weak except at 10 Hz during inspiration.

Discussion

The data presented in this study show that airway impedance varies during the respiratory cycle; thus, it is possible to distinguish between its flow-dependent and flowindependent portions, which is of great potential interest.

The approach used in this study to separate airway and tissue properties does not imply any assumption concerning the mechanical properties of the two compartments. Thus, in contrast to the analysis of Ztr data using the sixcoefficient model of DuBois et al. [1], it is not assumed that the chest wall behaves as a resistance-elastance-inertance system and that the airways are a resistance-inertance pathway; it is only after the separation is made that modelling may be performed if one wishes to interpret the compartmental impedances in terms of specific mechanical properties. Moreover, provided alveolar pressure is homogeneous, equations 1 and 2 are still valid if the tissues are made of several parallel compartments with different properties. This is clearly of importance since the chest wall has been shown to behave inhomogeneously above a few Hertz [6, 11]. When the alveolar pressure is inhomogeneous, that is when the respiratory system is made of several T-networks (fig. 1) in parallel, the distribution of flow between the compartments depends on both their individual tissue and airway properties. It follows, for instance, that an increase in a local elastance will modify the apparent local and global resistance. In that situation, airways and tissue effective properties are interdependent and, except by making local measurements, it is not possible to separate them, whatever the approach. To evaluate the potential influence of mechanical inhomogeneity on Zaw, as measured by equation 2, a system made of two Tnetworks in parallel, with inhomogeneous properties, was simulated numerically. Their overall Zin and Ztr at 20 Hz were derived and their apparent Zaw computed according to equation 2. In the homogeneous case, both networks had a Raw of 2 hPa·s·L⁻¹ and an Iaw of 2 Pa·s²·L⁻¹, a TGV of 2 L, a tissue compliance (Ct) of 0.05 L·hPa⁻¹ and a tissue resistance (Rt) 1 hPa·s·L-1. The data are shown in table 4. Decreasing one of the TGV by a factor of 10 increased the computed Raw by 1.4% and Iaw by 3.1%. Varying one of the local Ct or Rt by any amount, however, did not influence at all the estimated Raw and Iaw. Increasing one of the Raw by a factor of 10 increased, as expected, the global R_{aw} , but also increased the global Iaw. In this situation, additional inhomogeneities of the TGV or the tissues changed little the apparent R_{aw} , but could modify the apparent I_{aw} . It was concluded that: 1) mechanical inhomogeneity of the tissues and gas distribution in the lung has little influence on the estimation of airway properties, the fact that Raw and Iaw varied little with the oscillation frequency (tables 2 and 3) supports this conclusion; and 2) inhomogenity of Raw may interfere with the estimation of Iaw.

The accuracy of Zaw, as obtained by this approach, also depends on methodological factors. In practice, the relative frequency response of the body box and the pneumotachograph (FTFeq), which was recorded after each measurement, appeared extremely reproducible in a given individual. A problem common to all forced oscillation measurements with the pressure input applied at the airway opening is the upper airway artefact [12], that is the flow shunted by

Table 3. – Mean values of airway inertance (I_{aw}), K_1 , K_2 and K_3 for inspiration and expiration at four oscillating frequencies (f_{os})

		Inspiration				Expiration			
fos Hz	10	20	30	40	10	20	30	40	
Mean Iaw Pa·s ² ·L ⁻¹	1.34±0.22	1.51±0.27	1.52±0.28	1.49±0.25	1.26±0.23	1.42±0.22	1.41±0.26	1.38±0.21	
K_1 Pa·s ² ·L ⁻¹	1.46 ± 0.25	1.62 ± 0.29	1.60 ± 0.34	1.53 ± 0.28	1.51±0.31	1.62 ± 0.32	1.61±0.35	1.55 ± 0.28	
K_2 Pa·s ³ ·L ⁻²	-0.33±0.16	-0.25±0.19	-0.20±0.26	-0.12±0.17	-0.78±0.63	-0.60±0.44	-0.66±0.59	-0.52 ± 0.40	
K_3 Pa·s ² ·L ⁻²	0.30 ± 0.17	0.16 ± 0.30	0.05 ± 0.10	0.04 ± 0.10	-0.14±0.28	-0.09±0.13	-0.07±0.12	-0.03±0.09	

Values are means \pm sD. K_1 : value of I_{aw} at zero flow and zero volume; K_2 and K_3 : dependence of I_{aw} over the absolute flow and lung volume, respectively.

Table 4. – Influence of mechanical inhomogeneity on estimates of airway resistance (R_{aw}) and inertance (I_{aw}) (computer simulation)

Condition	Raw	Iaw
	hPa·s·L ⁻¹	$Pa \cdot s^2 \cdot L^{-1}$
Homogeneous	1.000	1.000
TGV2/10	1.014	1.031
Ct2/10	1.000	1.000
$R_{t2} \times 10$	1.000	1.000
$R_{aw2} \times 10$	2.193	1.474
$R_{aw2} \times 10$ and TGV ₂ /10	1.952	1.602
$R_{aw2} \times 10$ and $TGV_1/10$	2.533	1.435
$R_{aw2} \times 10$ and $C_{t_2}/10$	2.199	1.515
$R_{aw2} \times 10$ and $C_{t_1}/10$	2.006	1.284
$R_{aw2} \times 10$ and $R_{t_1} \times 10$	2.114	1.584
$R_{aw2} \times 10$ and $R_{t_2} \times 10$	2.173	0.729

TGV: thoracic gas volume; *Ct*: tissue compliance; *Rt*: tissue resistance. Homogeneous case: *Raw*: 2 hPa·s·L⁻¹; *Iaw*: 2 Pa·s²L⁻¹; TGV: 2 L; *Ct*: 0.05 L·hPa⁻¹; *Rt*: 1 hPa·s·L⁻¹ in both compartments. Subscripts 1 and 2 identify the compartments in which the properties are altered compared to the homogeneous case.

the motion of upper airway walls (cheeks, mouth floor, pharynx). With the present set-up, this flow could modify not only Zin, but also Ztr because the head of the subject was inside the body box. To minimize the problem, the subjects were asked to support their cheeks firmly during the measurements; in addition, the data were corrected for the residual shunt impedance of the upper airway walls (equations 4 and 5). The correction, however, may have been incomplete because Zuaw, as measured during Valsalva manoeuvres [9], has been shown to be slightly larger than during quiet breathing [13]. To evaluate this factor, the influence was tested of correcting the data with values of Zuaw (real and imaginary parts) reduced by 30% at all frequencies. The influence of this overcorrection was negligible on Zaw, im up to 40 Hz and weak on Raw up to 20 Hz. At higher frequencies, Raw appeared to be substantially lower with the decreased Zuaw. However, the residual error was not thought to be large in practice, because Raw did not exhibit much frequency dependence.

The mean values of R_{aw} (1.62±0.88 hPa·s·L⁻¹) and I_{aw} (1.40±0.20 Pa·s²·L⁻¹) are similar to those obtained in healthy humans by analysing transfer impedance data with the six-coefficient model of DuBois: 1.35±0.62 hPa·s·L⁻¹ and 2.5±0.7 Pa·s²·L⁻¹ [14]; 2.15±1.07 hPa·s·L⁻¹ and 2.2±0.5 Pa·s²·L⁻¹ [15]; 1.39±0.44 hPa·s·L⁻¹ and 1.7±0.23 Pa·s²·L⁻¹ [2]; and 2.30±0.52 hPa·s·L⁻¹ and 2.8±0.8 Pa·s²·L⁻¹ [4] for R_{aw} and I_{aw} , respectively. This is worth mentioning because the data were derived from measurements at a single frequency while reliable estimates of R_{aw} and I_{aw} from Z_{tr} data require measurements from 4 to at least 30 Hz [5]. It supports the validity of applying the model of DuBois over such a large frequency range.

The advantages of separating airway and tissue properties from impedance data obtained at a single frequency are many. Firstly, it avoids the crosstalk between frequencies observed with nonlinear systems when the input signal does not meet a number of very stringent criteria [16]. Secondly, it provides the best possible time resolution; indeed, while, in theory, the time resolution of data from multiple frequency inputs may be as good as the period of the lowest frequency component, the minimal duration of a data block containing an integer number of cycles of all frequency components may be much longer with inputs meeting the above-mentioned criteria. Thirdly, the signal/ noise ratio is better when all of the energy is concentrated in a single frequency than when it is distributed among several components. Finally, it avoids assuming that the mechanical properties of the respiratory system are independent of frequency, which is implicit when analysing *Z*tr data with the model of DuBois. The results shown in figure 3 suggest that *R*aw may vary substantially with frequency in some individuals; also, as mentioned above, the effective resistance and elastance of the tissues may vary with frequency as a result of the mechanical inhomogeneity of the chest wall.

This study showed substantial variations in R_{aw} during the respiratory cycle. These variations were analysed with a descriptive model (equation 6) inspired from Rohrer's equation [17], which expresses the nonlinear pressure– flow relationship along the airways:

$$Pao-PA = K_1 \times V'ao + K_2 \times V'ao^2 \tag{7}$$

where P_A is the alveolar pressure. From that relationship, R_{aw} , as measured by forced oscillation from small variations of pressure and flow, is expected to be proportional to flow:

$$Raw = d(Pao - PA)/dV'ao = K_1 + 2K_2 \times V'ao$$
(8)

From this equation, the coefficient K_2 in equation 6 would correspond to twice Rohrer's K_2 coefficient when the pressure oscillations are infinitely small. This is not the case in practice and the expected ratio between Rohrer's K_2 and our K_2 coefficient may vary between 1 and 2, depending on the relative amplitudes of the oscillatory and respiratory flows [18]. In the present model, a third term was included to account for any variations in R_{aw} in relation to lung volume. The analysis showed a good fit of the data to the model with K_2 values around 0.8 hPa·s²·L⁻² during the inspiratory phase and 1.3 hPa·s²·L⁻² during the expiratory phase.

These observations are similar to those of CAUBERGHS and VAN DE WOESTUNE [19], who found resistance of the respiratory system (*R*rs) values to be lower during peak tidal inspiratory flow and greater during maximal inspiratory flow. They have also shown that *R*rs increased with increasing values of expiratory flows. The values of K_2 coefficients are similar to those obtained by PESLIN *et al.* [20], who studied Zin variations during the respiratory cy-cle. Mean K_2 values in seven healthy subjects at 4–6 Hz were 0.95±0.47 and 1.49±0.55 hPa·s²·L⁻² for inspiration and expiration, respectively. In another work from the same laboratory [18] the analysis of *Z*in variations measured with a head pressure generator gave values of K_2 varying from 0.65 and 1.18 at 10 Hz to 1.2 and 1.7 hPa·s²·L⁻² at 30 Hz for inspiration and expiration, respectively.

The analysis revealed some negative volume dependence of R_{aw} , which is consistent with previous data. Oost-VEEN *et al.* [21] reported a decrease with volume of airway resistance derived from transfer impedance during inspiratory manoeuvres. PESLIN *et al.* [18] reported values of K_3 ranging from about -0.3 to -0.7 for inspiration and -0.8 to -1.4 hPa·s·L⁻² for expiration. These values are larger than those found in the present study, but they were calculated from Zin variations during normal breathing and not from Zaw, as in this study. The study also revealed systematic variations in *I*_{aw} during the respiratory cycle (fig. 2) which, analysed with equation 6, corresponded mostly to negative flow dependence (table 3). This finding is in agreement with the observations of Oostreen *et al.* [21] who derived *I*_{aw} from 4–30 Hz *Z*tr data obtained during constant-flow inspiratory and expiratory manoeuvres. During inspiration *I*aw decreased from 2.12 Pa·s²·L⁻¹ at 0.1 L·s⁻¹ to 1.79 hPa·s²·L⁻¹ at 0.4 L·s⁻¹; the changes, however, were smaller during the expiratory phase (2.15 and 1.91 Pa·s²·L⁻¹ at 0.1 and 0.4 L·s⁻¹, respectively), which is at variance with the present observations. Such a negative flow dependence is consistent with a blunter velocity profile of air in the airways when the flow is larger [22].

While the possibility of separating airway and tissue mechanical properties is obviously of interest for a number of clinical and physiological applications, one may wonder about the practical usefulness of studying the variations in Raw during the respiratory cycle. The flow dependence, and to a lesser extent, the volume dependence of Raw, make it frequently difficult to interpret its value in patients and its variations during bronchomotor challenge. Indeed, changes in ventilation or in the respiratory pattern may modify R_{aw} and obscure the actual changes in airway patency. Moreover, most of the flow dependence of Raw has been shown to be located in extra-thoracic airways [23] and it has also been observed that induced bronchoconstriction may reflexly increase extra-thoracic airway resistance [24]. Then, the flow-dependent component of Raw may be largely irrelevant when studying bronchial responsiveness. When Raw is measured by body plethysmography, the problem may be solved to some extent by standardizing the flow range over which the pressure is measured [25]; the data, however, still include nonlinear components. The advantage of studying the variations in Raw during the cycle and analysing the data with a descriptive model, such as equation 6, is that it makes it possible to isolate its linear component, K_1 . The latter should represent an index of airway patency that is much more independent of the ventilation and of the extrathoracic airways than the mean resistance or the resistance over any specific flow range.

Further studies are needed to verify that prediction and the value of this type of analysis in pulmonary function testing, especially in the evaluation of the results of bronchomotor tests.

Acknowledgement: The authors are grateful to M.C. Rohrer for preparing the illustrations.

References

- 1. DuBois AB, Brody AW, Lewis DH, Burgess F. Oscillation mechanics of lung and chest in man. *J Appl Physiol* 1956; 8: 587–594.
- 2. Peslin R, Gallina C, Duvivier C. Respiratory transfer impedance with pressure input at the mouth and chest. *J Appl Physiol* 1986; 61: 81–86.
- 3. Lutchen KR, Giurdanella CA, Jackson AC. Inability to separate airway from tissue properties by use of human respiratory input impedance. *J Appl Physiol* 1990; 68: 2403–2412.
- Lutchen KR, Everett JR, Jackson AC. Impact of frequency range and input impedance on airway–tissue separation implied from transfer impedance. *J Appl Physiol* 1993; 74: 1089–1099.

- Tomalak W, Peslin R, Duvivier C, Gallina C. Optimal frequency range to analyze respiratory transfer impedance with 6-coefficient model. *J Appl Physiol* 1993; 75: 2656– 2664.
- Peslin R, Duvivier C, Gallina C. Total respiratory input and transfer impedances in humans. *J Appl Physiol* 1985; 59: 492–501.
- Mishima M, Kawakami K, Higashyia K, Fukunaga T, Ooka T, Kuno K. Frequency characteristics of airway and tissue impedances in respiratory diseases. *J Appl Physiol* 1990; 71: 259–270.
- Tomalak W, Peslin R, Duvivier C. Respiratory tissue properties derived from flow transfer functions in healthy humans. *J Appl Physiol* 1997; 82: 1098–1106.
- Michaelson ED, Grassman ED, Peters WR. Pulmonary mechanics by spectral analysis of forced random noise. J Clin Invest 1975; 56: 1210–1230.
- Duvivier C, Peslin R, Wendling F, *et al.* Mesure de l'impedance thoraco-pulmonaire par oscillations forcees presentation d'un appareil. *Innov Tech Biol Med* 1990; 11: 381–399.
- 11. Barnas GM, Yoshino K, Loring SH, Mead J. Impedance and relative displacement of relaxed chest wall up to 4 Hz. J Appl Physiol 1987; 62: 71–81.
- 12. Peslin R, Duvivier C, Gallina C, Cervantes P. Upper airway artifact in respiratory impedance measurements. *Am Rev Respir Dis* 1985; 132: 712–714.
- 13. Peslin R, Duvivier C, Jardin P. Upper airway walls impedance measured with head plethysmograph. *J Appl Physiol* 1984; 57: 596–600.
- Peslin R, Papon J, Duvivier C, Richalet J. Frequency response of the chest: modelling and parameter estimation. J Appl Physiol 1975; 39: 523–534.
- Rotger M, Peslin R, Oostveen E, Gallina C. Confidence intervals of respiratory mechanical properties derived from transfer impedance. *J Appl Physiol* 1991; 70: 2432–2438.
- Suki B, Luthen KR. Pseudorandom signals to estimate apparent transfer and coherence functions of nonlinear systems: application to respiratory mechanics. *IEEE Trans BME* 1992; 39: 1142–1150.
- Rohrer R. Der Stromungswiderstand in den menschlichen Atemwegen und der Einfluss der unregelmassigen Verzwiegung des bronchial System auf den Atmungsverlauf in verschiedenen Lungenbezirken. *Pfluegers Arch Gesamte Physiol Menschen Tiere* 1915; 162: 225–299.
- Peslin R, Ying Y, Gallina C, Duvivier C. Within breath variations of forced oscillation resistance in healthy subjects. *Eur Respir J* 1992; 5: 86–92.
- Cauberghs M, van de Woestijne KP. Changes of respiratory input impedance during breathing in humans. *J Appl Physiol* 1992; 73: 2355–2362.
- Peslin R, Hixon T, Mead J. Variations des resistances thoracopulmonaires au cours du cycle ventilatoire etudiees par methode d'oscillations. *Bull Physiopath Respir* 1971; 7: 173–186.
- Oostveen E, Peslin R, Gallina C, Zwart A. Flow and volume dependence of respiratory mechanical properties by forced oscillations. *J Appl Physiol* 1991; 67: 2212–2218.
- Peslin R, Fredberg J. Oscillations mechanics of the respiratory system. *In*: Handbook of Physiology, Section 3. The Respiratory System, Vol. III. Mechanics of Breathing. Bethesda, MD, American Physiological Society, 1985; pp. 145–178.
- 23. Hyatt RE, Wilcox RE. Extrathoracic airway resistance in man. *J Appl Physiol* 1961; 16: 326–330.
- 24. Collett PW, Brancatisano T, Engel LA. Changes in the glottis aperture during bronchial asthma. *Am Rev Respir Dis* 1983; 128: 719–723.
- Stanescu DC, Pattijn J, Clement J, Van de Woestijne KP. Glottis opening and airway resistance. J Appl Physiol 1972; 32: 460–466.