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Take-home message 

Blocking epithelial alarmins, upstream mediators triggered early in the asthma 

inflammatory response that orchestrate broad inflammatory effects, is a promising 

alternative approach to asthma treatment, which may be effective in a broad patient 

population.  
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ABSTRACT 

Monoclonal antibody therapies have significantly improved treatment outcomes for 

patients with severe asthma; however, a significant disease burden remains. 

Available biologic treatments, including anti-immunoglobulin (Ig) E, anti-interleukin 

(IL)-5, anti-IL-5Rα and anti-IL-4Rα, reduce exacerbation rates in study populations 

by approximately 50% only. Furthermore, there are currently no effective treatments 

for patients with severe, type 2 (T2)-low asthma. Existing biologics target 

immunologic pathways that are downstream in the T2 inflammatory cascade, which 

may explain why exacerbations are only partly abrogated. For example, T2 airway 

inflammation results from several inflammatory signals in addition to IL-5. Clinically, 

this can be observed in how fractional exhaled nitric oxide (FeNO), which is driven by 

IL-13, may remain unchanged during anti-IL-5 treatment despite reduction in 

eosinophils, and how eosinophils may remain unchanged during anti-IL-4Rα 

treatment despite reduction in FeNO. The broad inflammatory response involving 

cytokines including IL-4, IL-5 and IL-13 that ultimately results in the classic features 

of exacerbations (eosinophilic inflammation, mucus production and bronchospasm) 

is initiated by release of ‘alarmins’ thymic stromal lymphopoietin (TSLP), IL-33 and 

IL-25 from the airway epithelium in response to triggers. The central, upstream role 

of these epithelial cytokines has identified them as strong potential therapeutic 

targets to prevent exacerbations and improve lung function in patients with T2-high 

and T2-low asthma. This article describes the effects of alarmins and discusses the 

potential role of anti-alarmins in the context of existing biologics. Clinical phenotypes 

of patients who may benefit from these treatments are also discussed, including how 

biomarkers may help identify potential responders. 
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Introduction 

Asthma is a chronic, inflammatory disease of the airways that affects over 300 

million individuals worldwide [1]. Approximately 5–10% of these individuals have 

severe asthma [2, 3]. Despite a regimen of multiple maintenance medications, 

patients with severe asthma carry a substantial burden of disease, experiencing 

frequent exacerbations and having high rates of healthcare resource use, which are 

associated with substantial costs [4, 5]. These patients also have severely impaired 

health-related quality of life, with numerous aspects adversely affected, including 

sleep, work, study, exercise and daily activities. Comorbidities in severe asthma are 

common and include chronic rhinosinusitis, nasal polyposis and atopic dermatitis [6]. 

 

The management of severe asthma is a considerable challenge, particularly in 

patients with recurrent exacerbations, because these patients are often receiving 

maximal inhaled therapy and may require regular oral corticosteroid (OCS) treatment 

[7]. Until relatively recently, there were few alternatives to regular OCS in these 

patients, but the advent of monoclonal antibody therapies provided physicians with 

important additional options for exacerbation prevention, potentially enabling 

tapering or discontinuation of OCS [8]. These biologic therapies target the signalling 

pathways involved in type 2 (T2) inflammation, mediated by the action of cytokines, 

such as interleukin (IL)-4, IL-5 and IL-13. These pathways play an important role in 

the pathogenesis of T2-high asthma, which is characterised by high levels of T2 

inflammation, as measured using biomarkers such as blood and sputum eosinophils, 

and fractional exhaled nitric oxide (FeNO) [9]. However, currently available biologic 

therapies, comprising anti-immunoglobulin (Ig)E, anti-IL-5, anti-IL-5Rα and anti-IL-

4Rα monoclonal antibodies (the latter blocking the IL-4 and IL-13 pathways), 



decrease exacerbation rates in study populations by approximately 50% only [10-

12]. Furthermore, anti-IgE, anti-IL-5 and anti-IL-4/IL-13 therapies typically produce 

variable improvements in lung function and symptom scores, although some 

individuals may experience clinically significant improvements [10-13]. An 

explanation for this lack of complete efficacy may be that each therapy targets only 

some of the elements of the pathways that regulate T2 inflammation, leaving other 

elements of the disease pathophysiology untreated; hence, there is a need for 

treatments with broader effects on T2 inflammation. Furthermore, we urgently need 

treatments for patients with T2-low asthma, in whom the disease shows less 

involvement of T2 pathways [9]. Defining and therefore diagnosing T2-low asthma is 

made challenging by the lack of reliable biomarkers. Although sputum neutrophilia 

(in the absence of sputum eosinophilia) may be present in some patients, diagnosis 

of this asthma subtype is generally inferred from the absence of T2 biomarker 

elevation [14]. Related to this, it is important to emphasise that the use of 

corticosteroids, as recommended in patients with severe asthma, reduces eosinophil 

counts and can therefore confound T2-low classification [15]. For the purposes of 

this paper, we define T2-low asthma as asthma with low T2 biomarker levels. 

 

Inflammatory pathways in asthma 

Within the T2-high subtype, the major pathways involved in airway inflammation (i.e. 

IL-4, IL-13 and IL-5 signalling) are driven by T helper type 2 (Th2) cells and type 2 

innate lymphoid cells (ILC2) [16]. IL-4 signalling is central to B cell class switching 

and triggers the release of IgE from B cells, resulting in airway hyperresponsiveness 

among other effects [17]. IL-13 is believed to be a central regulator of IgE synthesis, 

as well as of mucus hypersecretion, airway hyperresponsiveness and fibrosis (an 



element of airway remodelling) [18, 19]. IL-5 is a key effector of eosinophilic 

inflammation [20], which results in airway remodelling [21, 22]. 

 

The different T2 pathways have varying prominence across clinical phenotypes, 

resulting in distinct patterns of inflammatory biomarkers [23]. For instance, patients 

with early-onset allergic asthma have high serum levels of allergen-specific IgE and 

total IgE, and elevated FeNO [23, 24], which is characteristic of inflammation 

predominantly driven by Th2 cells and/or IL-4/IL-13. In contrast, late/adult-onset 

eosinophilic asthma is a particularly severe form of the disease characterised by 

higher levels of sputum eosinophils than early-onset asthma [25], as well as elevated 

blood eosinophils [24, 26], related predominantly to IL-5-mediated inflammation. 

Elevated FeNO, driven by IL-13, is also characteristic of this phenotype [27]. In the 

clinic, it may be observed that FeNO remains high in these patients during anti-IL-5 

treatment, despite the reduction in eosinophils [28, 29]. Similarly, anti-IL-4Rα 

treatment can reduce FeNO, but transient eosinophilia may be observed [8]; caution 

should therefore be taken when considering anti-IL-4Rα for patients with a history of 

hypereosinophilic conditions [30]. Alternatively, mixed granulocytic asthma may be 

present, in which there are elevated levels of both eosinophils and neutrophils [24]. 

In adults with non-eosinophilic asthma, within the T2-low subtype, there is airway 

inflammation with a lack of eosinophils [24]. Instead, the dominant inflammatory cell 

types in blood and sputum may include neutrophils, or there may be very few 

inflammatory cells, termed paucigranulocytic inflammation [24, 31, 32].  

 

Our understanding of the role of the airway epithelium in driving asthma 

exacerbations has advanced considerably in recent years, from a simple passive 



barrier function to an immunologically active front-line, initiating early responses to 

external triggers and orchestrating the resulting inflammatory cascade. As the 

interface between the external environment and the tissue of the bronchi, the airway 

epithelium is in constant contact with an array of stimuli, such as infectious agents, 

environmental allergens and atmospheric pollutants. The epithelium has been shown 

to mediate complex inflammatory processes in response to these allergic and non-

allergic triggers, including the release of a trio of epithelial cytokines, known as 

‘alarmins’ [33]. The alarmins thymic stromal lymphopoietin (TSLP), IL-33 and IL-25 

instigate inflammatory responses via numerous downstream pathways, including T2 

(IL-4, IL-13 and IL-5) (figure 1) and others such as T1 or T17 (IL-17), resulting in 

various pathophysiologic outcomes that may lead to asthma symptoms and 

exacerbations [33]. It should be noted here that the term ‘alarmin’ is not limited to 

these three epithelial cytokines; other proteins produced in response to microbial 

invasion or tissue injury may also be referred to as alarmins [34]. 

 

Understanding the pathophysiology of acute exacerbations: a path 

to better treatments? 

To improve management options for patients with asthma, we require a better 

understanding of the mechanisms driving acute asthma exacerbations. 

Exacerbations are characterised by increasing symptoms, including dyspnoea, 

wheezing, cough and sputum, owing to increased inflammation and bronchospasm. 

They may be triggered by exposure to environmental allergens or pollutants but are 

most often provoked by viral infection (most commonly with rhinovirus) [35-37]. As 

with the overall patterns of chronic inflammation in patients with asthma described 

above, the pattern of inflammatory pathways activated during acute exacerbations is 



also heterogeneous, with some patients having eosinophilic inflammation and others 

having neutrophilic, mixed or paucigranulocytic inflammation [38-40]. In patients with 

eosinophilic exacerbations, inflammation appears to be driven by multiple, 

simultaneously activated T2 pathways (e.g. both IL-5 and IL-4/IL-13). This can be 

inferred from human allergen challenge studies that show increases in airway IL-5, 

IL-4 and IL-13 levels during virus-induced asthma exacerbations [41, 42], as well as 

proteomic data showing elevated sputum levels of both IL-5 and IL-13 in patients 

with eosinophilic asthma [43]. With regard to the considerable proportion of patients 

who have non-eosinophilic, neutrophilic inflammation in relation to an exacerbation 

[24], less is understood about the pathways involved in non-eosinophilic 

exacerbations, although they may involve IL-17 and IL-23 [44, 45]. There is also 

evidence of airway microbiome involvement because subclinical infection by 

particular bacterial species is associated with neutrophilic, steroid-resistant asthma 

[46, 47]. 

 

Potential associations between an inflammatory asthma phenotype and specific 

exacerbation triggers are also poorly understood. Virus-induced exacerbations are 

more common in patients with allergic asthma [35], as well as in patients with 

elevated FeNO or blood eosinophils [48], suggesting a link between virus-induced 

exacerbations and T2 inflammation. Eosinophils, activated by IL-5, drive 

pathophysiology in exacerbating and stable eosinophilic asthma. Eosinophils have 

recently been found to play a role in the defence against viruses. However, in 

patients with asthma, the degree to which eosinophils can carry out this role 

correlates with disease severity [49], explaining why patients with asthma and high 

eosinophil counts still experience virus-induced exacerbations. This may also explain 



the lack of efficacy of anti-IL-5 therapy in mild asthma. For example, in a virus 

challenge study in patients with mild asthma, anti-IL-5 altered elements of the 

immune response, including B lymphocytes, macrophages and neutrophils, as well 

as attenuated eosinophils, but there were no associated improvements in lung 

function [50]. Less is known about potential links between asthma phenotypes and 

other associated exacerbation triggers. 

 

There is a pressing need for better understanding of the drivers of exacerbations. 

One route towards achieving this is to study the impact of specific biologics on 

patient exacerbations with respect to their phenotypes and triggers. A retrospective 

analysis of exacerbations in a trial in patients with severe eosinophilic asthma 

receiving anti-IL-5 treatment with mepolizumab found that exacerbations occurring 

during treatment were associated with a lower induced sputum eosinophil count and 

less wheezing than those occurring in patients receiving placebo. This was 

particularly apparent in patients who had not started rescue treatment with 

corticosteroids, suggesting that exacerbations were less severe with mepolizumab 

[51]. This finding is corroborated by previous observations that non-eosinophilic 

exacerbations are less severe than eosinophilic exacerbations [52]. Data from 

ongoing studies designed to explore the nature of exacerbations in patients being 

treated with biologics, such as anti-IL-5 monoclonal antibodies [53], are keenly 

anticipated. With our current limited knowledge, without full appreciation of the 

heterogeneity of inflammation in acute exacerbations, prescription of treatments 

targeting specific inflammatory pathways may not effectively prevent all 

exacerbations. Therefore, targeting multiple inflammatory pathways may be a more 

effective approach. 



 

Epithelial alarmins: early orchestrators of airway inflammation in 

acute asthma 

Role of TSLP and IL-33 in T2-high asthma 

There is substantial evidence that the alarmins, TSLP and IL-33, play key roles in 

driving T2 inflammation in asthma. TSLP levels in bronchial lavage fluid and biopsies 

are elevated in patients with asthma compared with healthy individuals, and correlate 

with disease severity (including a negative correlation with lung function defined by 

forced expiratory volume in 1 second [FEV1]) [54-57]. In addition, genetic studies of 

TSLP have identified alleles that are associated with asthma [58]. Similarly, 

expression levels of IL-33 and its receptor ST2 in serum and bronchial biopsy 

samples are higher in patients with asthma than in healthy individuals, and positively 

correlate with disease severity [59-61]. Additionally, patients with allergic and 

eosinophilic asthma phenotypes have higher serum levels of IL-33 than those with 

non-allergic and non-eosinophilic phenotypes [62]. Furthermore, in patients with 

allergic asthma, ST2 expression on eosinophils from blood and sputum is 

significantly upregulated after allergen inhalation challenge [54]. Higher serum 

soluble ST2 levels are associated with an increased risk of exacerbations [63]. 

Certain alleles of IL-33 and its receptor are associated with asthma [58], and a rare 

IL-33 loss-of-function mutation reduces blood eosinophil counts and protects from 

asthma [64]. Bronchial allergen challenge directly increases airway expression of all 

three alarmins (TSLP, IL-33 and IL-25) in patients with allergic asthma, to a degree 

correlating with the degree of airway obstruction [42]. 

 



TSLP has been shown to drive various elements of asthma pathophysiology, 

including airway hyperresponsiveness, mucus overproduction and airway 

remodelling, via effects triggered downstream. However, it should be noted that not 

all these elements have been demonstrated conclusively in humans. During T2 

inflammatory responses, TSLP potently activates dendritic cells and induces 

production of the Th2-attracting chemokines thymus and activation-regulated 

chemokine (TARC; also known as CCL17) and macrophage-derived chemokine 

(CCL22). TSLP-activated dendritic cells prime naïve Th cells to produce various 

inflammatory mediators, including IL-4, IL-5 and IL-13 [65]. The IL-5 secreted from 

polarised Th2 cells mediates eosinophilic inflammation via effects on eosinophil 

recruitment, maturation and survival [66]. When activated, eosinophils release 

cysteinyl leukotrienes, which are potent bronchoconstrictors [22]. They also induce 

airway remodelling through airway smooth muscle cell proliferation [21] and the 

release of mediators, such as transforming growth factor-β, cationic proteins and 

cytokines, as well as through interactions with mast cells and epithelial cells [22]. 

Mast cells also release acute-phase inflammatory mediators, including cysteinyl 

leukotrienes, histamine and prostaglandins [67]. IL-4 and IL-13 secreted from 

polarised Th2 cells activate B cells, which produce IgE, resulting in airway 

hyperresponsiveness [18] and triggering mast cell degranulation, leading to vascular 

permeability [68]. IL-13 also increases mucus production via goblet cell proliferation, 

and airway inflammation via increased epithelial production of FeNO [19]. In addition 

to Th2 cells, TSLP activates multiple other cell types that release IL-13, including 

mast cells, basophils and ILC2s [69-71]. 

 



Meanwhile, IL-33 is thought to act as a positive regulator of TSLP dendritic cell 

signalling, initiating and maintaining Th2 cell-mediated inflammatory responses [72]. 

IL-33 drives airway hyperresponsiveness through IL-13-mediated mast cell–airway 

smooth muscle crosstalk. Human lung mast cells are stimulated by IL-33 to release 

histamine and IL-13, resulting in airway constriction [60]. Further roles of IL-33 

include promoting mast cell survival and cytokine production [73], eosinophil survival 

[74], basophil activation, survival and proliferation [71], and increasing IL-13 release 

from ILC2s [75]. 

 

Role of IL-25 in T2-high asthma 

Of the three alarmins, the actions of IL-25 in patients with asthma are probably the 

least understood. IL-25 appears to play a key role in allergic inflammation, 

particularly as a driver of the T2 inflammatory response during virus-induced asthma 

exacerbations [76]. Elevated plasma levels of IL-25 are associated with the allergic 

asthma phenotype [77], and IL-25 concentration in sputum correlates with disease 

severity [78]. Sputum IL-25 is also increased in atopic versus non-atopic asthma 

patients [78]. In addition, a rare allele of a component of the IL-25 receptor, IL-17RB, 

is associated with a reduced incidence of asthma [79]. 

 

After inhaled allergen exposure, there is increased expression of IL-25 and its 

receptor in the bronchial mucosa and dermis (collected by skin biopsy) [80], and in 

circulating eosinophils and airway dendritic cells [81, 82] in patients with allergic 

asthma. Bronchial epithelial expression of IL-25, but not IL-33 or TSLP, is 

heterogeneous in patients with asthma. Those expressing high levels of IL-25 have 

greater airway hyperresponsiveness and remodelling, increased blood and airway 



eosinophilia, and higher allergen skin-test reactivity, with elevated IgE, than those 

expressing low levels of IL-25 [83]. Aside from epithelial cells, which form the 

principal location of all three alarmins, IL-25 release appears to be prominently 

localised to eosinophils [42]. IL-25 is hypothesised to play a role in allergen-induced 

trafficking of eosinophil-lineage committed progenitor cells to the airways, and local 

differentiation, promoting tissue eosinophilia during asthmatic responses [84]. 

 

Role of TSLP in T2-low asthma 

Much less is known about the role of alarmins in T2-low asthma than in T2-high 

asthma; most of our understanding comes from animal studies, with relatively few 

studies having been conducted in humans or human cells. Of the three alarmins, 

TSLP has the most compelling evidence for an effect in T2-low asthma. Anti-TSLP 

treatment has been shown to reduce exacerbations in patients with severe, 

uncontrolled asthma and low levels of blood eosinophils and FeNO (as discussed 

later) [85]. TSLP is thought to play a role in neutrophilic, T2-low airway inflammation 

by activating dendritic cells to induce polarization of naïve T cells towards a Th17 

phenotype [86]. Th17 polarization and subsequent IL-17 release promotes 

neutrophilic inflammation and a non-allergic/non-eosinophilic response [87]. TSLP, 

but not IL-33 or IL-25, expression in human bronchoalveolar lavage fluid has been 

shown to correlate most closely with neutrophil infiltration [54]. Nevertheless, future 

studies are warranted to understand whether there is a broader role for IL-33 in the 

pathogenesis of T2-low asthma. 

 

Role of the alarmins in steroid-refractory asthma 



Airway levels of ILC2s are elevated in several phenotypes of asthma, including late-

onset eosinophilic asthma [25, 88-90], and may be the key driver of eosinophilic 

inflammation in these patients. Although individual alarmins do not directly promote 

proliferation of ILC2s, TSLP promotes the longevity of ILC2s, while ILC2 activation is 

promoted by IL-33, especially when in combination with TSLP (or IL-2) [70]. In a 

recent, in vitro study of human blood and lung ILC2s from patients with asthma and 

healthy controls, IL-25- and IL-33-stimulated expression of T2 cytokines by blood 

ILC2s was inhibited by steroid treatment; however, TSLP-stimulated T2 cytokine 

expression was not [91]. TSLP levels were elevated in bronchoalveolar lavage fluid 

in patients with asthma versus healthy controls and correlated with the level of 

steroid resistance. TSLP was shown to induce steroid resistance in the ILC2s [91]. 

TSLP-initiated T2 signalling may therefore be particularly important in severe asthma 

patients with steroid-refractory disease and both Th2- and ILC2-driven inflammation. 

Non-eosinophilic asthma is also associated with steroid resistance [92], linked to 

high IL-17 and high numbers of neutrophils in these patients, potentially resulting 

from TSLP signalling (as described above) [44, 87]. 

 

Targeting the airway alarmins with biologic therapies 

The inability of current biologic therapies to prevent all asthma exacerbations and the 

complexity of the inflammatory pathways involved in asthma, provide a strong 

rationale for finding alternative, more effective means of reducing airway 

inflammation and thereby preventing exacerbations. The central, upstream role of 

alarmins makes them attractive potential therapeutic targets in this regard. Current 

biologics are not disease modifying, and available evidence suggests that asthma 

severity returns to pre-treatment levels after stopping treatment with them [93, 94]. 



Blocking alarmins, however, has the potential to inhibit airway hyperresponsiveness 

and remodelling [95] and produce sustained reductions in disease activity. Biologics 

targeting the alarmins are now in development, with anti-TSLP and anti-IL-33 

therapies having entered clinical trials. The current evidence for the effects of 

alarmin blockade in humans is summarised in table 1 and figure 2. 

Anti-TSLP 

Tezepelumab, an anti-TSLP human monoclonal antibody that prevents TSLP 

interacting with its receptor complex [96], is the anti-alarmin that has reached the 

furthest stage of clinical development (table 1). In a proof-of-concept allergen 

challenge study in patients with mild allergic asthma, tezepelumab 700 mg was 

administered every 4 weeks for 12 weeks, with an inhaled allergen challenge at 

baseline and after 6 and 12 weeks [96]. FEV1 reductions post-allergen challenge at 

week 6 and week 12 were significantly smaller with tezepelumab than with placebo 

(34% and 46%, respectively). In addition, patients receiving tezepelumab had 

significant decreases in levels of blood and sputum eosinophils before and after 

allergen challenge. Similarly, FeNO levels dropped throughout the study, and post-

allergen FeNO increases were significantly reduced. These results paved the way for 

a phase 2b study in patients with moderate-to-severe uncontrolled asthma, who 

were administered tezepelumab 70 mg every 4 weeks, 210 mg every 4 weeks or 280 

mg every 2 weeks, or placebo every 2 weeks, over 52 weeks [85]. Tezepelumab was 

well tolerated and significantly reduced annualised asthma exacerbation rates in the 

tezepelumab groups versus placebo (by 61%, 71% and 66%, respectively). Similar 

results were observed regardless of patients’ blood eosinophil counts at enrolment. 

Pre-bronchodilator FEV1 at week 52 improved within the first month of tezepelumab 

treatment relative to placebo and persisted throughout the study, as did 



improvements in patient-reported outcomes. In an exploratory analysis of the phase 

2b data, tezepelumab was found to reduce annualised asthma exacerbation rates 

irrespective of patients’ baseline blood eosinophil count, level of FeNO, or serum 

levels of IgE, IL-5, IL-13, periostin or TARC [97]. In addition, levels of these 

proinflammatory biomarkers and cytokines were reduced as early as 4 weeks after 

treatment initiation; the reductions were then maintained throughout the 52-week 

treatment period. 

 

Taken together, these findings indicate that tezepelumab has broad inhibitory effects 

on multiple T2 inflammatory mediators of asthma, suggesting that anti-TSLP 

treatment may be beneficial in patients with a range of inflammatory phenotypes 

(table 2). As described above, because TSLP is postulated to initiate T2 

inflammation via both Th2 and ILC2 cells, blocking TSLP with tezepelumab may 

effectively reduce inflammation in patients with steroid-refractory asthma. 

Furthermore, the observation that tezepelumab was efficacious in patients with low 

blood eosinophils and low FeNO indicates that it may be effective in the T2-low 

asthma subtype. By contrast, the existing biologics targeting T2 pathways, such as 

anti-IL-4R and anti-IL-5, have shown less efficacy in patients with low versus high 

eosinophil counts [98-100]. Whether tezepelumab is effective in patients with T2-low 

asthma is yet to be confirmed and will depend on how T2-low asthma is defined in 

terms of biomarkers in future clinical studies. 

 

Several clinical investigations assessing the efficacy and safety of tezepelumab in 

different patient populations are ongoing, with results yet to be published (table 3). 

Two phase 2 (NCT02698501 and NCT03688074) and two phase 3 studies are 



ongoing: one investigating the efficacy and safety of tezepelumab in reducing OCS 

use in adults with OCS-dependent asthma (NCT03406078), and one investigating 

the efficacy and safety of tezepelumab in adults and adolescents with severe, 

uncontrolled asthma (NCT03347279). 

 

In addition to tezepelumab, CSJ117, an anti-TSLP monoclonal antibody fragment 

delivered by inhalation, is in phase 1 development (NCT03138811), with results not 

yet published. 

 

Anti-IL-33 

Monoclonal antibodies targeting IL-33 or ST2 are in clinical development, with 

several in phase 2 trials (table 3), but results from these studies have not yet been 

published in peer-reviewed journals. AMG282 (RG6149/MSTT1041A) is being 

evaluated in a 12-month phase 2b study in patients with uncontrolled, severe 

asthma, with the primary outcome being the rate of exacerbations (NCT02918019). 

REGN3500 (SAR440340) was recently trialled alone and in combination with 

dupilumab in a 12-week phase 2a study in patients with moderate-to-severe asthma 

(NCT03387852). Top-line findings from this study are available but are yet to be 

published in a peer-reviewed journal. Although the anti-IL-33 antibody met its 

primary endpoint of reducing the incidence of ‘loss of asthma control’ events 

compared with placebo, outcomes were no better than those seen with dupilumab 

monotherapy. In addition, combined REGN3500 and dupilumab did not demonstrate 

increased benefit compared with dupilumab alone [101]. Two earlier phase 1 studies 

of REGN3500 have also been completed (NCT03112577, NCT02999711). Etokimab 

(ANB020) has recently been evaluated in a proof-of-concept phase 2a study in 



adults with severe eosinophilic asthma, including a primary outcome of change in 

blood eosinophil count (NCT03469934). GSK3772847 (CNTO7160) has recently 

completed a phase 2a study in patients with moderately severe asthma, with the 

primary outcome being loss of asthma control events at week 16 (NCT03207243). A 

28-week phase 2b study in patients with moderate-to-severe asthma with allergic 

fungal airway disease is ongoing, with primary outcomes of change from baseline in 

blood eosinophil count and FeNO levels at week 13 (NCT03393806). 

 

Anti-IL-25 

Although IL-25 appears to play a key role in allergic inflammation, particularly during 

virus-induced asthma exacerbations (as described above), no clinical studies of anti-

IL-25 antibodies are in progress. 

 

Patients who may benefit from anti-alarmin treatment 

From a clinical perspective, there are several groups of patients who may benefit 

from the potentially broad anti-inflammatory effects of anti-alarmins, such as those 

with multiple activated T2 pathways. For example, in patients with allergic 

eosinophilic asthma, it may be difficult to discern whether exacerbations are primarily 

driven by allergen exposure or are related to eosinophilic inflammation. The ability to 

target pathways driving both IgE and eosinophils with a single treatment may be a 

more attractive option than anti-IgE or anti-IL-5. A second example is those patients 

with non-allergic eosinophilic asthma who have very high FeNO, indicating 

concomitant activation of both IL-5 and IL-13, perhaps through activation of ILC2 

cells. Although there is presently no evidence available to inform us whether these 

patients could achieve sufficient control on either anti-IL-5 or anti-IL-4/13, it appears 



plausible that some need a broader suppression of the T2 pathways. Thirdly, 

patients with severe eosinophilic asthma and comorbidities, such as nasal polyposis 

or atopic dermatitis, that do not improve with current biologic therapies may also 

have co-activation of cells releasing both IL-5 and IL-4/IL-13. This suggests that 

these patients may benefit from an upstream-targeted treatment. Other patients who 

may benefit from anti-alarmin therapy could include those with predominantly mast 

cell-driven disease or those with no clear pattern of T2 inflammation. 

 

Outstanding questions regarding anti-alarmins 

Although tezepelumab has thus far been found to be well tolerated in clinical studies, 

questions remain regarding the long-term safety of blocking the alarmins and the 

benefit–risk of anti-alarmin treatment compared with that of cumulative OCS 

exposure, for which the side effects are well-known and can lead to significant 

morbidity [102]. One area for potential exploration is the antimicrobial activity of 

TSLP, in particular the short form of TSLP (sfTSLP), which has been shown to exert 

potent antimicrobial activity [103]. It is therefore conceivable that blocking sfTSLP 

could result in a greater risk of infection. 

 

Upregulation of alarmins has been implicated in a number of human cancers, 

although their role is controversial; in some neoplasms, TSLP appears to play a pro-

tumorigenic role, while in others, TSLP seems to be protective [104]. As such, further 

studies are required to determine the precise role of TSLP in human cancer. 

Similarly, further studies are warranted to determine the effect of blocking IL-33 on 

cardiovascular disease, because IL-33 is thought to be cardioprotective [105]. 

 



An additional and important question is whether suppressing one alarmin alone is 

sufficient to suppress all inflammatory pathways induced by the alarmins. In this 

context, it is clearly important to understand the potential interactions between the 

alarmins and the relative importance of each alarmin in inflammatory responses. 

Using chronic models of helminth infection and T2 cytokine-driven lung inflammation, 

targeting all three alarmins (TSLP, IL-25 and IL-33) was found to be more efficacious 

than blocking a single alarmin alone [106]. Furthermore, disruption of all three 

mediators in a model of chronic house dust mite-induced allergic lung inflammation 

resulted in reduced inflammation, mucus production and lung remodelling. The 

authors concluded that the results of these studies suggest redundant roles for 

TSLP, IL-25 and IL-33 in the maintenance of T2 pathology and that these alarmins 

interact to potentiate their individual effects. An additional study found that both IL-33 

and TSLP were required for epithelial cell IL-25 expression, mucus metaplasia and 

ILC2 expansion after early-life rhinovirus infection in mice [107]. The authors 

concluded that generation of mucus metaplasia involves a complex interplay among 

IL-25, IL-33 and TSLP. Nevertheless, blocking the TSLP pathway alone appears 

sufficient to suppress inflammation, as shown so far in the tezepelumab studies, 

albeit other anti-TSLP biologics such as RG7258 were not successfully developed 

into asthma therapies [108]. To date, no clinical studies have investigated the 

potential interactions between alarmins in patients with asthma, but it would be of 

importance to understand such interactions, both in terms of effects on the efficacy 

and safety of these treatments. 

 

Of further interest is the mechanism by which anti-alarmins prevent exacerbations. It 

has been postulated that omalizumab exerts its beneficial effects through restoration 



of innate antiviral immunity in plasmacytoid dendritic cells and through increasing the 

release of interferon-α on rhinovirus exposure, which is deficient in the presence of 

high IgE [109]. It is unknown whether anti-alarmins have an effect on antiviral 

immunity, and it could be speculated that such a mechanism may result in treatment 

benefit for patients with both T2-high and T2-low asthma. Mechanistic studies are 

required to determine how these new treatments work. 

 

Conclusions and future perspective 

Monoclonal antibody therapies represent a new treatment era in severe asthma, 

offering patients who are exacerbating despite high-dose anti-inflammatory treatment 

a safer and more effective alternative option. However, because blocking specific T2 

pathways with currently available biologics fails to prevent all exacerbations, a 

significant burden of disease remains. This limitation of current biologics may be a 

consequence of blocking pathways downstream in the immunological cascade, 

leaving others still active, as the partial suppression of T2 pathways may be 

insufficient to abrogate exacerbations in some patients. Blocking alarmins, upstream 

mediators triggered early in the inflammatory response that orchestrate broad T2 

inflammatory effects, is a promising alternative approach that may be effective in a 

broader patient population. 

 

Further research into the role of alarmins in asthma pathogenesis will improve our 

understanding of disease severity and the heterogeneity in response to current 

treatments. This research should include studies of differences between the roles of 

the alarmins in the different clinical phenotypes of severe asthma, such as late-onset 

eosinophilic asthma versus early-onset allergic asthma, as well as their relationship 



with comorbidities such as atopic dermatitis and nasal polyposis. Understanding the 

clinical effect of each alarmin in patients with specific phenotypes, and in patients 

with a combination of asthma, atopic dermatitis and nasal polyposis, will be crucial 

not only for informing our ability to correctly select the appropriate anti-alarmin as a 

treatment, but also to our understanding of disease mechanisms in asthma. In 

addition to this, more studies in which exacerbations are phenotyped are also 

required to help to identify which types of exacerbation are reduced or otherwise by 

a given biologic treatment. Finally, mechanistic studies in humans are required to 

improve our understanding of how next-generation biologics work. This will help 

clinicians to select the most appropriate treatments for their patients. 
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TABLE 1 Clinical evidence of the effects of TSLP blockade in humans* 

Reference Setting Outcomes  

[85] Patients with uncontrolled 

moderate-to-severe asthma 

(phase 2b study) 

 Reduced exacerbation rate irrespective of baseline blood 

eosinophil count 

 Increased FEV1 

 Reduced blood eosinophils, FeNO, serum IgE throughout the 

52-week treatment period 

[110] 

 

Patients with uncontrolled 

moderate-to-severe asthma 

(phase 2b study) 

 Reduced blood eosinophils, FeNO, serum IgE, IL-5, IL-13, 

periostin and TARC throughout the 52-week treatment period 

 Reduced exacerbation rate irrespective of baseline blood 

eosinophils, FeNO, serum IgE, IL-5, IL-13, periostin, TARC 

[96] Patients with mild allergic 

asthma (phase 1/2a study) 

after allergen challenge 

 Reduced airway hyperresponsiveness  

 Reduced bronchoconstriction 

 Reduced blood and sputum eosinophils 

 Reduced FeNO 

 Reduced Th2:Th1 cell ratio in blood 

[111] Patients with mild allergic 

asthma (phase 1/2a study) 

after allergen challenge 

 No change in T regulatory cell frequency 

 

FENO: fractional exhaled nitric oxide; FEV1: forced expiratory volume in 1 second; IgE: immunoglobulin E; IL: 

interleukin; TARC: thymus and activation-regulated chemokine; Th: T helper; TSLP: thymic stromal 

lymphopoietin. *All data are from studies of anti-TSLP human monoclonal antibody treatment. No clinical data 

evaluating anti-IL-33 or anti-IL-25 treatment have yet been published in peer-reviewed journals. 

  



TABLE 2 Effects on T2 inflammatory biomarkers, and OCS-sparing potential, of anti-TSLP and approved biologic 

therapies for asthma 

Biologic Effect on inflammatory biomarker OCS-sparing data 

FeNO IgE 
Blood 

eosinophils 

Sputum 

eosinophils 

Tezepelumab (anti-TSLP) ↓ [85, 96, 110] ↓ [85, 96, 110] ↓ [85, 96, 110] ↓ [96] Data pending (NCT03406078) 

Dupilumab (anti-IL-4/IL-13) ↓ [100] ↓ [100] ↑ [100] 
Insufficient data 

[112] 

~70% reduction in daily OCS dosage (vs ~42% with placebo); 52% of 

patients achieved complete OCS weaning (placebo, 29%) [113] 

Omalizumab (anti-IgE) 
Minimal effects 

[114] 
↓ [115] 

Minimal effects 

[116] 
↓ [117] No RCT data; real-world data indicates reduction in OCS use [118] 

Mepolizumab (anti-IL-5) No effect [119] No effect* ↓ [119, 120] ↓ [119, 120] 
~50% reduction in daily OCS dosage (vs 0% with placebo); 14% of 

patients achieved complete OCS weaning (placebo, 8%) [121] 

Reslizumab (anti-IL-5)  No effect
† 

No effect*
 

↓ [98, 122] ↓ [123] No RCT data; real-world data indicates reduction in OCS use [124] 

Benralizumab (anti-IL-5Rα) No effect
† 

No effect*
 

↓ [99, 125] ↓ [125] 
~75% reduction in daily OCS dosage (vs ~25% with placebo); 52–56% 

of patients achieved complete OCS weaning (placebo, 19%) [126] 

FeNO: fractional exhaled nitric oxide; IgE: immunoglobulin E; IL: interleukin; OCS, oral corticosteroid; RCT, randomized controlled trial; T2: type 2; TSLP: thymic stromal 

lymphopoietin. *Observed in clinical practice. 
†
Expected based on observations with other anti-IL-5 biologics. 



TABLE 3 Ongoing and recently completed clinical studies of anti-alarmin treatments in patients with asthma 

Drug ClinicalTrials.gov 

identifier 

Phase Population Primary endpoint 

Anti-TSLP 

Tezepelumab NCT02698501 2 Asthma, taking daily ICS Decrease in airway hyperresponsiveness to mannitol 

NCT03688074 2 Uncontrolled asthma Change from baseline in the number of airway 

submucosal inflammatory cells 

NCT03406078 3 Severe, uncontrolled asthma Reduction in OCS dose while not losing asthma control 

NCT03347279 3 Severe, uncontrolled asthma Annualised asthma exacerbation rate  

CSJ117 NCT03138811 1 Mild, atopic asthma Number of adverse events and serious adverse events 

Anti-IL-33 

REGN3500 (SAR440340) NCT02999711 1 Mild-to-moderate asthma Number of treatment-emergent adverse events 

 NCT03112577 1 Mild, allergic asthma  Sputum inflammatory biomarkers 

AMG282 (RG6149/MSTT1041A) NCT02918019 2b Severe, uncontrolled asthma Rate of exacerbations 

Etokimab (ANB020) NCT03469934 2a Severe, eosinophilic asthma Change in blood eosinophil count 

GSK3772847 (CNTO7160) NCT03207243 2a Moderately severe asthma Loss of asthma control events at week 16 



NCT03393806 2b Moderate-to-severe asthma with 

allergic fungal airway disease 

Blood eosinophil count and FeNO levels at week 13 

FeNO: fractional exhaled nitric oxide; ICS: inhaled corticosteroids; IL: interleukin; OCS: oral corticosteroids; TSLP: thymic stromal lymphopoietin.



FIGURE LEGENDS 

 

FIGURE 1 Role of the alarmins in driving T2 inflammation, biomarkers and 

clinical outcomes in asthma. 

EOS: eosinophils; FeNO: fractional exhaled nitric oxide; IgE: immunoglobulin E; IL: interleukin; ILC2: type 2 innate 

lymphoid cell; T2: type 2; Th2: type 2 T helper cell; TSLP: thymic stromal lymphopoietin. *Released from Th2 

cells and ILC2s. 

 

FIGURE 2 Effects of blocking the alarmins on biomarkers and clinical 

outcomes in asthma. 

EOS: eosinophils; FeNO: fractional exhaled nitric oxide; IgE: immunoglobulin E; IL: interleukin; T2: type 

2; TSLP: thymic stromal lymphopoietin. Grey boxes represent findings from studies in mice, which are 

yet to be confirmed in humans [127, 128]. 
†
Serum IL-4 was not measured in the tezepelumab phase 

2b study.
 ‡
Top-line findings reported from a phase 2a study of anti-IL-33 [101], which are yet to be 

published in a peer-reviewed journal.  
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