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Abstract: 

Introduction: Implementation of low-dose chest computed tomography (CT) lung cancer 

screening and the ever-increasing use of cross-sectional imaging are resulting in the 

identification of many screen- and incidentally detected indeterminate pulmonary nodules. 

While the management of nodules with low or high pretest probability of malignancy is 

relatively straightforward, those with intermediate pretest probability commonly require 

advanced imaging or biopsy. Non-invasive risk stratification tools are highly desirable.  

Methods: We previously developed the BRODERS classifier (Benign vs aggRessive 

nODule Evaluation using Radiomic Stratification), a conventional predictive radiomic model 

based on 8 imaging features capturing nodule location, shape, size, texture and surface 

characteristics. Herein we report its external validation using a dataset of incidentally 

identified lung nodules (Vanderbilt University Lung Nodule Registry) in comparison to the 

Brock model. Area under the curve (AUC), as well as sensitivity, specificity, negative and 

positive predictive values were calculated. 

Results: For the entire Vanderbilt validation set (n=170, 54% malignant), the AUC was 0.87 

(95% CI=0.81-0.92) for the Brock model and 0.90 (95% CI=0.85-0.94) for the BRODERS 

model. Using the optimal cutoff determined by Youden’s Index, the sensitivity was 92.3%, 

the specificity was 62.0%, the positive (PPV) and negative predictive values (NPV) were 

73.7% and 87.5%, respectively.  For nodules with intermediate pre-test probability of 

malignancy, Brock score of 5-65% (n=97), the Sensitivity and Specificity were 94% and 

46%, the PPV was 78.4% and the NPV was 79.2%, respectively.  

Conclusions: The BRODERS radiomic predictive model performs well on an independent 

dataset and may facilitate the management of indeterminate pulmonary nodules.   



 

Introduction: Lung cancer remains the deadliest malignancy in the US and worldwide [1]. 

While lung cancer 5-year survival has improved over the past decade, more than 50% of all 

lung cancer cases continue to be diagnosed at advanced stages. This is at least in part 

attributable to the lack of widespread implementation of lung cancer screening [2].  Several 

recent large lung cancer screening studies, the National Lung Screening Trial (NLST) in the 

United States (US), the European Multicentric Italian Lung Detection (MILD) study  and 

Nederlands-Leuvens Longkanker Screenings ONderzoek (NELSON) trial have 

demonstrated that low-dose computed tomography (LDCT) screening can reduce lung 

cancer mortality in high-risk patients [3-5]. However, even in the US despite the 

endorsement by the Center for Medicare Services (CMS) and the United States Preventive 

Services Task Force (USPSTF) the clinical implementation and acceptance of LDCT-

screening remains suboptimal [6]. One of the main clinical challenges remains the high rate 

of false positive results, as almost all detected pulmonary nodules are benign. Other 

obstacles include the diagnosis of indolent lung cancer (overdiagnosis), uncertainty about 

the optimal patient selection, screening intervals and duration as well as concerns about 

cost-effectiveness [7]. While high false positive rates (96% of all screen detected nodule  

4mm were false positives in the NLST) can be improved by the application of Lung Imaging 

Reporting and Data System (Lung-RADS) criteria and the updated Fleischner Society 

nodule management guidelines for screen- and incidentally detected indeterminate 

pulmonary nodules (IPNs), these are associated with a decreased sensitivity [8, 9]. For 

example, while Lung-RADS reduces the false positive rate to 5.3%, it also reduces 

sensitivity by about 10% [10].   

 



 

In addition to screen-detected IPNs, incidentally discovered IPNs are also on the rise. This 

development is due to increased utilization of diagnostic cross-sectional chest imaging and 

the more widespread availability of advanced high-resolution CT (HRCT). Approximately 12 

million chest CT studies are performed annually in the US and  based on data from 2006 to 

2012, it has been estimated that around 1.5 million adult Americans will be diagnosed with a 

pulmonary nodule annually [11]. The magnitude of the clinical challenges of non-invasively 

classifying screen- and incidentally detected IPNs highlights the urgent need for improved 

diagnostic tools. 

Radiomics is a rapidly emerging field. It involves quantitative image analysis to objectively 

and reproducibly analyze imaging data [12] to identify predictive and descriptive radiologic 

features not otherwise evident to a human observer that may correlate with the biological 

behavior of the lesion analyzed. While radiomic approaches were conceived as early as the 

1950s [13], the increased availability of inexpensive and powerful computing hardware [14] 

has generated considerable interest in lung nodule analysis in the last decade [15]. 

However, there is great variability in image acquisition, feature extraction methodology and 

statistical modeling across the many radiomic models described in literature and so far no 

radiomic model has been integrated into routine clinical practice [16]. Furthermore, it is 

unclear whether conventional radiomic approaches, whereby expert-selected radiomic 

variables are used to derive a multivariate prediction model via regression analysis, 

unsupervised deep-learning approaches or a combination of these two methodologies will 

ultimately prove more clinically useful.  

 



 

Many promising radiomic models for IPNs have been proposed, but few have been 

successfully validated on independent, external cohorts either due to the lack of access to 

readily available, well-curated datasets, or because of the risk of overfitting that particularly 

pervades radiomic models. In addition, CT datasets are typically heterogeneous, 

characterized by substantial variability in scanner technology, image acquisition and 

reconstruction [17]. It is thus unclear whether such models outperform validated simpler and 

readily accessible clinical prediction models [18]. 

Using a training set of 726 IPNs from the NLST database, we previously developed and 

internally validated the BRODERS classifier (Benign vs aggRessive nODule Evaluation 

using Radiomic Stratification), a radiomic classifier that effectively distinguishes benign from 

malignant nodules [19]. Herein we report the successful validation of this classifier in an 

independent dataset of incidentally detected IPNs from a tertiary referral center. We also 

compare the performance of our model to the performance of an established clinical 

prediction model routinely used in clinical practice [15].  

 

  



 

Methods 

Classifier Development 

The development of our radiomic classifier and CALIPER and CANARY used to analyze the 

lung and nodule texture has been described and validated previously [19-22]. The 

development of our radiomic classifier has been previously published [19]. Briefly, 726 

patients with screen-detected IPNs with largest diameter ranging from 7 to 30 mm enrolled 

into the LDCT arm of the NLST were included in the training set. The first LDCT screening 

scans to identify the lung nodule were included in the radiomic analysis. A semi-automated 

region-growing approach was used for nodule segmentation (ANALYZE, Biomedical 

Imaging Resource, Mayo Clinic, Rochester, MN). Manual editing was performed to exclude 

adjacent intrathoracic structures such as blood vessels and pleura. Receiver operative 

curves (ROC) were calculated for each of 57 preselected radiological features organized in 

the following broad categories characterizing the nodule: spatial location, size, shape, 

radiodensity, nodule texture, texture of lung tissue surrounding the nodule and nodule 

surface characteristics. Statistical significance of the area under the curves (AUCs) were 

calculated and adjusted for multiple comparisons using Bonferroni correction. Spearman 

rank correlations between all pairs of variables were calculated and displayed in a heat 

map. Multivariate analysis was performed using the least absolute shrinkage and selection 

operator (LASSO) to enhance the prediction accuracy. LASSO was run 1000 times and 

variables that were selected by at least 50% of the runs were included in the final 

multivariate model. To correct for overfitting bootstrapping was applied to calculate the 

optimism-corrected AUC for the final model of benign versus malignancy prediction which 



 

was found to be 0.939 [19]. We identified the optimal cutoff at 0.478 with sensitivity 0.904 

and specificity 0.855 using Youden's index.  

 

External Validation Database 

The study was approved or exempted by the institutional review boards of the two 

participating institutions (Vanderbilt University (IRB# 151500) and Mayo Clinic (IRB# 15–

002674). The validation dataset included consecutive patients with incidentally identified 

IPNs enrolled into the Vanderbilt University pulmonary nodule registry. The DICOM images 

of the CT scans  were transferred to Mayo Clinic Rochester, Minnesota for radiomic 

analysis. All the investigators at Mayo Clinic were blinded to the clinical information 

available for each patient, including baseline patient information (demographics, smoking 

status, prior cancer history), pathological information (benign versus malignant, 

histopathological type, staging) and long-term outcomes (death, alive with or without 

evidence of disease). Semi-automated segmentation was performed by the ANALYZE 

software described above. The BRODERS radiomics classifier was then used to predict the 

probability of malignancy of the included nodules.  

 

Comparison of the BRODERS Classifier with Brock Model  

The probability of malignancy calculated for each nodule using the Brock model, a well 

validated nodule malignancy probability calculator widely used in clinical practice [20], was 

compared with the BRODERS Classifier in both the subset of our previously published 

screen-detected nodule NLST dataset for which the variables to calculate Brock model were 

available and the incidentally detected nodule Vanderbilt dataset. (Supplemental Figure S1) 



 

For these cases Brock model prediction was compared with the BRODERS classifier using 

ROC analysis. In addition, comparative ROC analysis was performed on subsets of nodules 

classified based on pre-test malignancy probability as follows: low probability Brock score 

<5%, NLST N=257, Vanderbilt N=42), intermediate probability (Brock score >5% but <65%, 

NLST N=416, Vanderbilt N=126) and high probability (Brock score > 65%, NLST N=12, 

Vanderbilt N=2).   

 

Statistical analyses: 

MedCalc Statistical Software version 19.0.7 (MedCalc Software bv, Ostend, Belgium; 

https://www.medcalc.org; 2019) was used for statistical analysis. Comparison of ROC 

curves was done using the nonparametric method described by DeLong et al. [21] for AUC 

calculation, exact Binomial confidence intervals were used. 

  



 

Results 

The baseline characteristics of the patients in the subset of our NLST cohort and the 

Vanderbilt cohort are shown in Table 1. The Vanderbilt external validation set included 170 

consecutive patients with incidentally identified IPNs (diameter 7-30 mm) enrolled into the 

Vanderbilt University pulmonary nodule registry. Although the distribution of malignant 

versus benign nodules is similar in both cohorts, many of the other baseline characteristics 

including smoking status, nodule size and spiculation is different between the two groups, 

as would be expected in comparing a screen detected nodule cohort with an incidentally 

discovered nodule cohort. In the Vanderbilt University cohort, the mean diameter of the 

malignant nodules was larger than the benign nodules, 10.3 mm CI (9.4-11.3mm) versus 

17.5 mm CI (16.2-17.8 mm), respectively (p<0.001) (Supplemental Figure S2). 

Supplemental Figures S3. and S4. show high resolution axial scout images formatted into 

truth tables comparing the ground truth histology with radiomic predictions using 

BRODERS.  Confusion tables comparing the clinical/histological ground truth to the Brock 

model and the BRODERS classifier for the NLST and Vanderbilt datasets are shown in 

Tables 2. and 3., respectively. The distribution of malignancies and their BRODERS 

classifications at various Brock score categories are displayed in Supplemental Table S1. 

and S2.  

 

Using the optimal cutoff of 0.478 identified via Youden’s index, the sensitivity and specificity 

of the BRODERS classifier were 88.7% and 86.2% in the NLST screen-detected nodule 

cohort (n=685), respectively. For nodules with intermediate pre-test probability of 



 

malignancy (5-65%) by the Brock model (n=416) the Sensitivity was 91.9% and the 

Specificity was 71.6% using the same cutoff. 

For the entire Vanderbilt incidental nodule dataset (n=170), the Sensitivity was 92.3%, the 

Specificity was 62.0%, the positive predictive value (PPV) was 73.7% and the negative 

predictive value (NPV) was 87.5%.  For nodules with intermediate pre-test probability of 

malignancy by the Brock model (n=97), the Sensitivity was 94%, Specificity was 46%, the 

PPV was 78.4% and the NPV was 79.2%. The performance of the BRODERS classifier 

across different Brock-probability cut offs for the intermediate lung nodules are shown in 

Supplemental Table S3. and S4. 

The direct correlation between the Brock Model and the BRODERS classifier for the 

Vanderbilt University cohort are shown in Supplemental Figure S5. Figures 1. and 2. 

show the ROC comparing Brock model versus BRODERS for the entire NLST and 

Vanderbilt cohorts, and subsets of the cohort classified as low and intermediate pre-test 

malignancy risk. In both cohorts the AUC are significantly greater for the BRODERS model 

compared to the Brock model at all pre-test malignancy probabilities (P<0.001). The 

difference is most pronounced in the intermediate pre-test malignancy risk group. The 

benign resection rates based on the hypothetical application of the BRODERS classifier to 

the NLST and the Vanderbilt datasets are 12% and 26% for the entire cohorts and 10% and 

22% for the Brock model intermediate probability nodules (5-65%). 

 

 

  



 

Discussion 
 

In this study, we validated the BRODERS classifier on an independent dataset of 

incidentally identified lung nodules, and report excellent diagnostic test performance, with 

the potential to clarify the clinical significance of IPNs, using a novel radiomic model 

applicable to existing CT images. 

Several notable studies have recently described the use of radiomics for pulmonary nodule 

characterization. Some of them used large datasets like the NLST[22-24] or the Lung Image 

Database Consortium image collection (LIDC) [25], while others used institution-specific 

datasets as their training sets [26]. While some of these studies include validation cohorts, 

the majority of them are either internal validation sets or represent a subset of the cohort 

used for training (split sample validation), and thus do not truly provide external validation 

[15]. External validation in truly independent datasets is critical for radiomic models, which 

typically explore large numbers of candidate predictive variables in regression analyses with 

limited datasets. This introduces a substantial risk of overfitting, which is compounded when 

deep learning methods are used. It is also important to take into consideration the potential 

differences between screen and incidentally identified lung nodules, as models derived from 

screening cohorts may perform well in similar cohorts, but may not be generalizable to all 

lung nodules. In 2019 Ardila et al. [27] developed a deep learning radiomic tool using the 

NLST dataset as a training cohort, and validated it on an independent cohort from an 

academic institution with comparable diagnostic test performance. However, the validation 

dataset was also a screening cohort, which may limit the model’s external validity and 

specifically its applicability to incidentally discovered IPNs. More recently, Massion and 

colleagues reported the development of their deep learning-based Lung Cancer Prediction 



 

Convolutional Neural Network (LCP-CNN) model.[28] The reported AUCs of 0.92, 0.84 and 

0.92 in the NLST (training set, screen-detected), a Vanderbilt University and an Oxford 

University validation sets (incidentally identified nodules), respectively are comparable to the 

performance of our conventional radiomic classifier and outperformed the clinical Mayo 

Lung Nodule prediction model. Ultimately, the clinical utility of the LCP-CNN will need to be 

clarified with prospective validation. 

 While deep learning radiomic models and machine learning have received disproportionate 

attention in recent years, they also have significant limitations. These include the need for 

very large training sets [29], redundancy of features that are thought to be significant [30], 

overfitting [31] and the inability for external research groups to replicate results [32]. Deep 

learning models are often compared to a “black box”, in that predictive variables are 

unknown, limiting reproducibility and transparency, may have no direct correlation with 

underlying relevant biological features, or may be heavily weighted by features easily 

identified during clinical CT evaluation, such as nodule size. Conversely, in our conventional 

radiomic model, variables with known relevance to nodule characterization were selected for 

their direct relevance to predictive biological features, such as nodule texture, surface 

characteristics and location. 

It is also important to recognize that to a variety of factors, including strict inclusion criteria 

and healthy volunteer effect, subjects enrolled in screening studies tend to be substantially 

different than patients presenting at lung nodule clinics or even patients eligible for lung 

cancer screening [33]. In this study we validated our model, the BRODERS classifier which 

was trained using the NLST screening dataset [19] on an external dataset of consecutively 

identified incidentally detected lung nodules collected at the Vanderbilt lung nodule clinic. 



 

The excellent performance of our model supports its generalizability to other populations of 

patients with IPNs. 

A variety of clinical prediction models have been proposed to assist clinicians in lung nodule 

management using readily available data [18]. These models are relatively easy to use and 

while some may be better suited for selected populations,  comparative studies suggest that 

the Brock model may perform better than the others [34, 35]. In addition, a study by Van 

Riel et al. suggested that the Brock model may be preferable to both Lung-RADS and the 

National Comprehensive Cancer Network guidelines to classify nodules [36]. The 

BRODERS classifier outperformed the Brock model in both the NLST and Vanderbilt 

cohorts at all pre-test malignancy risk levels. Notably our model had high NPV at low pre-

test malignancy risk and good PPV and NPV at intermediate pre-test malignancy risk. 

Hence, applying the BRODERS radiomic model to screen- or incidentally identified lung 

nodules may effectively reclassify nodules with intermediate probability of malignancy into 

high or low post-test probability, obviating the need for advanced imaging, invasive biopsy 

or benign surgical resections. For example, using the calculated sensitivity and specificity 

for the nodules with intermediate pretest probability of malignancy in the Vanderbilt cohort, a 

nodule with a 50% pretest probability could be reclassified as low posttest probability after 

negative radiomic analysis (7.7%) or high posttest probability (74.7%), which may alter the 

clinical management. 

The clinical implementation of the BRODERS classifier should be highly feasible. Our semi-

automated region-growing approach nodule segmentation approach (ANALYZE, Biomedical 

Imaging Resource, Mayo Clinic, Rochester, MN) is fast, 1-5 minutes for most nodules, and 

does not require the operator to be a trained radiologist. We have successfully evaluated 



 

the reproducibility of our segmentation approach across different institutions and various 

operators.[37] At Mayo Clinic and Vanderbilt University, we currently effectively utilize 

radiology technician in the 3D-laboratory to clinically segment pulmonary nodules for other 

radiomics application. After segmentation the BRODERS classifier can be calculated within 

a few seconds.  

 

Our study has several limitations. First, it is a retrospective study with the limitations 

inherent in this type of study design. Second, the CT-scans for the Vanderbilt cohort were 

largely obtained at a single institution using similar scanners and acquisition protocols, and 

all nodules were incidentally rather than screen detected. In addition, our validation cohort 

included 79 benign and 91 malignant nodules, which may not reflect typical nodule cohorts 

as encountered in all clinical practice settings and is certainly not reflective of the disease 

prevalence encountered in a screening cohort [38]. Populations with different proportions of 

malignant nodules may affect our model’s positive and negative predictive values.   Finally, 

the validation cohort is relatively small. However, the paucity of radiomic studies using 

external, well-curated validation cohorts, strengthens the significance of our work. Lastly, 

the diagnostic performance of the Brock model, which was originally derived from a cohort 

of screen detected nodules, may have been altered by applying it to the incidentally 

discovered nodules in the Vanderbilt dataset.  

To mitigate these potential issues, we are planning to prospectively validate the 

performance of the BRODERS classifier in a representative mixed multi-center dataset of 

incidentally and screen detected lung nodules.  

 



 

In conclusion, herein we present the validation of the BRODERS classifier. Additional 

validation in other external datasets and further prospective validation may prove the value 

of the BRODERS classification as guidance to clinicians. In the near future, BRODERS 

might be used in practice to leverage the wealth of features readily available in CT datasets 

and facilitate individualized management decisions for screen- or incidentally identified lung 

nodules. 
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Tables and Figure Legends 

 

Figure 1. ROC for the NLST cohort comparing the Brock and Radiomics classifications. 

Panel (A) is for the entire cohort. AUC Brock 0.833 (95% CI = 0.803-0.860); AUC Radiomics 

0.939 (0.918-0.955). Panel (B) is for the low risk (Brock score < 5%) group, AUC Brock 

0.795 (0.74-0.842); AUC Radiomics 0.925 (0.886-0.954). Panel (C) is for the intermediate 

risk ( 5%  Brock Score < 65%) group. AUC Brock 0.648 (0.599-0.694); AUC Radiomics 

0.893 (0.859-0.922). 

 

Figure 2. ROC for the Vanderbilt cohort comparing the Brock and Radiomics classifications. 

Panel (A) is for the entire cohort. AUC Brock 0.872 (95% CI = 0.812-0.918); AUC Radiomics 

0.904 (0.849-0.943). Panel (B) is for the low risk (Brock score < 5%) group, AUC Brock 

0.658 (0.496-0.797); AUC Radiomics 0.796 (0.644-0.904). Panel (C) is for the intermediate 

risk ( 5%  Brock Score < 65) group. AUC Brock 0.798 (0.717-0.864); AUC Radiomics 

0.856 (0.782-0.912). 

 

 
 

 

 

 

  



 

Table 1. Baseline characteristics of the two cohorts described in the study 

  NLST (N=685) VANDERBILT (N=170) 

AGE MEAN YEARS [SD] 63 [5.3] 66 [7.6] 

GENDER [%] 
  

MEN 392 [57.2] 113 [66.5] 

WOMEN 293 [42.8] 57 [33.5] 

RACE [%] 
  

CAUCASIAN 632 [92.3] 152 [89.4] 

BLACK, ASIAN, OTHER 53 [7.7] 18 [10.6] 

SMOKING [%] 
  

CURRENT 362 [52.8] 108 [64] 

FORMER 327 [47.2] 58 [34] 

NEVER 0 4 [2] 

SMOKING PACK YEARS MEAN [SD] 61 [27.1] 57 [34.2] 

MODE OF NODULE DETECTION Screening Incidental 

NODULE DIAGNOSIS [%] 
  

BENIGN 313 [45.7] 79 [46] 

MALIGNANT 372 [54.3] 91 [54] 

NODULE SIZE MEAN MM [SD] 12.2 [6.5] 14.6 [6.9] 

SPICULATION [%] 199 [29.1] 20 [11.8] 

 

 

 

 

 

 

 

 

 
  



 

Table 2. Truth tables comparing histology versus BRODERS classifier versus Brock model 
probability categories in the NLST cohort. 

 
 

Brock Model probability of 
malignancy 

 

Clinical/ Histological 
Classification 

BRODERS 
Benign 

BRODERS 
Malignant 

Low < 5 % 

(N = 257) 

 
Benign (N = 204 ) 

 
192 12 

 
Malignant (N = 53 ) 

 
17 36 

Intermediate 5  to < 65 

(N = 416) 

 
Benign (N = 109) 

 
78 31 

 
Malignant (N = 307) 

 
25 282 

High  65 

(N = 12) 

 
Benign (N =0) 

 
0 0 

 
Malignant (N = 12) 

 
0 12 

 
 

Table 3. Truth tables comparing histology versus BRODERS classifier versus Brock model 
probability categories in the Vanderbilt cohort. 
 

 
Brock Model probability of 

malignancy 
 

Clinical/ Histological 
Classification 

BRODERS 
Benign 

BRODERS 
Malignant 

Low < 5 % 

(N = 42) 

 
Benign (N = 38) 

 
30 8 

 
Malignant (N = 4) 

 
2 2 

Intermediate 5  to < 65 

(N = 126) 

 
Benign (N = 41) 

 
19 22 

 
Malignant (N = 85) 

 
5 80 

High  65 

(N = 2) 

 
Benign (N =0) 

 
0 0 

 
Malignant (N = 2) 

 
0 2 



 

 

  



 

 

  



 

Supplemental Figure 1. Flow-diagram for the patient selection from the NLST (A.) and 

Vanderbilt University (B.) databases. 

 

Supplemental Figure S2. Comparison of Nodule Diameter between malignant and benign 

nodules in the Vanderbilt University Cohort 

 

Supplemental Figure S3: 2x2 contingency table with the axial scout images for the NLST 

cohort comparing the clinical/histological ground truth and the BRODERS radiomics 

prediction.  

 

Supplemental Figure S4: 2x2 contingency table with the axial scout images for the 

Vanderbilt cohort comparing the clinical/histological ground truth and the BRODERS 

radiomics prediction.  

 

Supplemental Figure S5 Comparison between Brock Model and BRODERS classifier for 

the Vanderbilt University cohort 

  



 

Supplemental Table S1. Types of malignancies in the NLST cohort and distribution across 
the Brock and BRODERS classification  
 

Histology Brock < 5% 5% <= Brock < 65% Brock >= 65% 
BRODERS 

Benign 
BRODERS 
Malignant 

Adenocarcinoma (N=268) 34 224 10 39 229 

Squamous cell 
carcinoma (N=71) 

14 55 2 2 69 

Large cell carcinoma 

(N=18) 
3 15 0 1 17 

Small Cell carcinoma 

(N=11) 
2 9 0 0 11 

Carcinoid (N=4) 0 4 0 0 4 

 

Supplemental Table S2. Types of malignancies in the Vanderbilt cohort and distribution 
across the Brock and BRODERS classification  
 

Histology Brock < 5% 5% <= Brock < 65% Brock >= 65% 
BRODERS 

Benign 
BRODERS 
Malignant 

Adenocarcinoma (N=60) 2 57 1 3 57 

Squamous cell carcinoma 

(N=24) 
2 21 1 1 23 

Large cell carcinoma 

(N=3) 
0 3 0 0 3 

Small Cell carcinoma 

(N=3) 
0 3 0 1 2 

Carcinoid (N=1) 0 1 0 1 0 

 

  



 

 

  Supplemental Table S3 Effect of different Brock cutoffs the intermediate 

probability group on BRODERS diagnostic performance in the NLST cohort. 

 

Supplemental Table S4 Effect of different Brock cutoffs the intermediate 
probability group on BRODERS diagnostic performance in the Vanderbilt 

University cohort. 

 



 

 

  



 

 

  



 

 

  



 

 

  



 

 


