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Abstract 

Exposure to ambient fine particulate matter (PM2.5) is a risk factor for pulmonary and systemic 

autoimmune diseases, however evidence on which PM2.5 chemical components are more harmful 

is still scant. Our goal is to investigate potential associations between PM2.5 components and 

interstitial lung disease (ILD) onset in rheumatoid arthritis (RA).  

New-onset RA subjects identified from a United States health care insurance database 

(MarketScan) were followed for new onset of RA associated ILD (RA-ILD) from 2011 to 2018. 

Annual ambient PM2.5 concentrations of its chemical components (i.e. sulfate, nitrate, 

ammonium, organic matter, black carbon, mineral dust, and sea salt) were estimated by 

combining satellite retrievals with chemical transport modelling and refined by geographically 

weighted regression. Exposures from 2006 up to one year before ILD onset or end of study were 

assigned to subjects based on their metropolitan division or core-based statistical area codes. A 

novel time-to-event quantile-based g(generalized)-computation approach was used to estimate 

potential associations between RA-ILD onset and the exposure mixture of all seven PM2.5 

chemical components adjusting for age, sex, and prior chronic obstructive pulmonary disease (as 

a proxy for smoking).  

We followed 280,516 new-onset RA patients and detected 2194 RA-ILD cases across 1,394,385 

person-years. The adjusted hazard ratio for RA-ILD onset was 1.54 (95% confidence interval 

1.47-1.63) per every decile increase in all seven exposures. Ammonium, mineral dust, and black 

carbon contributed more to ILD risk than the other PM2.5 components.  

  



 

In conclusion, exposure to elements of PM2.5, particularly ammonium, increases ILD risk in RA.  

Keywords: rheumatoid arthritis, interstitial lung disease, fine particles matter components, 

quantile-based g-computation, MarketScan database. 
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Introduction 

Rheumatoid arthritis (RA) is a potentially disabling systemic autoimmune disorder that 

affects up to 80 million people world-wide [1]. Interstitial lung disease (ILD) is a severe 

extraarticular RA manifestation that contributes greatly to morbidity and mortality [2,3]. 

Although it is increasingly recognized that fine particulate matter (PM2.5) in air pollution is an 

environmental risk factor associated with some pulmonary and systemic autoimmune diseases 

[4,5], knowledge about a potential association between ambient PM2.5 and ILD in RA (RA-ILD) 

is scant. As well, ambient PM2.5 is composed of different chemical components (e.g. organic 

matter, black carbon, mineral dust, and mineral salt) [6]. A few studies suggested that individual 

chemical components of PM2.5 may be more closely related to adverse health effects than 

aggregated PM2.5 [7,8]. Ambient air pollution has been linked to subclinical ILD in the non-RA 

setting [9]. However, for many diseases including RA-ILD, it remains unclear which PM2.5 

chemical components are the most harmful.  

People are usually exposed to multiple air pollutants and chemical components 

simultaneously [10]. Concentrations of these different air pollutants or chemical compositions 

are often correlated in space, since they share common sources (e.g. industries and road traffic) 

[11]. Given this correlation, studies of the health effects of multiple PM2.5 chemical compositions 

do not lend themselves well to a common parametric regression approach (e.g. a multi-exposure 

Cox proportional hazards model) due to the potential problem of collinearity. 

G-computation belongs to the G-method family of ‘generalized’ models which provide 

consistent estimates of contrasts (e.g. differences and ratios) of average potential outcomes under 

a less restrictive set of identification conditions than standard parametric regression methods. 

Quantile-based g-computation [10] represents a novel way to investigate the joint health effects 



of multiple exposures. Compared to other methods for assessing joint effects of multiple inter-

correlated exposures, e.g. Bayesian kernel machine regression [12] and weighted quantile sum 

(WQS) regression [13] (Carrico et al., 2015), quantile-based g-computation is much more 

efficient, which is beneficial in analyzing datasets with a large number of subjects and multiple 

exposure variables and covariates [10]. More importantly, current Bayesian kernel machine 

regression and WQS regression methods apply only to cross-sectional studies. By contrast, 

quantile-based g-computation can be used to fit time-to-event models to estimate marginal 

hazard ratios (HRs) for exposure mixtures. Therefore, in this study we used quantile-based g-

computation in conjunction with conventional Cox proportional hazards models to investigate 

associations between RA-ILD onset and long-term exposure to a mixture of PM2.5 chemical 

components, based on a general-population cohort using administrative health data from the 

United States (US). 

Methods 

study cohort 

Our analyses were based on the Truven Health MarketScan Commercial Claims 

Database, which curates non-nominal longitudinal health claims (related to physician visits, 

emergency room encounters, hospitalizations, and prescription drug dispensations) from all US 

health care insurance agencies willing to provide data. MarketScan has been used to estimate the 

prevalence of RA and ILD-RA [14]. The database records at least one diagnosis code for each 

physician billing claim and up to four diagnostic codes for each hospitalization, coded using the 

International Classification of Disease, Ninth/tenth Revision, Clinical Modifications (ICD-9/10-

CM) classification system. Besides standard demographic variables (e.g. age and sex), the 

database contains a geographic code for each enrollee, as either a metropolitan division or core-



based statistical area (CBSA) code. A CBSA is a US geographic area that consists of one or 

more counties with an urban center of at least 10,000 people. A metropolitan division is 

constituted by subdividing one of the 11 largest Metropolitan Statistical Areas (e.g. Chicago-

Naperville-Elgin, Los Angeles-Long Beach-Anaheim, and New York-Newark-Jeresy City). In 

the MarketScan database, people living in rural areas (i.e. not residing in a CBSA or 

metropolitan division) have no indicator of their geographic location, and thus could not be 

included in our analyses.  

New-onset RA subjects, defined by at least two physician billing claims with an RA 

diagnostic code (i.e. ICD-10 M05 or M06) within two years or at least one relevant 

hospitalization diagnostic code, were identified in the MarketScan database from January 1, 2011 

to December 31, 2018. Subjects were followed until ILD onset (at least two physician claims 

with relevant diagnostic codes of ICD-10 M05.1 or J84.1, at least one month apart), death, or end 

of study (i.e. December 31, 2018). Subjects with incident ILD before RA diagnosis were 

excluded. Additionally, we adjusted for ICD codes (ICD-10 J41-J44.x) related to chronic 

obstructive pulmonary disease (COPD) for two reasons. First, COPD is a potential confounder in 

our analyses since it is associated with air pollution and because COPD may sometimes be 

mistaken for ILD within administrative coding [15]. Second, smoking is associated with ILD 

[16], and could be an effect-modifier in the relationship between ILD and air pollution. 

However, smoking status is limited in MarketScan commercial claims data; instead, COPD has 

been used by investigators as a proxy for smoking, given COPD’s strong association with 

tobacco use [17]. 

  



Exposure variables 

The annual PM2.5 chemical composition products (V4.NA.03 version) for 2006 to 2017 

were obtained from the Atmospheric Composition Analysis Group (available from 

https://sites.wustl.edu/acag/datasets/surface-pm2-5/?, last accessed: June 29, 2021). 

Concentrations of overall PM2.5, sulfate, nitrate, ammonium, black carbon, organic matter, 

mineral dust, and sea salt in the products were estimated by combining satellite retrievals of 

aerosol optical depth with GEOS-Chem chemical transport model calculations to relate aerosol 

optical depth with PM2.5 composition. Ground-based measurements were then incorporated using 

a geographically weighted regression to provide a spatially continuous dataset at approximately a 

1 km × 1 km resolution over North America [18]. In more detail, the geographically weighted 

regression was used to predict the bias of PM2.5 and its components compared to ground-based 

measurements using predictor variables related to simulated composition, as well as land surface 

cover and local elevation features [18]. The overall cross-validated agreement (coefficients of 

variation) of the resultant all-composition PM2.5, sulfate, nitrate, ammonium, black carbon, 

organic matter, mineral dust, and sea salt to the in situ measurements for 2000-2016 are 0.70, 

0.96, 0.86, 0.90, 0.59, 0.57, 0.60, and 0.80, respectively, over North America [18]. The average 

ambient PM2.5 and its chemical composition concentrations from 2006 to one year before ILD 

onset or end of study for each metropolitan division area or CBSA were calculated based on the 

gridded PM2.5 chemical composition products and assigned to each subject. The spatial 

variations of overall PM2.5 and its seven components for 2006 are shown by Figure S1. Similar 

spatial variations of the air pollutants can be seen for the other 11 years (i.e. 2007-2017). 

  

https://sites.wustl.edu/acag/datasets/surface-pm2-5/


Similar to others [19, 20], we considered the role of ozone, another common ambient air 

pollutant in our models. Ozone is a powerful oxidant and toxic air pollutant [21]. County-level 

daily ambient ozone concentrations were retrieved from the Centers for Disease Control and 

Prevention (Available from www.data.cdc.gov, last accessed: June 2, 2021). These ground-based 

daily measurements were averaged for each year between 2006-2017, aggregated to each 

metropolitan division area or CBSA, and assigned to each subject as was done for PM2.5 and its 

compositions.  

Statistical methods 

First, the risk of RA-ILD onset after RA diagnosis was assessed using single-exposure 

Cox proportional hazard models for overall PM2.5, the seven PM2.5 chemical compositions, and 

ozone exposures separately, adjusting for age (in years), sex, and co-existence of baseline COPD 

(at time of RA). Many previous studies have demonstrated that in North America (where PM2.5 

and its chemical composition levels are relatively low), the relationships between the PM2.5 or its 

chemical composition concentration and hazard ratios (HRs) are nearly linear [20,22]. Hence, we 

did not categorize the continuous exposure variables to avoid unnecessary loss of information 

[23]. 

Next, we used the quantile-based g-computation to estimate the marginal HR and 95% 

confidence interval (CI) for the exposure mixture of the seven individual PM2.5 chemical 

composition exposures, adjusting for the same covariates as those in the above Cox proportional 

hazard models. The quantile-based g-computation approach was developed by combining WQS 

[13] and g-computation [24]. To address potential collinearity, the WQS method transforms each 

continuous exposure of interest (X) into an ordinal variable (Xq) and combines the ordinal 

http://www.data.cdc.gov/


exposure variables into a mixed-effect index (S) to estimate the overall effect of increasing each 

exposure by one quantile using Equation 1: 

𝑆 = ∑ 𝑤𝑖𝑋𝑖
𝑞𝑛

𝑖=1       (1) 

in which i denotes an exposure, n represents the number of exposures of interest, q is the number 

of quantiles of each exposure variable (10 in this study), and w is the weight for an exposure. All 

weights are forced to sum to 1 and have the same sign or be equal to zero. Considering that 

nonlinear effects of exposure variables would be examined in this study (see the following two 

paragraphs), we selected a relatively large value of q (i.e. 10) as per the suggestion of the 

developers of the quantile-based g-computation approach [25]. Under the directional 

homogeneity of the weights, the WQS regression model is expressed by Equation 2: 

𝑌 = 𝛽0 +𝜓𝑆 + 𝛽1
𝑇𝑍     (2) 

where Y denotes the health outcome (i.e. the binary outcome of ILD onset in this study), β0 is the 

model intercept, Z is a vector of potential confounders or effect modifiers (i.e. age, sex, and co-

existence of COPD in this study), β1 represents the coefficient vector of the covariates, and ψ is 

the coefficient of the mixed-effect index. The coefficients of each ordinal exposure, w, in the 

index (usually called index weights) are obtained by the maximizing likelihood method and are 

used to quantify the magnitudes of effects of individual exposures on the health outcome [13]. 

Although WQS regression has been widely applied [e.g. 26-28], the assumption of directional 

homogeneity in WQS may lead to estimation biases and lack of convergence [10].  

When the sample size is large, the WQS regression can be treated as a generalized linear 

model [13]. Variables in a generalized linear model do not need to adhere to directional 

homogeneity and generalized linear regression is often used to assess the effects of complex 

exposures in observational datasets [29]. G-computation (or g-formula) is usually used to 



estimate causal effects and can be fitted by generalized linear model [30]. If the directional 

homogeneity assumption holds true, a quantile-based g-computation model is equivalent to a 

WQS model; otherwise, the coefficient of the mixed-effect index (i.e. logarithm of the odds ratio 

or HR of the exposure mixture regarding the outcome) is estimated by the standard g-

computation algorithm. Thus, quantile-based g-computation can be treated as a generalization 

and extension of WQS, which eliminates the restriction of directional homogeneity [10]. Similar 

to the WQS regression, the index weights that are generated in quantile-based g-computation 

provide an estimation of the relative magnitude of associations regarding individual exposures 

and the outcome. However, this holds only if associations are in the same (positive or negative) 

direction. The index weights may go in either direction, suggesting that some exposures may 

have a positive association, while others a negative association, with the studied outcome. 

The quantile-based g-computation uses Cox proportional hazards as the underlying model 

for time-to-event analysis to yield estimates of the effect of increasing all exposures by one 

quantile. The quantile-based g-computation can be extended to consider potential nonlinear 

effects of variables. In our preliminary assessment, we tried to use spline functions to model the 

nonlinear effects for each of the exposure variables, and the mixed-effect index was developed 

by Equation 3: 

𝑆 = ∑ 𝑤𝑖𝑓(𝑋𝑖
𝑞)𝑛

𝑖=1       (3) 

where f(·) is a spline function with a degree of two [25]. Comparing the Akaike information 

criterion (AIC) values [10], we found that the simple linear combination of the exposure 

variables (i.e. Equation 1) provided a better fit (i.e. with a lower AIC) and avoided over-fitting, 

compared to the use of the spline non-linear function. Thus, we selected the linear additive 

strategy to structure the mixture effect index in the quantile-based g-computation model. 



Mathematical formulation details on the quantile-based g-computation approach have been 

elaborately demonstrated by Keil et al. [10]. Our specific quantile-based g-computation model 

was fitted by “qgcomp” package in the R statistical computing environment (version 4.0.4). The 

code of fitting a quantile-based g-computation model for the primary analysis can be seen in 

Supporting materials. 

We repeated the above quantile-based g-computation analysis by adding ozone as an 

additional exposure variable. We also conducted a sensitivity analysis of the Cox proportional 

hazard models and the quantile-based g-computation models, excluding subjects with COPD 

(again, as a means of addressing heavy tobacco use-which was unmeasured in our dataset and 

outcome ascertainment error related to COPD-which can mimic ILD). We conducted more 

sensitivity analyses of the quantile-based g-computation models that stratified subjects by sex 

and age (i.e. ≤52 and >52 years old, 52 being the mean age of the first ILD diagnosis of the RA 

patients). 

Given that our follow-up period was relatively short (eight years) and ambient PM2.5 

levels were relatively stable in the contiguous US over the period [18], we did not adopt time-

varying exposures, so that the quantile-based g-computation models were more efficiently fitted. 

To explore whether this simplified assignment of exposure variables might generate large 

measurement biases, we performed Kendall’s Tau tests in an attempt to detect any calendar-year 

trends in any of the PM2.5 components in any metropolitan division or CBSA over time. 

  



Results 

We identified 280,516 new-onset RA patients (75.6% female) from 401 different CBSA 

or metropolitan division areas. Distribution of the 280,516 RA patients is shown by Figure 1. 

The mean area of the 401 CBSA or metropolitan divisions is 2636 km2 with a standard deviation 

of 3588 km2. Among the RA patients, 2,194 (74.5% female) developed ILD over a median 

follow-up of 0.48 (interquartile range 1.17) years for a total of 1,394,385 person-years (incidence 

of 3.2 cases per 1000 patient-years). The mean age at RA onset was 50.3 (standard deviation 

11.0) years. RA patients were exposed to overall PM2.5 concentrations ranging from 3.0 μg/m3 to 

12.4 μg/m3. Detailed participant characteristics and exposures for subgroups of each covariate 

are exhibited in Table 1. The distribution of population weighted PM2.5, PM2.5 compositions, and 

ozone exposures are shown in Table 2. Concentrations of the PM2.5 compositions were 

significantly inter-correlated and particularly, concentrations of mineral dust and sea salt were 

negatively correlated with those of the other PM2.5 chemical components (Table S1).  

[Figure 1 about here] 

The single-pollutant Cox proportional hazards models (controlling for demographics but 

not concomitant air pollution exposure) showed that ambient overall PM2.5 and ozone exposures 

were both associated with RA-ILD onset. In these partially adjusted models, most PM2.5 

chemical components had positive associations with RA-ILD onset, but mineral dust had a 

negative association with RA-ILD, and sea salt had no clear association. The risk of developing 

RA-ILD increased with age (Table 3). Similar results were obtained by removing COPD subjects 

from the single-pollutant Cox proportional hazards models (see Tables S2). 

  



Using quantile-based g-computation, we observed a significantly increased risk of RA-

ILD onset with every decile increase in all seven PM2.5 composition exposures (HR 1.54, 95% 

CI 1.47-1.63). This HR increased significantly after including ozone in the quantile-based g-

computation model (Table 4). Ammonium (index weight: 0.59), mineral dust (0.15), black 

carbon (0.14), ozone (0.09), and sea-salt (0.03) had positive effects on RA-ILD while nitrate 

(0.57), organic matter (0.31), and sulfate (0.12) had negative effects. The negative index weights 

suggest that the PM2.5 components of nitrate, organic matter, and sulfate are not correlated with 

RA-ILD. Results from sensitivity analyses with COPD subjects removed were similar (Table 4). 

With the sex or age subgroups, similar positive associations between the mixture of PM2.5 

component exposures and RA-ILD and index weights (i.e. in positive direction index weight of 

ammonium larger than those of mineral dust, black carbon, ozone, and sea-salt, and in negative 

direction index weight of nitrate larger than those of organic matter and sulfate) can be observed. 

(Table S3). 

The Kendall’s Tau tests showed that only 34.7% of the 401 CBSA or metropolitan 

division areas had more than two (of the seven) PM2.5 component concentrations time-series with 

statistically significant calendar-year trends (p<0.01). 

Discussion 

 A few studies have demonstrated that long-term exposures to nitrogen dioxide, ozone, 

and particulate matter with an aerodynamic diameter <10 μg/m3 (PM10) were associated with the 

increased risk of ILD or idiopathic pulmonary fibrosis (IPF, the most common form of ILD) in 

the general population [31-33], although clear associations between overall PM2.5 and ILD/IPF 

was not clearly demonstrated in studies from Taiwan [31], North Italy [32], and Pennsylvania 

and New Jersey [33]. In our study, we observed a significant positive association between PM2.5 



exposure and RA-ILD incidence. More importantly, we quantified differential effects of PM2.5 

chemical compositions on RA-ILD onset and found that ammonium had the largest positive 

index weight among the seven PM2.5 chemical constituents (Table 4). This finding complements 

other work suggesting that the health effects of PM2.5 may not be entirely related to its total 

concentration, but also to the characteristics of its chemical constituents [34]. The composition of 

ambient PM2.5 may vary greatly across different countries/areas, which should be taken into 

account when interpreting any study of its effects on health; a failure to demonstrate associations 

between a composite measure like total ambient PM2.5 and a particular outcome does not exclude 

the possibility that a component of PM2.5 may indeed be a culprit. 

 Many studies have demonstrated harmful effects of mineral dust on respiratory health 

[35] however, a significant negative association between mineral dust exposure and RA-ILD 

onset was seen with our single-exposure Cox model. This may have been due to confounding 

since the concentration of mineral dust in ambient PM2.5 was negatively associated with most of 

the other PM2.5 chemical components in the metropolitan statistical areas of the US (including 

ammonium). Clearly, single pollutant Cox model cannot capture the real effect of PM 

components. 

With the quantile-based g-computation approach, we observed the second largest weight 

index for mineral dust, preceded only by ammonium (Table 4). There is strong biologic 

plausibility for both ammonia and mineral dust as potential triggers for RA-ILD, since both are 

very strong triggers of pulmonary inflammation. [36,37]. In the current study, we observed 

negative index weights from nitrate, organic matter, and sulfate. Setting a negative direction for 

the effects of these three exposure variables ensured convergence of the quantile-based g-

computation regression [10], but it does not necessarily indicate that nitrate, organic matter, and 



sulfate are significantly associated with RA-ILD. In the quantile-based g-computation, index 

weights are fixed (i.e. no confidence interval can be generated) [10], which is a shortcoming of 

the method, since statistical significance cannot be estimated. Considering there were already 

eight exposures (seven PM2.5 chemical compositions + ozone) in our quantile-based g-

computation model, further adding interaction terms might induce over-fitting [10]. Future 

exploration of interactions between individual PM2.5 chemical compositions may be possible, 

using a non-parametric Bayesian procedure and high-performance computers [12]. 

In this study, we assigned air pollution estimates to subjects based on their CBSA or 

metropolitan division codes, since we did not have access to postal codes or census tract, unlike 

other studies [19,20,28]. While potential misclassification of exposure is a limitation, we expect 

this to be non-differential, meaning that our estimates would have tended to be biased towards 

the null instead of finding any association. Assigning exposures based on residential postal code 

or census tract may also be misleading since people are typically mobile in their cities as they 

engage in work and other activities [38]. Thus, a CBSA or metropolitan division area’s average 

concentration of air pollution may be closer to a person’s actual exposure than the concentration 

at the centroid point of the person’s residential postal code. Additionally, unlike Pope et al. [39] 

in which air pollution exposures were assigned at the metropolitan statistical area level, we 

assigned PM2.5 exposures to subjects living in the 11 largest metropolitan statistical areas based 

on their metropolitan division area codes, which can reduce the exposure misclassification error 

generated by the over-large metropolitan areas.  

Since only one third of the CBSA or metropolitan division areas had more than two (of 

the seven) PM2.5 component concentrations time-series with statistically significant calendar-year 

trends. Thus, we believe our time-fixed exposure approach is reasonable.  However, our study 



was limited to residents in urban areas, and thus results may not be generalizable to individuals 

living in rural areas. Also, we could not obtain reliable data regarding concentrations of other 

gaseous air pollutants (e.g. nitrogen dioxide and sulfur dioxide) for the US during our study 

period. Additionally, variables such as race/ethnicity, income and education are unavailable in 

the Commercial Claims dataset. Given that Americans with commercial health insurance may be 

more likely to have middle or high incomes, our results may not be generalizable to low-income 

populations. 

Although use of a large population-based database is a strength, use of billing code 

diagnoses have imperfect specificity for ILD ascertainment, which could result in a non-

differential misclassification of the outcome. This could be a contributor to the relatively wide 

confidence intervals for some of our HR estimates. Another potential limitation is that 

MarketScan subjects are no longer identifiable after they change insurance status; thus, it is 

possible that some subjects actually had prevalent RA instead of true incident RA, and a few 

might have already had prevalent ILD.  

In conclusion, we identified positive associations between a mixture of individual PM2.5 

chemical compositions and RA-ILD onset and quantified specific effects of individual chemical 

compositions on RA-ILD using quantile-based g-computation. Our findings lend weight to the 

argument that some components of PM2.5 (e.g. ammonium and mineral dust) are of greater 

concern than others, and that greater public health benefits may be gained by controlling 

emissions of more toxic components. It seems increasingly clear that efficient use of nitrogen 

fertilizers and keeping more nitrogen and ammonium in soil are critical ways to limit PM2.5 

levels in atmosphere and curb the burden of many chronic diseases, potentially including RA-

ILD [40]. 
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Figure captions 

 

Figure 1. Distribution of identified new-onset rheumatoid arthritis (RA) patients. CBSA: core-

based statistical area. Note: these are absolute numbers not rates, and do not account for 

variations between states in terms of age, MarketScan enrolment, or other factors.  

 



Table 1. Participant characteristics and exposures for subgroups of each covariate in the study cohort. 

Covariate 
Sub-

group 

Number of 

ILD (%) 

Person-

years 

Overall PM2.5 

(μg/m3) 

BC 

(μg/m3) 

DUST 

(μg/m3) 

NH4 

(μg/m3) 

NO3 

(μg/m3) 

OM 

(μg/m3) 

SO4 

(μg/m3) 

SS 

(μg/m3) 

Ozone 

(ppb) 

Sex 
Male 564 (0.8) 342464 8.30 0.71 0.64 0.76 0.94 2.88 2.00 0.37 39.37 

Female 1630 (0.8) 1052876 8.31 0.71 0.67 0.74 0.93 2.89 2.00 0.37 39.47 

Age 
≤52 860 (0.6) 675557 8.31 0.71 0.68 0.74 0.92 2.89 1.99 0.37 39.53 

>52 1334 (0.9) 719782 8.31 0.71 0.65 0.75 0.93 2.89 2.00 0.37 39.38 

COPD 
No 121 (1.5) 37302 8.55 0.74 0.64 0.78 0.95 2.98 2.11 0.36 39.41 

Yes 2073 (0.8) 1358037 8.30 0.71 0.66 0.75 0.93 2.89 2.00 0.37 39.45 

 



Table 2. Distribution of population weighted concentrations of ambient PM2.5 and its major 

chemical compositions over the 401 core-based statistical areas and metropolitan division areas in 

the United States for 2006-2017. (Unit of PM2.5 and its compositions: μg/m3, unit of ozone: ppb) 

Exposure 

variable 
Min 

Decile 
Max 

10% 20% 30% 40% 50% 60% 70% 80% 90% 

PM2.5 3.01 6.10 7.15 7.65 8.39 8.68 8.98 9.21 9.68 10.30 12.40 

Ammonium 0.10 0.31 0.47 0.59 0.68 0.75 0.84 0.92 1.02 1.16 1.86 

Black carbon 0.22 0.43 0.54 0.59 0.67 0.72 0.79 0.80 0.87 0.94 1.43 

Mineral dust 0.11 0.27 0.35 0.41 0.48 0.54 0.66 0.78 0.92 1.22 4.29 

Nitrate 0.06 0.37 0.45 0.54 0.60 0.79 0.98 1.10 1.43 1.81 2.65 

Organic matter 1.04 2.01 2.35 2.52 2.72 2.92 3.03 3.20 3.38 3.69 5.03 

 Sea salt 0.00 0.11 0.15 0.18 0.21 0.24 0.29 0.41 0.63 0.78 2.91 

Sulfate 0.28 0.85 1.50 1.83 2.01 2.18 2.27 2.40 2.61 2.77 4.32 

Ozone 28.66 35.80 37.32 38.19 38.67 39.35 40.00 40.68 41.46 42.47 51.12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Hazard ratios (95% confidence intervals) from the single-pollutant Cox proportional 

hazards models for time to RA-associated ILD onset, per 0.1 μg/m3 (1 μg/m3) increase in the 

PM2.5 composition (overall PM2.5) and 1 ppb increase in ozone, adjusting for age (in year), sex 

(male as reference), and co-existence of chronic obstructive pulmonary disease (COPD). 

Exposure 

variable 

Exposure variable age sex COPD 

Overall PM2.5 1.50 (1.45-1.55) 1.02 (1.01-1.02) 0.96 (0.87-1.06) 1.76 (1.46-2.11) 

Ammonium 1.38 (1.36-1.40) 1.02 (1.01-1.02) 0.99 (0.90-1.09) 1.73 (1.43-2.08) 

Black carbon 1.26 (1.23-1.28) 1.02 (1.01-1.02) 0.96 (0.87-1.06) 1.79 (1.49-2.15) 

Mineral dust 0.97 (0.96-0.98) 1.02 (1.01-1.02) 0.97 (0.88-1.07) 1.86 (1.55-2.24) 

Nitrate 1.01 (1.01-1.02) 1.02 (1.01-1.02) 0.96 (0.86-1.06) 1.86 (1.54-2.34) 

Organic 

matter 

1.01 (1.01-1.02) 1.02 (1.01-1.02) 0.96 (0.87-1.05) 1.85 (1.54-2.23) 

Sea salt 1.00 (0.98-1.01) 1.02 (1.01-1.02) 0.96 (0.87-1.06) 1.87 (1.55-2.24) 

Sulfate 1.17 (1.16-1.18) 1.02 (1.01-1.02) 0.97 (0.88-1.07) 1.71 (1.43-2.07) 

Ozone 1.03 (1.01-1.04) 1.01 (1.01-1.02) 0.96 (0.87-1.06) 1.87 (1.55-2.45) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Adjusted HR (95% CI) and index weights from the quantile-based g-computation 

models for time to RA-ILD onset with an increase in all exposures by one decile. The number of 

overall subjects is 280,516, of which 7835 are with COPD. Note: the positive and negative 

weights should not be compared with each other. The weights are only compatible with other 

weights in the same (i.e. positive or negative) direction. 

COPD 

subjects 

Ozone 

exposure HR (95% CI) 
Index weight 

NH4 DUST BC ozone SS NO3 OM SO4 

Included Excluded 1.54 (1.47-1.63) 0.66 0.18 0.16 - 0.00 -0.61 -0.27 -0.12 

Included Included 2.21 (2.08-2.34) 0.59 0.15 0.14 0.09 0.03 -0.57 -0.31 -0.12 

Excluded Excluded 1.63 (1.55-1.72) 0.66 0.18 0.15 - 0.01 -0.61 -0.27 -0.12 

Excluded Included 2.30 (2.16-2.45) 0.59 0.15 0.13 0.09 0.04 -0.58 -0.31 -0.11 

BC:  black carbon, DUST: mineral dust, NH4: ammonium, NO3: nitrate, OM: organic matter, 

SO4, sulfate, SS: sea salt. 

 



Fine particles matter components and interstitial lung disease in 

rheumatoid arthritis 

Supporting Materials 

Table S1. Spearman correlation coefficients of concentrations between any two of PM2.5 

compositions. All p-values <0.001. 

 BC DUST NH4 NO3 OM SO4 SS 

BC 1.00 -0.13 0.59 0.28 0.88 0.80 -0.16 

DUST  1.00 -0.40 -0.34 -0.07 -0.14 0.09 

NH4   1.00 0.85 0.40 0.60 -0.24 

NO3    1.00 0.17 0.21 -0.17 

OM     1.00 0.66 -0.10 

SO4      1.00 -0.07 

SS       1.00 

BC:  black carbon, DUST: mineral dust, NH4: ammonium, NO3: nitrate, OM: organic matter, 

SO4, sulfate, SS: sea salt. 

  

Table S2. Hazard ratios (95% confidence interval) from the single-pollutant Cox proportional 

hazards models for time to RA-associated ILD onset, per 0.1 μg/m3 (1 μg/m3) increase in the 

PM2.5 composition (overall PM2.5) and 1 ppb increase in ozone with chronic obstructive 

pulmonary disease (COPD) subjects removed, adjusting for age (in year) and sex (male as 

reference). 

Exposure variable Exposure variable age sex 

Overall PM2.5 1.50 (1.45-1.56) 1.02 (1.01-1.02) 0.97 (0.87-1.07) 

Ammonium 1.39 (1.36-1.41) 1.02 (1.01-1.02) 1.00 (0.91-1.11) 

Black carbon 1.26 (1.23-1.28) 1.02 (1.01-1.02) 0.97 (0.87-1.07) 

Mineral dust 0.97 (0.96-0.98) 1.02 (1.01-1.02) 0.98 (0.89-1.08) 

Nitrate 1.01 (1.01-1.02) 1.02 (1.01-1.02) 0.98 (0.88-1.08) 

Organic matter 1.01 (1.01-1.02) 1.02 (1.01-1.02) 0.97 (0.88-1.07) 

Sea salt 1.00 (0.98-1.01) 1.02 (1.01-1.02) 0.97 (0.88-1.07) 

Sulfate 1.17 (1.16-1.18) 1.01 (1.01-1.02) 0.98 (0.89-1.09) 

Ozone 1.03 (1.01-1.04) 1.01 (1.01-1.02) 0.97 (0.88-1.07) 

  

  

 



Table S3. Adjusted HR (95% CI) and index weights from the quantile-based g-computation 

models for time to RA-ILD onset with an increase in all exposures by one decile, using sub-

samples stratified by sex or age. Note: the positive and negative weights should not be compared 

with each other. The weights are only compatible with other weights in the same (i.e. positive or 

negative) direction. 

Sub-

group 
COPD 

subjects 
HR (95% CI) 

Index weight 

NH4 DUST BC ozone SS NO3 OM SO4 

Male Included 1.27 (1.16-1.63) 0.73 0.11 0.13 - 0.02 -0.62 -0.24 -0.14 

Male Included 1.81 (2.03-1.62) 0.65 0.10 0.11 0.09 0.05 -0.58 -0.27 -0.15 

Male Excluded 1.33 (1.22-1.46) 0.71 0.14 0.13 - 0.02 -0.62 -0.25 -0.13 

Male Excluded 1.73 (2.16-2.45) 0.59 0.15 0.13 0.09 0.04 -0.58 -0.31 -0.11 

Female Included 1.69 (1.59-1.80) 0.64 0.19 0.17 - 0.01 -0.61 -0.29 -0.10 

Female Included 2.44 (2.28-2.62) 0.57 0.15 0.14 0.09 0.04 -0.57 -0.32 -0.11 

Female Excluded 1.71 (1.61-1.81) 0.64 0.19 0.17 - 0.01 -0.60 -0.29 -0.11 

Female Excluded 2.45 (2.28-2.63) 0.57 0.15 0.14 0.09 0.04 -0.57 -0.33 -0.11 

Age ≤52 Included 1.72 (1.58-1.87) 0.66 0.19 0.15 - 0.00 -0.60 -0.30 -0.10 

Age ≤52 Included 2.50 (2.27-2.75) 0.59 0.16 0.13 0.08 0.03 -0.55 -0.34 -0.11 

Age ≤52 Excluded 1.73 (1.59-1.88) 0.60 0.19 0.15 - 0.00 -0.60 -0.30 -0.10 

Age ≤52 Excluded 2.53 (2.29-2.79) 0.59 0.16 0.13 0.09 0.03 -0.56 -0.33 -0.11 

Age >52 Included 1.52 (1.42-1.61) 0.68 0.18 0.13 - 0.00 -0.67 -0.26 -0.07 

Age >52 Included 2.27 (2.10-2.45) 0.58 0.15 0.12 0.10 0.04 -0.62 -0.30 -0.08 

Age >52 Excluded 1.55 (1.45-1.65) 0.67 0.19 0.14 - 0.00 -0.66 -0.27 -0.07 

Age >52 Excluded 2.34 (2.16-2.54) 0.58 0.15 0.12 0.11 0.04 -0.61 -0.31 -0.08 

BC:  black carbon, DUST: mineral dust, NH4: ammonium, NO3: nitrate, OM: organic matter, 

SO4, sulfate, SS: sea salt. 

 

 

 

 



 

 

 



 

 

 



 

 

Figure S1. Concentrations of overall PM2.5 (A), ammonium (B), black carbon (C), mineral dust 

(D), nitrate (E), organic matter (F), sea salt (G), and sulfate (H) over the contiguous United 

States for 2006. 

 

 

 

 

 

 

 

 

 



 

Sample code of fitting a quantile-based g-computation model for the primary analysis 

library(survival) 

library(qgcomp) 

setwd("D:/MarketScan/EI") #set the path to the folder saving analysis data 

df <- read.csv("RA_ILD_PM_ozone_PMcompositions.csv") #read the dataset to R 

Xnm <- c('BC','DUST','NH4','NO3','OM','SO4','SS') #define exposure variables 

#Xnm <- c('BC','DUST','NH4','NO3','OM','SO4','SS','ozone_exposure') #use it when ozone is 

considered as an additional exposure variable 

#fit a quantile-based g-computation model, in which "Time" denote the number of follow-up 

dates, 

#"status" is a bindary variable representing ILD incident.  

#"q" is the number of quantiles of each exposure variable.  

qc.survfit <- qgcomp.cox.noboot(survival::Surv(Time, status) ~ .,expnms=Xnm, 

                                                       data=df[,c(Xnm, 'Age','Sex','Time', 'status')],q=10) 

a<-summary(qc.survfit1) 

b<-a$coefficents 

exp(b[1]) #Hazard ratio 

#cacluate 95% confidence interval 

CI_lower<-exp(b[1]-1.96*b[2]) 

CI_upper<-exp(b[1]+1.96*b[2]) 


