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Abstract 

Background Cystic Fibrosis (CF) is a multisystem disease in which assessing disease severity 

based on lung function alone may not be appropriate. The aim of the study was to develop a 

comprehensive machine-learning algorithm to assess clinical status independent of lung function 

in children. 

Methods A comprehensive prospectively collected clinical database (Toronto, Canada) was used 

to apply unsupervised cluster analysis. The defined clusters were then compared by current and 

future lung function, risk of future hospitalisation, and risk of future pulmonary exacerbation 

(PEx) treated with oral antibiotics. A K-Nearest Neighbours (KNN) algorithm was used to 

prospectively assign clusters. The methods were validated in a paediatric clinical CF dataset 

from Great Ormond Street Hospital (GOSH). 

Results The optimal cluster model identified four (A-D) phenotypic clusters based on 12,200 

encounters from 530 individuals. Two clusters (A,B) consistent with mild disease were identified 

with high FEV1, and low risk of both hospitalisation and PEx treated with oral antibiotics. Two 

clusters (C,D) consistent with severe disease were also identified with low FEV1. Cluster D had 

the shortest time to both hospitalisation and PEx treated with oral antibiotics. The outcomes were 

consistent in 3,124 encounters from 171 children at GOSH. The KNN cluster allocation error 

rate was low, at 2.5% (Toronto), and 3.5% (GOSH). 

Conclusion Machine learning derived phenotypic clusters can predict disease severity 

independent of lung function and could be used in conjunction with functional measures to 

predict future disease trajectories in CF patients. 



 

Introduction 

Cystic fibrosis (CF) is characterized by lung disease, pancreatic insufficiency (PI), malabsorption 

of nutrients, and can lead to numerous comorbidities such as CF-related diabetes (CFRD) and 

male infertility[1, 2]. Respiratory complications are the greatest cause of mortality, and therefore, 

current standards for assessing disease severity, monitoring disease progression, and evaluating 

clinical trials rely heavily on lung function as an outcome measure[3]. 

People with CF have seen profound improvements in care, and many children now maintain lung 

function in the normal range[4–6]. Novel therapeutics (e.g. ivacaftor, and 

elexacaftor/tezacaftor/ivacaftor) that correct the underlying molecular defect responsible for CF 

are expected to further improve lung function decline and the overall prognosis of people living 

with this disease[7]. Nonetheless, these treatments are not a cure, and there is still a need to 

monitor disease progression, and thus a call to develop new measures that adequately detect mild 

disease and can predict disease trajectories [8], especially in the paediatric age group. 

Unsupervised cluster analysis, a form of machine learning, is a common approach to identify 

subgroups of disease. Unlike supervised methods, where multivariate classification is anchored 

to pre-defined labels, such as death or arbitrary thresholds of lung function, unsupervised 

analysis will group data based on natural patterns found both within and between variables[9]. 

Relevance of the groups, or clusters, are then assessed though association with outcome 

measures. The method has been applied to respiratory illnesses including COPD, asthma, and 

bronchiectasis[10–12], as well as in CF[13–15], however these studies have associated clusters 

with death and transplant, which are uncommon events in paediatrics. 



In order to develop a paediatric-specific outcome measure, it is important that a stronger link is 

established between routinely collected clinical variables and milder outcomes. Furthermore, any 

new measure should be derived independently of lung function in order to deviate from its 

historic reliance, and accordingly provide a complementary measure to monitor CF disease. 

The aims of this study were to: 1) Use unsupervised clustering to identify clusters in a large 

paediatric Toronto CF dataset (TCF), and investigate whether these clusters distinguish patients 

based on current and future lung function measured by spirometry (forced expiratory volume in 1 

second (FEV1)), risk of future hospitalisation, and risk of future pulmonary exacerbation (PEx) 

treated with oral antibiotics. 2) Validate the clusters internally by investigating trends across age 

and time. 3) Validate the clusters externally using a large paediatric UK CF dataset from Great 

Ormond Street Hospital (GOSH). 4) Evaluate the repeatability in applying the clusters as a 

clinical measure. 

Methods 

Data 

The TCF is an encounter-based registry that records clinical data at every CF clinic visit. To 

ensure relevance to the current CF population, analyses were limited to the most recent two 

decades (2000-2018). Adults (> 18 years) were excluded, and clinical data recorded after a lung 

transplant were censored. Oral and inhaled antibiotics captured outside of clinical encounters 

were recorded but not included as an encounter, and each hospitalisation was summarised as a 

single encounter. The recent history of hospitalisations and PEx events treated with antibiotics 

were captured using a 12-month look-back window. Missing data were random throughout the 

dataset and were excluded from the cluster model. 



Clinical data from patients with CF from a second specialist children’s hospital, GOSH, were 

used to validate the TCF derived clusters. Data were obtained from hospital admission records, 

microbiology lab results, spirometry tests and clinical notes, which were available from 2009-

2017. Data were merged and analysed in the GOSH-DRIVE digital research environment (DRE) 

(an electronic healthcare records (EHR) database) (DRE, Aridhia Inc, Edinburgh, UK). The same 

exclusions applied to the TCF dataset were also applied to the GOSH data. This study was 

approved by the Research Ethics Board at the Hospital for Sick Children (REB#1000060824) 

and covered under the ethical approval 17/LO/0008 (R&D#19IA07) at GOSH. 

Cluster Analysis 

All analyses were carried out in R software[16]. Paediatric CF physician input and the CF 

literature identified an initial list of 25 variables as relevant to CF health (Table 1). In order to 

reduce noise and redundancy in the model, Pearson correlation tests and principal component 

analyses were used to inform decisions on excluding correlated variables and those with minimal 

contribution to the variance in the data. FEV1 was deliberately excluded from the model and was 

instead assessed as an outcome measure to corroborate the disease severities of the clusters. 

Partitioning Around Medoids (PAM) clustering[17] was used to generate between 3-5 clusters. 

Initially, clustering was carried out on all combinations of variables (range: 3-11), resulting in a 

total of 1981 cluster models per cluster number. The maximum number of variables included in 

the cluster combinations were restricted to 11 in the first instance for computational and practical 

reasons. Superior models were identified by silhouette width: a measure of within-cluster 

similarity. Additional details are provided in the Online Supplement. 



Outcomes 

The final candidate models (n=36) were assessed by comparing between-cluster differences in 

outcomes. Specifically, the models were ranked by model fit estimated from the Bayesian 

information criterion (BIC) of each of time-to hospitalisation (typically courses of IV 

antibiotics), time-to PEx treated with oral antibiotics, and a linear regression model of FEV1% 

predicted (calculated from GLI reference equations[18]) (see Online Supplement for details). 

The models were also ranked by sample size. Those that ranked best across all four parameters 

were independently assessed, and an optimal model was chosen as the one with the best 

between-cluster separation in outcomes. 

The final optimal model was also analysed to determine cluster association with future lung 

function as the rate of change in FEV1% predicted at one year from each encounter (estimated 

using linear mixed models with random slopes and intercepts) stratified between clusters [19]. 

The proportion of encounters in each cluster was also calculated for different thresholds of 

FEV1% predicted. Finally, time-to transplant or death from an individual’s first cluster 

assignment. 

Internal Validation 

On average, older children in the study cohort were anticipated to be more unwell than younger 

children, and children of the same age were anticipated to be healthier in the late 2010’s than in 

the early 2000’s. To validate the cluster detection of these trends in disease severity, the 

proportion of encounters in each cluster were assessed across time and age. 



External Validation 

Clusters were defined for the GOSH data using the variables identified in the TCF optimal 

model. Clustering was also carried out on a smaller TCF dataset using the same time period as 

the GOSH data for a matched comparison. Between-cluster trends in outcomes were compared 

between the populations. 

Cluster Allocation 

To apply the clusters as a clinical measure, new data (i.e. from a clinic encounter) can be 

allocated to the closest cluster using a KNN algorithm[20]. The mean error rate of the method 

was estimated by assigning a randomly selected 20% of encounters (test data) to clusters 

generated from the remaining 80% of data[21], which was compared to the cluster assignment 

from the optimal model for both TCF and GOSH datasets, in 1000 iterations. 

Results 

Data 

The TCF contains 78,014 clinical encounters from 1,309 people with CF. After exclusions, the 

dataset included 20,586 encounters from 575 children between 2000-2018 (Figure 1). From the 

initial list of 25 variables (Table 1), the review process identified 11 candidate variables for 

iterative clustering (See Online Supplement for variable selection details). 

  



Table 1. Description of the initial list of TCF variables identified for their relevance to CF 

Health 

Group Variable 
Missing 

Encounters 

(%) 
Class Definition 

Anthropometry 
BMI 22.2 

Numeric 
Z Scores calculated from the CDC 

Growth Charts [22] 
Height 10.6 
Weight 18.7 

Microbiology 

Pseudomonas aeruginosa 11.7 

Numeric 
Proportion of positive cultures detected 

from all previous cultures ever taken 

Staphylococcus aureus 11.7 
Burkholderia cepacia complex 11.7 
Achromobacter sp. 11.7 
Aspergillus sp. 11.7 
Haemophilus influenzae 11.7 
Stenotrophomonas sp. 11.7 
Methicillin Resistant S. aureus 

(MRSA) 
11.7 

Hospitalisations & 

Pulmonary 

Exacerbations 

(PEx) 

PEx treated with IV antibiotics 

in prior year 
0.0 

Numeric 
Number of events in previous 12 month 

rolling window 
PEx treated with oral antibiotics 

in prior year 
0.0 

Hospitalisations in prior year 0.0 

Demographics 

Sex 0.0 
Categorical / 

Binary 
Male / Female 

Ontario Marginalisation Index 

(as a proxy for socioeconomic 

status) [23] 
6.4 

Numeric 

(Integer) 
1 - 5, where a high number means more 

deprived 

Age 0.0 
Numeric Years 

Age at Diagnosis 0.0 

Ethnicity 0.3 Categorical 
White / Black / NE Asian / SE Asian / 

Other 
Genetics Functional Class 1.7 Categorical I-III / IV-V 

Symptoms / 

Comorbidities 

Cough 32.1 
Numeric 

(Integer) 

Reported by clinician based on patient 

symptoms at encounter 1 = None, 2 = 

Only with Therapy, 3 = Occasional, 4 = 

Increased, 5 = Chronic 

Pancreatic Insufficiency 0.1 
Categorical / 

Binary 

Pancreatic Insufficient / Pancreatic 

Sufficient; Determined from 

prescription of pancreatic enzymes 

CFRD 0.0 
Categorical / 

Binary 
Yes / No 

Treatments 
Ivacaftor 0.0 

Categorical / 

Binary 
Yes / No 

Inhaled Antibiotics (as a proxy 

for P. aeruginosa infection) 
0.0 Categorical Chronic / Intermittent / Never 



Optimal Cluster Model 

The final optimal cluster model consisted of 4 clusters comprised of 9 variables: body mass 

index (BMI), height, hospitalisations in prior year, cough, as well as previous rates of infection 

with Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas sp., Haemophilus 

influenzae, and Aspergillus sp. The model was generated from 12,200 complete encounters 

involving 530 individuals aged 2-18 years (mean=10.79, SD=4.38). Of the individuals included, 

11% received a transplant and 12% died before the end of the study period. Thirteen individuals 

received ivacaftor, making up 0.03% of the encounters (See Online Supplement Table S1 for 

additional patient characteristics). 

Based on the assessment of individuals within the clusters, two clusters were consistent with 

more mild disease (Clusters A&B) and two clusters were consistent with more severe disease 

(Clusters C&D). The four-cluster model provided more granularity on between-cluster outcomes 

than the three-cluster model, while the five-cluster model did not show a meaningful distinction. 

The addition of FEV1 to the optimal model did not change the results, suggesting the variables 

included already combine to influence FEV1. 

Cluster Characteristics 

Both severe clusters (C&D) were characterized by low BMI, reduced height and weight, high 

numbers of hospitalisations in prior year, high rates of previous Aspergillus sp. infection, and 

high prevalence of chronic cough. These clusters were composed of older children with a large 

prevalence of both PI and CFRD, and a high use of chronic inhaled antibiotics (Table 2). In 

addition, cluster C had the highest rate of previous P. aeruginosa infection, and cluster D had the 

greatest number of PEx treated with oral antibiotics in prior year. 



In contrast, the two mild clusters (A&B) were composed of younger children with lower 

prevalence of CFRD and PI, and were characterized by high growth parameters, low rates of 

previous P. aeruginosa and Aspergillus sp. infection, and low numbers of hospitalisations in 

prior year (Table 2). Cluster A also had the lowest prevalence of chronic cough. 

  



Table 2. Summary of patient characteristics, and clinical variables for each cluster 

 
Variable Cluster A Cluster B Cluster C Cluster D 

Count 
Encounters (n) 2028 6583 1732 1857 
People (n) 356 414 147 307 

Nine 

Clustering 

Variables 

BMI Z Score
a -0.03 (-3.59 - 4.26) -0.21 (-9.15 - 4.38) -0.69 (-7.15 - 2.11) -0.65 (-8.42 - 2.47) 

Height Z Score
a -0.23 (-3.67 - 2.93) -0.35 (-3.61 - 3.00) -0.70 (-3.46 - 2.27) -0.72 (-5.41 - 2.59) 

P. aeruginosa
a 0.07 (0.00 - 0.64) 0.08 (0.00 - 0.50) 0.77 (0.22 - 1.00) 0.11 (0.00 - 0.69) 

S. aureus
a 0.31 (0.00 - 1.00) 0.34 (0.00 - 1.00) 0.26 (0.00 - 1.00) 0.42 (0.00 - 1.00) 

Stenotrophomonas sp.
a 0.02 (0.00 - 0.86) 0.04 (0.00 - 1.00) 0.04 (0.00 - 0.85) 0.09 (0.00 - 1.00) 

H. influenzae
a 0.09 (0.00 - 0.67) 0.11 (0.00 - 1.00) 0.03 (0.00 - 0.55) 0.10 (0.00 - 0.82) 

Aspergillus sp.
a 0.03 (0.00 - 0.81) 0.07 (0.00 - 1.00) 0.18 (0.00 - 0.90) 0.15 (0.00 - 1.00) 

Hospitalisations in 

Prior Year
a 

0.16 (0.00 -  6.00) 0.28 (0.00 -  8.00) 0.77 (0.00 -  9.00) 1.11 (0.00 - 10.00) 

Cough
a 1.10 (1.00 - 2.00) 3.03 (2.00 - 4.00) 3.38 (1.00 - 5.00) 4.75 (3.00 - 5.00) 

Variables 

Excluded 

from 

Cluster 

Model 

Age
a  8.66 (2.00 - 17.99) 10.23 (2.00 - 18.00) 13.60 (2.01 - 18.00) 12.48 (2.04 - 18.00) 

B. cepacia complex
a 0.00 (0.00 - 0.80) 0.02 (0.00 - 1.00) 0.00 (0.00 - 0.43) 0.02 (0.00 - 1.00) 

Achromobacter sp.
a 0.00 (0.00 - 0.93) 0.01 (0.00 - 0.63) 0.00 (0.00 - 0.92) 0.03 (0.00 - 0.94) 

MRSA
a 0.01 (0.00 - 1.00) 0.01 (0.00 - 1.00) 0.00 (0.00 - 0.43) 0.02 (0.00 - 1.00) 

Ontario 

Marginalisation Index
a 

2.34 (1.00 - 5.00) 2.31 (1.00 - 5.00) 2.31 (1.00 - 5.00) 2.44 (1.00 - 5.00) 

PEx Treated with Oral 

Antibiotics in Prior 

Year
a 

0.84 (0.00 - 8.00) 1.20 (0.00 - 8.00) 0.94 (0.00 - 7.00) 1.78 (0.00 - 7.00) 

PEx Treated with IV 

Antibiotics in Prior 

Year
a 

0.11 (0.00 -  4.00) 0.24 (0.00 -  5.00) 0.62 (0.00 - 11.00) 0.91 (0.00 -  8.00) 

Weight Z Score
a -0.17 (-5.18 - 4.13) -0.36 (-6.12 - 4.15) -0.90 (-6.20 - 2.24) -0.90 (-7.58 - 2.98) 

Age at Diagnosis
a 1.34 (0.00 - 15.00) 1.38 (0.00 - 15.00) 1.56 (0.00 - 15.89) 1.64 (0.00 - 16.30) 

Class I-III (%) 90.34 92.25 93.19 93.11 

Female (%) 50.20 49.64 56.47 59.56 

PI (%) 86.79 91.28 98.27 93.38 

CFRD (%)  1.92  2.61 10.68  8.08 

White (%) 88.76 89.73 87.93 86.97 

Ivacaftor (%)  3.16  1.47  0.58  1.24 

Chronic Inhaled 

Antibiotics (%) 
10.60 16.63 53.70 18.90 

a
Mean (Range)  

 Variable definitions are found in Table 1 



Cluster Outcomes 

There were 10351 complete lung function measurements in the optimal model. Cluster A had the 

highest FEV1 (mean(SD) = 93% (15.5%)), Cluster B had intermediate FEV1 (mean(SD) = 83.5% 

(17.9%)), and Cluster C & Cluster D had low FEV1 (mean(SD) = 68.5% (21%); 64.6% (22.2%)) 

(Figure 2A). Differences in FEV1 were significant between all clusters (post-hoc Tukey: p < 

0.05). Lung function alone did not distinguish cluster (Figure 2A). 

The greatest percent of encounters in cluster A (29.6%) had a FEV1 >100% and the greatest 

percent of encounters in cluster D (46.6%) had a FEV1 <40% (Figure 2B). For encounters in 

cluster A with FEV1 <40% (nencounter = 6, npeople = 4), inconsistent data entry was likely 

responsible when the trajectory of each individual’s encounters were investigated. 

FEV1 in cluster A declined less with increasing age, and in cluster B FEV1 was relatively stable 

(Figure 2C). Cluster C had the steepest decline in FEV1 over 1 year, which remained stable 

across age (Figure 2C). FEV1 in cluster D increased over 1 year, which was more profound in 

early childhood. The slope in this cluster was highly variable between individuals (SD = 9.64) 

(Figure 2C). 

The risk of both future hospitalisation and future PEx treated with oral antibiotics was lowest in 

cluster A, and highest in cluster D (Figure 3A,B; Table 3). Cluster B had a slightly higher risk 

of PEx treated with oral antibiotics than cluster C, while cluster C had a comparably much higher 

risk of hospitalisation (Figure 3A,B; Table 3). While death and transplant in childhood (<18) 

were rare (n=21), time to death or transplant later in adulthood was linked to first severe disease 

cluster in childhood, in which Cluster D had the highest risk of both death and transplant (Figure 

3A,B; Table 3). 



Table 3. Hazards ratios and confidence intervals for each cluster as compared to cluster A across 

each time-to event analysis. Bold values are significant (p < 0.05) 

 
PEx Treated with 

Oral Antibiotics 
Hospitalisation Death Transplant 

Cluster B 1.87 (1.66-2.11) 2.09 (1.63-2.7) 4.55 (0.62-33.66) 1.04 (0.3-3.56) 

Cluster C 1.81 (1.46-2.25) 4.15 (2.9-5.96) 5.05 (0.68-37.75) 2.04 (0.61-6.79) 

Cluster D 2.31 (1.94-2.74) 7.44 (5.58-9.91) 14.81 (1.91-114.78) 4.8 (1.35-17.03) 

 

Internal Validation 

Age and year of encounter were not included in the model, nonetheless, there were clear age-

related and temporal trends, such that older children were more likely to be in the more severe 

clusters C&D, and newer cohorts (at the same age) were more likely to be in the milder clusters 

A&B (Figure 4). These observations were consistent with expected temporal and age-related 

trends. 

External Validation 

The GOSH data included 12,912 encounters from 187 children. Cough and oral antibiotic data 

were not available in this dataset so were removed from analysis. After data exclusions and the 

removal of missing values, the cluster model comprised 3,124 encounters from 171 children 

aged 1-17.9 (mean=8.2) (See Supplement Figure S2 for exclusion criteria). 

For direct comparison, the TCF data were reanalysed using the same time period and variables as 

the GOSH data; there were 6,623 encounters from 338 children aged 2-18 (mean=11.1) in the 

revised TCF cluster model. 

There was a similar gradient in risk of hospitalisation and FEV1 in both populations. Cluster D 

had the shortest time to hospitalisation, and the lowest FEV1% predicted (mean (SD): GOSH: 



69.2% (19.3%), TCF: 68.5% (21.7%)), whereas cluster A had the lowest risk of hospitalisation 

and highest FEV1% predicted (mean (SD): GOSH: 85.7% (16.4%), TCF: 87.8% (18%)) (Figure 

5). Cluster differences in FEV1 were all significant (post-hoc Tukey: p < 0.05), with the 

exception of clusters C and D in the GOSH analysis (p = 1.00). 

Cluster Allocation 

The KNN method for cluster allocation accurately assigned the test encounters to the same 

clusters as the original clustering, with an error rate of 2.5% for TCF encounters and 3.5% for 

GOSH encounters. 

Discussion 

Phenotypic clusters using a range of clinical outcomes collected during routine clinical care 

allow for a comprehensive overview of CF health, and our results show they meaningfully 

represent both mild and severe classes of CF disease. Within clusters, lung function was 

concordant with disease outcomes, whereas the range of individual lung function values 

observed within each cluster was wide. In the current era of CF, where up to 85% of affected 

children are reported to have mild to normal lung function [4–6], a multifactorial tool may 

provide further insight into disease progression. 

The unsupervised algorithm benefits from the exclusion of FEV1 since young children who 

cannot perform spirometry are still captured. Where FEV1 is normal, the clusters may aid to 

explain who is at a greater risk of hospitalisation or PEx and who could benefit from targeted 

management. 



It was surprising that FEV1 in cluster D increased over 1 year in younger children, although it 

suggests that clinicians may already recognise that these individuals have more severe disease 

and require more intense interventions. The greater variability in the slopes over 12 months 

further suggests that these trends may reflect treatment effects. 

The validation carried out in the GOSH population was very similar to the results of the TCF 

data re-analysed with a subset of the original population (npeople = 338). Although the GOSH 

population was at a higher risk of hospitalisations overall, a further investigation into clinical 

practices reveals differences between these two centres. For instance, routine regular 

hospitalisations for IV antibiotics are common for children with severe disease at GOSH, 

whereas hospitalisations in Toronto are typically only for acute exacerbations. Despite this 

significant difference in management approach, FEV1 values were similar across clusters 

between the two populations. Clustering on the same variables yielded similar outcomes, 

highlighting the robustness of the cluster method. To ensure applicability in the modern CF era, 

the model should be updated in a predominantly new-born screening cohort, as well as in 

genetically diverse cohorts to ensure generalizability. 

Multivariate scores have rarely been used in routine clinical care, but as EHR become more 

common and data are stored centrally, the implementation of this type of phenotypic clustering 

into clinical practice will become more feasible. The KNN algorithm can be used to calculate a 

cluster for each CF encounter based on the input of the nine cluster variables (see Table 2). As 

such, following appropriate governance and evaluation, the algorithm could be incorporated into 

EHR systems to provide clinicians with an overall picture of patient status and inform clinical 

decision making. Investigation into treatment effects across clusters with chronic therapies 

(e.g. dornase alfa and hypertonic saline) were limited in this study by missing and inconsistent 



data but need to be explored further to better understand whether treatments can modify disease 

severity status. 

The algorithm could also be implemented in patient portals to their EHR or apps to provide 

patients with a more comprehensive picture of their health status where single clinical measures, 

such as BMI or recent infection, may not be as meaningful or interpretable indicators of health. 

Future work involving patients/families will highlight the appropriate presentation of cluster 

labels to better provide insight into overall health status. 

Additional potential application use cases of clusters are as an endpoint in research studies where 

changes in FEV1 are not detectable; improvements in health status may instead be indicated by 

movement from a severe cluster (C/D) to a mild cluster (A/B). This may be particularly attractive 

in trials involving young children, and/or in the rapidly evolving era of highly effective CFTR 

modulator treatments being integrated into routine care. Clusters may also be used in national 

registry reports to standardise clinics or regions by disease severity for matched comparisons of 

populations, or to highlight those who may benefit from more resources. 

A current barrier to implementation is the issue of missing clinical data, in which future analyses 

are necessary to triangulate evidence from existing data to ensure robust estimation of clusters. 

Future work will also explore the integration of filters to prevent the mis-calculation of clusters 

from unrealistic clinical values. A limitation of the approach is that we standardised variables, 

which means the relative importance of each variable in defining the transition between cluster is 

unknown, and future work is needed to explore this. 

Cluster analysis involves largely subjective decisions each step of the cluster pipeline, and 

further refinement of the model may include the selection of different parameters to better 



understand the stability of the model. At present, the optimal model has a good performance and 

is an important first step, but it may not be the best model as highly effective CFTR modulators 

begin to change clinical outcomes and prognosis. Future works needs to determine how to 

routinely update models as patient characteristics and available data changes. For instance, cough 

was repeatedly highlighted as important in defining outcomes during iterative clustering but did 

not appear to impact the GOSH validation. While cough is limited by subjectivity and a high 

proportion of missing values, its inclusion allowed the model to encompass patient-reported 

symptoms. More objective symptoms collected routinely through EHR or patient apps may be 

required to better capture the lived experience of the patient. CFTR modulator therapy was 

excluded from the model due to minimal data but should be considered once these treatments are 

available to a wider proportion of CF patients. Similarly, lung clearance index (LCI) should be 

considered for inclusion as it becomes a more routinely collected clinical variable, and extra-

pulmonary manifestations not captured in the registry should be included when using EHR data. 

An advantage of using an integrated cluster algorithm means that the variables can be updated, 

the time period adjusted, and sub-groups refined as new information becomes available. 

This analysis focused on time-dependent, continuous variables to assess cluster change over 

time, but also because clustering with partitioning around medoids (PAM) is more favourable 

using continuous variables. For example, the inclusion of genetic sex resulted in clusters 

completely defined by sex alone, with less association with clinical outcomes. This demonstrates 

that the unsupervised nature of clustering, in which the algorithm aims to find similar groups 

without a purpose, requires clinical interpretation to ensure real-world value. In selecting 

meaningful, continuous variables, the look-back window to capture an individual’s clinical 



history means the frequency of microbiology sampling could introduce a potential bias, and 

sicker patients with more hospitalisations may be overrepresented. 

The phenotypic clusters were broadly comparable to a previous study of an adult CF population, 

which found P. aeruginosa, IV antibiotics, and pancreatic insufficiency were consistent in severe 

clusters with a high risk of death, and vice versa for milder clusters with a low risk of death [13]. 

The study identified 7 clusters within 25 variables. We restricted the number of possible clusters 

from 3-5 to simplify the practical interpretation of the results, and we were able to reduce the 

number of variables to 9 for a more feasible clinical application. Despite these differences, both 

approaches identified robust clusters with similar variables associated with severe disease. Other 

cluster analyses in CF have anchored clusters to physician determined levels of disease severity, 

which may be biased by indication [24], or have included FEV1 in the model [14]. Our analysis 

provides a more objective categorization of disease severity, by statistically testing the clusters 

against known indicators of health that are mainly excluded from the model itself. 

Cluster analyses have been applied to other diseases and further emphasize that knowledge-based 

inclusion of variables is necessary to ensure meaningful translation of the results [11, 12, 25, 26]. 

Another common approach has been to transform variables into linear combinations [10, 11, 25], 

which we decided would complicate the interpretation of our results. Two studies have also gone 

further to prospectively apply the clusters by generating an external scoring system using 

decision tree analyses [13, 25]. The advantage of the KNN algorithm is that it directly allocates 

clusters to an encounter to predict disease severity. Our results show it has an extremely low 

error rate (< 5%). 

Multivariate clinical scoring systems have been derived in CF, but they typically assume an 

additive/multiplicative independent association between the variables included [27–30]. Cluster 



analysis instead makes no assumption about the nature of the relationship, only how individuals 

are similar to one another through shared patterns across the variables. Additionally, multivariate 

models must be linked to an event of interest or a specific outcome – and the advantage of this 

approach is that the clusters are correlated with important clinical outcomes, but not developed 

with an explicit prediction model of a single outcome. 

Conclusion 

It is feasible to develop machine learning based phenotypic clusters that summarize the overall 

health status of children living with CF, and these may provide a holistic way to track the 

progression of disease across childhood. The cluster algorithm can be updated regularly to 

accompany a rapidly changing therapeutic environment. 

  



Figure Legends 

Figure 1. Flow chart summarizing the study population and data exclusions applied to the TCF 

dataset. 

Figure 2. The association between each cluster and lung function: A) Violin plots summarizing 

FEV1% predicted by cluster, where the violin height represents the density of data. Boxes within 

the violins display the median (middle line) and 25% and 75% quartiles, horizontal lines indicate 

1.5 x interquartile range, and points are outliers. B) Stacked Bar graph demonstrating the 

proportion of encounters in each cluster across different thresholds of FEV1% predicted. C) The 

predicted rate of change in FEV1 % predicted over 1 year stratified across clusters. The predicted 

trajectory for three different ages (10,13,16) are shown. The corresponding slopes are provided 

in Table S2 of the Online Supplement. 

Figure 3. Time to event analyses (marginal means and rates model) by cluster. Analysis included 

repeated events where time was re-initiated when an individual switched clusters for A) Time to 

PEx treated with oral antibiotics, and B) Time to hospitalisation. Analysis also included time to 

event from an individual’s first cluster assignment in the TCF for C) Time to death, and D) Time 

to transplant. Hazard ratios are provided in Table 3. 

Figure 4. A) The proportion of individuals in each cluster across age at different years and B) 

The proportion of individuals in each cluster across time at different ages. There were 7494 

encounters before 2010, and 4706 encounters after 2010. The proportion of encounters in Cluster 

A and Cluster D increased across decades, and the proportion of encounters in Cluster B and 

Cluster C decreased across decades. 

Figure 5. Comparison of cluster outcomes in the GOSH (i) and Toronto (ii) datasets. A) Time to 

hospitalisation (marginal means and rates model) by cluster. Analysis included repeated events 

where time was re-initiated when an individual switched clusters. Hazard ratios are provided in 

Table S3 of the Online Supplement. B) Violin plots summarizing FEV1% predicted by cluster, 

where the violin height represents the density of data. Boxes within the violins display the 

median (middle line) and 25% and 75% quartiles, horizontal lines indicate 1.5 x interquartile 

range, and points are outliers. 
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Variable Selection for Cluster Model 

Assessment of the initially selected 25 Toronto CF (TCF) variables resulted in the exclusion of 

age at diagnosis, ivacaftor, ethnicity, sex, functional class, pancreatic insufficiency (PI), CF-

related diabetes (CFRD) and inhaled antibiotics. Age at diagnosis is less relevant to the CF 

population since the introduction of new-born screening. There was minimal data for children on 

ivacaftor and therefore was not a representative descriptor of the population. Ethnicity, sex, 

functional class, and PI are difficult to coerce into continuous variables and are largely time 

independent so would provide minimal information on the transition between clusters over time. 

Functional class and PI are also heavily dominated by classes I-III (94%) and pancreatic 

insufficiency (92%) and would therefore provide minimal information on variation in the 

population for defining clusters. Furthermore, the goal of the analysis was to describe all children 

with CF and to not exclude those without a defined functional class for their mutation. CFRD 

and inhaled antibiotics were additionally excluded as a result of their categorical nature and were 

used to corroborate the disease severities of each cluster since they both represent the 

development of severe disease. 

Weight was excluded due to a strong association with body mass index (BMI) (r = 0.83). 

Pulmonary exacerbation (PEx) treated with IV antibiotics in prior year were excluded over 

hospitalisations in prior year (r = 0.8) since hospitalisations encompass most PEx events as well 

as additional complications. Height and BMI were not strongly correlated (r = 0.3), and therefore 

neither was excluded. In the PCA, the first two principal components combined to explain 24.4% 

of the variance; the variables with the smallest component loadings which were therefore 

excluded were deprivation, and rates of previous infection with Achromobacter sp., Methicillin 
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Resistant S. aureus (MRSA) and B. cepacia complex. The specific microbiology exclusions were 

further confirmed by the research team, since very few visits (< 3%) had positive cultures. 

The variable exclusions resulted in 11 variables available for iterative clustering: BMI, height, 

PEx treated with oral antibiotics, hospitalisations in prior year, cough, age, and previous rates of 

infection with Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas sp., 

Haemophilus influenzae, and Aspergillus sp.. 

Cluster Analysis 

Between 3-5 clusters were defined for each combination of variables using Partitioning Around 

Medoids (PAM) cluster analysis. The iterative cluster methods meant that 1981 cluster models 

were developed, and while it would be advantageous to calculate the optimal cluster number for 

every model using a cluster index (such as silhouette width or elbow method), and then cluster 

every model based on its optimal cluster number, these methods would be drastically limited by 

computer processing time. Therefore, instead of choosing the optimal number of clusters for a 

single data set, the dataset that was optimal for the small range of clusters was identified. 

In detail, missing values were excluded from each combination of variables, variables were 

normalised between 0-1, and Euclidean distance was calculated as the measure of dissimilarity 

between all clinical encounters. The average silhouette width, a measure of within cluster 

similarity and between cluster dissimilarity, of each cluster model was ranked. The models with 

the highest silhouette widths were selected for visualisation using t-SNE plots (a dimensionality 

reduction technique) [1]. 

In total, 5943 cluster models were developed (1981 models per cluster number), which were 

composed of between 12467 – 31218 encounters comprising 525 – 681 individuals. The models 



 

4 

 

ranged widely in silhouette widths and t-SNE plots, in which variable number was found to 

strongly influence the quality of clusters. Higher numbers of variables included in the models 

resulted in robust t-SNE plots with lower silhouette widths compared to models with low 

variable numbers (Figure S1). 

 

Figure S1. t-SNE plots of A) the optimal model with good cluster distinctions (9 variables: body 

mass index (BMI), height, hospitalisations in prior year, cough, and previous rates of infection 

with Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas sp., Haemophilus 

influenzae, and Aspergillus sp) and B) a poor cluster model with disjointed clusters (4 variables: 

BMI, cough, OPEx, Aspergillus sp.) 

 

Time to Event Analyses 

Time-to event analyses were conducted using a Cox proportional hazards regression [2]. 

Specifically, a marginal means and rates model was used for risk of recurrent PEx and 

hospitalization events [3], and a standardized survival model was used to calculate risk of death 

and transplant from an individual’s first cluster assignment [4]. The analyses were carried out on 

the top 36 models identified from silhouette widths and t-SNE plots. The outcome analysis also 
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varied widely across models, where higher numbers of variables contributed to better models 

(lower Bayesian information criterion (BIC)) on average. Strong separation in mild outcomes 

(time-to hospitalisation and time-to PEx treated with oral antibiotics) were prioritised over a 

strong separation in severe outcomes (time-to death and time-to transplant). 

Optimal Cluster Model 

Table S1. Description of clinical variables and patient characteristics of encounters included in 

the optimal cluster model; mean(SD) unless otherwise stated. 

Variable Mean (SD) Range 

Age 10.79 (4.38) 2 - 18 
BMI Z Score -0.31 (1.04) -9.15 - 4.38 
Height Z Score -0.44 (1.02) -5.41 - 3 
Weight Z Score -0.49 (1.11) -7.58 - 4.15 
P. aeruginosa 0.18 (0.27) 0 - 1 
S. aureus 0.33 (0.23) 0 - 1 
B. cepacia complex 0.01 (0.08) 0 - 1 
Achromobacter sp. 0.01 (0.05) 0 - 0.94 
Aspergillus sp. 0.09 (0.16) 0 - 1 
H. influenzae 0.09 (0.11) 0 - 1 
Stenotrophomonas sp. 0.04 (0.1) 0 - 1 
Methicillin Resistant S. aureus 0.01 (0.06) 0 - 1 
PEx treated with IV antibiotics 

in Prior Year 
0.37 (0.82) 0 - 11 

PEx Treated with Oral 

Antibiotics in Prior Year 
1.19 (1.28) 0 - 8 

Hospitalisations in Prior Year 0.46 (0.96) 0 - 10 
Ontario Marginalisation Index 2.34 (1.22) 1 - 5 
Age at Diagnosis 1.44 (2.46) 0 - 16.3 
Cough 3.02 (1.16) 1 - 5 
FEV1 % Predicted 79.29 (21.13) 16.26 - 146.58 
Class I-III n(%) 11248 (92.2)  
Female n(%) 6370 (52.2)  
PI n(%) 11205 (91.8)  
White n(%) 10845 (88.9)  
Ivacaftor n(%) 194 (1.6)  
CFRD n(%) 546 (4.5)  
Chronic Inhaled Antibiotics 

n(%) 
2591 (21.2)  
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 Cluster prediction of Future FEV1 

Table S2. Coefficients and confidence intervals for the predicted rate of change in FEV1 % 

predicted over 1 year stratified across clusters. 

 Time Age Time * Age SD 

Cluster A -3.36 (-7.57 - 0.84) -1.72 (-2.08 - -1.36) 0.15 (-0.17 - 0.047) 0.97 

Cluster B 0.81 (-1.47 - 3.10) -1.61 (-1.81 - -1.42) -0.08 (-0.25 - 0.10) 7.08 

Cluster C -5.77 (-9.47 - -2.06) -0.17 (-0.58 - 0.25) 0.26 (0.00 - 0.51) 6.09 

Cluster D 13.24 (8.75 - 17.73) -2.14 (-2.55 - -1.74) -0.67 (-0.99 - -0.35) 9.64 

Internal Validation 

Using a K-Nearest Neighbours approach, Euclidean distance between new data and the centre of 

each cluster is determined to identify which cluster the new data resembles most. This was 

carried out using a Nearest Neighbours kd-tree searching algorithm [5]. 
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GOSH Data Exclusions 

 

Figure S2. Description of data exclusions for the GOSH Data 

External Validation 

Table S3. Hazards ratios and confidence intervals for each cluster as compared to cluster A 

across the GOSH and Revised TCF validation time-to hospitalisation analysis. Bold values are 

significant (p < 0.05) 

 
Hospitalisation 

GOSH 
Hospitalisation 

Revised TCF 

Cluster B 2.15 (1.15-4.02) 1.28 (0.81-2.03) 

Cluster C 3.64 (2.01-6.59) 1.51 (0.91-2.51) 

Cluster D 6.13 (4.16-9.02) 3.97 (2.45-6.42) 
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