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Abstract 

In January 2019, a European Respiratory Society (ERS) Research Seminar entitled 

“Targeting the detrimental effects of sleep disturbances and disorders” was held in Dublin, 

Ireland. It provided the opportunity to critically review the current evidence of 

pathophysiological responses of sleep disturbances, such as sleep deprivation, sleep 

fragmentation or circadian misalignment and of abnormalities in physiological gases such as 

oxygen and carbon dioxide which are frequently occurring in respiratory conditions during 

sleep. A specific emphasis of the seminar was placed on the evaluation of the current state of 

knowledge of the pathophysiology of cardiovascular and metabolic diseases in obstructive 

sleep apnoea (OSA). Identification of the detailed mechanisms of these processes is of major 

importance to the field and this seminar offered an ideal platform to exchange knowledge, to 

discuss pitfalls of current models and the design of future collaborative studies. We also 

debated the limitations of current treatment strategies for cardiometabolic complications in 

OSA and discussed potentially valuable alternative approaches.  
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Obstructive sleep apnoea (OSA) is a highly prevalent disorder which has rapidly 

evolved into a major global public health burden [1, 2]. It is independently linked with the 

development and control of numerous cardiovascular and metabolic conditions including 

hypertension, coronary artery disease, stroke, heart failure, type 2 diabetes (T2D) or non-

alcoholic fatty liver disease (NAFLD) leading to substantial morbidity and mortality [1, 3-5]. 

Despite significant efforts being made, the pathophysiological mechanisms 

underlying cardiometabolic disease processes in OSA remain incompletely understood. OSA 

is a complex disorder and clinical studies have often been limited by the coexistence of 

frequent comorbid conditions, heterogeneity in clinical presentation and large variability in 

duration of the disease prior to diagnosis. Thus, much of our knowledge of the pathogenesis 

has been conducted by translational studies using experimental models. The hallmark features 

of OSA, namely intermittent hypoxia (IH) and sleep fragmentation (SF), have been identified 

as key players in cardiometabolic processes in OSA [6]. However, the interaction between 

these two pathophysiological triggers and moreover, the relative contribution of other 

potential traits are poorly defined.  

Over the last few years, the detrimental effects of sleep disturbances in general on 

morbidity and mortality have been increasingly recognized and important pathophysiological 

roles have been attributed not only to SF but also to sleep deprivation or circadian 

misalignment. However, these factors remain inadequately explored in OSA. Furthermore, 

recent evidence supports important immune and inflammatory modulation in response to 

hypercapnia [7] and although it is a well-recognized feature in OSA, it has gained little 

attention as a potential contributor to adverse consequences.  

Unravelling the detailed mechanisms underlying cardiovascular and metabolic disease 

processes in OSA is of major importance and will likely lead to the identification of novel 

treatment strategies. Continuous positive airway pressure (CPAP) therapy is the treatment of 



choice in OSA, but its benefits on cardiometabolic health remain uncertain. In order to 

advance this important field, the European Respiratory Society (ERS) Research Seminar 

entitled “Targeting the detrimental effects of sleep disturbances and disorders”, held in 

Dublin in January 2019, brought together international experts and research groups from 

different areas of sleep medicine to promote exchange of knowledge, to identify specific 

research questions and to facilitate future collaborative projects. This perspective summarises 

the key learning points, conclusions and proposals from the seminar.  

 

Intermittent Hypoxia – past, present and future 

Experimental models of intermittent hypoxia – benefits and limitations 

Intermittent hypoxia (IH) plays a key role in the pathophysiology of cardiometabolic 

disease processes in OSA and in support, various clinical studies have identified the 

superiority of markers defining the severity of IH in the prediction of cardiovascular 

outcomes over the traditional apnoea/hypopnoea index (AHI) which predominantly reflects 

airflow limitations [8-10]. Recent studies recognized the hypoxic burden, a single marker 

capturing the frequency, duration and depth of obstructive events-associated oxygen 

desaturation, as potentially valuable metric in this setting, however, its superiority over other 

traditional polysomnographic IH-related parameters such as the oxygen desaturation index 

(ODI) will require further longitudinal studies [11, 12]. Detailed insight into the effects of IH 

has been predominantly provided by studies using experimental models. The non-invasive 

rodent model of IH where the animals alternately breathe nitrogen-enriched air to simulate 

hypoxia and air or oxygen for the reoxygenation phase has been fundamental to the field and 

there have been excellent reviews summarizing the contribution of this model to our current 

knowledge [13-15]. However, the model has also considerable limitations and hence, results 

of those animal studies cannot automatically be extrapolated to the human condition of OSA. 



Firstly, the rodent model does not accurately reflect the oxygenation pattern seen in OSA 

patients with the latter being characterized by a considerable intra-and inter-subject 

variability and generally less severe desaturations than that of the rodent model [16]. 

Secondly, rodent’s sleep is not as consolidated as that of humans and hence, a significant 

proportion of the IH occurs while the animal is awake. Although systems have been 

developed to trigger the IH during sleep only [17, 18], given the labour- and cost-intensive 

nature of this approach, most models use IH unlinked to sleep. Thirdly, an increasing body of 

evidence supports the potentially very significant confounding effects of external stressors 

such as cold temperature, diet or housing conditions on inflammatory and immune responses 

in rodents [19]. Furthermore, as mentioned above, the IH model does not recapitulate all the 

effects of OSA and new approaches to non-invasively reproduce upper airway obstruction 

may be more suited to study detrimental effects in OSA [20, 21].  

Cell culture models of IH have been utilized to complement animal studies and have 

allowed the investigations of detailed IH-induced cellular responses and signalling 

mechanisms in different cell lines [22-25]. These models have continuously advanced over 

the last years. Growing cells on ultrathin, semi-permeable membranes allows rapid 

oscillations in the partial pressure of oxygen and fully automated systems facilitate the 

application of an adequate control exposure in parallel to the IH treatment with tight control 

of potentially confounding parameters such as temperature or carbon dioxide tension [24]. 

Thus, many limitations associated with earlier approaches have been overcome and cell 

culture studies are likely to grow in their importance to the field. However, the specific IH 

patterns at the cellular level in relevant tissues in humans with OSA remain largely unknown 

and therefore, may not be accurately reflected in in vitro studies which remains a significant 

limitation. 



In order to bridge the gap between animal models and clinical studies, human models 

exposing healthy volunteers to IH have been developed and have provided substantial 

additional insight into the acute effects of IH [26].  Experiments have shown that several 

weeks of IH for 8 hours each night lead to blood pressure elevation and a sustained increase 

in sympathetic tone [27]. These changes are coupled with an alteration in arterial baroreflex 

sensitivity and an increase in hypoxic chemosensitivity illustrating the impact of IH exposure 

on autonomic activity which is one of the key mechanisms of neurogenic hypertension 

exhibited by OSA patients [27, 28]. So far, the usage of such models is limited due to the 

substantial costs and ethical considerations. Furthermore, they are similarly limited to IH and 

sleep fragmentation, but do not include other pathophysiological traits of OSA such as 

hypercapnia or respiratory efforts. Combining such factors and exposing not only healthy 

humans but patients without OSA in the future might provide us with invaluable benefit 

understanding the very detailed mechanisms of cardiometabolic diseases in OSA.  

Adaptive and maladaptive responses to IH: where is the threshold? 

Depending on the frequency of cycles, the depth of the hypoxic period and the duration of the 

exposure, IH can induce both, beneficial and detrimental effects, and hence, is considered as 

a “double-edged sword”. Short exposures to low-frequency IH with mild hypoxia improves 

endurance performance of athletes, facilitates high-altitude acclimatization and may be 

cardio- and neuroprotective through pre-and postconditioning effects [29-35]. Furthermore, 

recent studies suggested that exposure to mild IH initiates long-term facilitation of upper 

airway muscle activity and thus, may be a therapeutic modality to reduce treatment pressure 

of CPAP in OSA patients [36]. In contrast to these effects of mild IH, the chronic IH pattern 

typically associated with moderate or severe OSA is associated with numerous deleterious 

consequences [37, 38]. Furthermore, as suggested by various animal studies, the duration of 

IH exposure may determine the potential reversibility of its consequences [39, 40]. Hence, a 



key question in the field relates to the determination of the actual threshold between these 

opposite effects. It is increasingly recognized that this threshold can be modified by various 

factors. Particularly, the impact of age has gained increasing attention stimulated by clinical 

observations suggesting blunted cardiovascular outcomes in elderly OSA subjects [41-43]. 

Intriguingly, programmed cell death‐ 1 (PD‐ 1) receptor and its ligand (PD‐ L1) are 

upregulated in OSA subjects in comparison to healthy controls which, however, is not 

evident in older patients attributed to an impaired activation of HIF-1α and this differing 

response may account at least in part for the increased cancer mortality seen in younger OSA 

subjects [44]. Recent animal studies lend support for this hypothesis demonstrating a blunting 

of vascular remodelling in older in comparison to younger mice [45]. Other factors which 

may contribute to the shift from an adaptative to a mal-adaptative response in OSA include 

genetic susceptibility, gender, age, smoking habits, physical activity and the presence of 

comorbidities such as obesity, established cardiovascular disease, diabetes or others [37] 

(Figure 1).  It will be essential to study these modifying factors and their interactions with IH 

in future pre-clinical experiments in greater detail and these results may assist predicting the 

consequences of OSA and the potential benefits of its treatment for specific patient 

phenotypes. 

Novel insights into the detrimental cardiometabolic effects of IH 

Despite limitations of the current models of IH there is continuously growing 

evidence of the detrimental effects of this hallmark feature in cardiometabolic disease 

processes in OSA. Table 1 highlights important findings of recent publications (Table 1). 

Clinical and experimental studies have shed further insight into the mechanistic pathways of 

IH-mediated hypertension. Although previous studies failed to demonstrate benefit of 

supplemental oxygen on blood pressure [46, 47], in a recent randomized controlled trial in 

patients with moderate to severe OSA, supplemental oxygen delivered at a high-flow rate but 



not sham treatment abolished morning blood pressure rise following CPAP withdrawal for 2 

weeks supporting the key role of IH in this process [48]. Furthermore, this response was 

associated with upregulation of genes of the nuclear factor (NF)-κB-associated 

proinflammatory pathway in circulating leucocytes providing further evidence of the pivotal 

contribution of inflammatory processes in cardiovascular complications in OSA [25, 49, 50]. 

The blood pressure increase in response to IH is also likely mediated by the renin-

angiotensin-aldosterone system (RAAS) and both, renal denervation and pharmacological 

blockage of angiotensin II have recently been shown to prevent IH-mediated blood pressure 

increases in rodents [51, 52]. IH also promotes atherosclerosis [53, 54] and associated 

diseases and a recent study reported the promotion of a vasoconstrictive profile in human 

cultured coronary artery cells in response to this stimulus [55]. The importance of IH-

mediated proinflammatory pathway activation in detrimental vascular diseases was again 

highlighted by Song et al. reporting significant attenuation of atherosclerotic processes in 

atherosclerotic-prone ApoE
-/-

 mice with an additional genetic inhibition of NF-κB in 

comparison to standard ApoE
-/- 

mice [56]. Interestingly, younger animals appear to be more 

susceptible to IH-induced cardiac remodelling than older mice [45] and normoxic recovery 

may reverse these changes [57] raising the possibility that CPAP therapy if provided early in 

the course of OSA may lead to attenuation of this process. Furthermore, murine studies 

suggest that IH affects the foetus during maternal gestation and may predispose the adult 

male offspring to vascular disease which is an important topic requiring further detailed 

investigations [58, 59]. 

Considerable advances have also been made in our understanding of the mechanisms 

of IH-induced insulin resistance, T2D and other glucose disorders and their relevance to OSA 

[60].  Recently, a randomized crossover trial of CPAP vs. CPAP withdrawal revealed that 

OSA recurrence promotes an increase in circulating free fatty acids (FFA) and glucose during 



sleep, which was associated with sympathetic and adrenocortical activation [61]. Pancreatic 

β-cell dysfunction and insulin resistance in the insulin target organs adipose tissue, liver and 

skeletal muscles have been implemented in the pathogenesis of insulin resistance in response 

to IH. Adipose tissue inflammation is increasingly recognized to play a key role and 

epididymal lipectomy prevents IH-induced glucose alterations in mice [62, 63]. In lean and 

diet-induced obese mice as well as cultured cells, the IH-mediated insulin resistance is 

accompanied by polarization of adipose tissue macrophages towards a proinflammatory 

phenotype with the net consequence of metabolically dysfunctional adipose tissue [24]. IH 

also leads to release of free fatty acids (FFA) from adipose tissue into the systemic circulation 

and chronically elevated levels of FFA may further contribute to impaired glucose 

metabolism through promotion of insulin resistance in the liver and decreased pancreatic 

insulin secretion [64]. Continuing the debate of how adipose tissue perceives IH, a recent 

study compared the effects of IH and sustained hypoxia on the visceral adipose tissue in mice 

and identified important differences [65]. While sustained hypoxia led to a preferential 

activation of the hypoxia inducible factor 1 (HIF-1) pathway with adaptive responses to the 

hypoxic insult, IH induced a proinflammatory phenotype and whitening of the adipose tissue 

with subsequent insulin resistance. In addition, improvement in glucose function with 

blockage of the endothelin-1 type B receptor has been reported, thus supporting previous 

results and identifying a potential therapeutic target [66, 67]. 

OSA is also associated with the development of NAFLD, independent at least in part 

of the effects of obesity or shared comorbidities [68, 69]. The degree of nocturnal hypoxia in 

OSA has been identified as independent predictor of this association and supporting the 

pivotal role of IH in this process, rodents exposed to IH develop impairment of hepatic lipid 

metabolism, steatosis and fibrosis [70-72]. The pathogenesis of IH-mediated NAFLD likely 

includes activation of pro-inflammatory pathways and oxidative stress but remains 



incompletely explored. Interestingly, a recent study utilizing cell culture techniques and diet-

induced obese mice concluded that hypoxia promotes NAFLD through HIF-2α-mediated 

lipogenesis via peroxisome proliferator-activated receptor (PPAR)-α activation [73] and this 

mechanistic pathway warrants further exploration in the setting of IH. 

 

Pathophysiological Responses of Sleep Disturbances in OSA  

Sleep Fragmentation 

Normal sleep is essential for a person’s health and wellbeing and beside sleep 

duration, the continuity of sleep is also increasingly recognized in its importance for normal 

daytime function. In healthy volunteers, experimental sleep fragmentation (SF) has been 

shown to lead to a decrease in insulin sensitivity and to blunting of the usual nocturnal dip in 

blood pressure [74, 75]. Furthermore, in a population of 780 healthy elderly subjects repeated 

sympathetic arousals during sleep were associated with elevated systolic blood pressure and 

higher risk of hypertension, after controlling for multiple potential confounders [76]. 

In OSA, SF is a characteristic feature and a consequence of recurrent arousals leading 

to subsequent excessive daytime sleepiness as the most debilitating daytime symptom in 

these patients. Arousals in OSA are associated with repetitive substantial blood pressure rises 

as high as 80 mm Hg [77, 78]. However, the contribution of these acute changes to the 

development of cardiovascular and metabolic conditions is still under debate. A few studies 

have cross-sectionally or longitudinally evaluated the association of polysomnographic 

variables characterising SF, such as the arousal index, with cardiovascular or metabolic 

outcomes in OSA, and have come to different conclusions. Among 355 children evaluated for 

sleep-disordered breathing, a high arousal index predicted the presence of endothelial 

dysfunction [79]. In contrast, in a large prospective study demonstrating an independent 

relationship between incidence of metabolic syndrome and moderate to severe OSA, only 



indices characterizing IH, but not SF, were identified as predictors of this outcome [80]. 

Similarly, in a cross-sectional analysis of 2,055 participants from the Multi-Ethnic Study of 

Atherosclerosis, sleep depth as a continuous measure of arousability was not associated with 

higher blood pressure in contrast to markers of hypoxic burden [81]. Adding to the debate, a 

Japanese study recently reported an independent association of the arousal index with the 

presence of carotid intima plaques. However, study population was small and a substantial 

proportion of subjects suffered from various confounding comorbidities [82]. Thus, the role 

of SF in cardiometabolic disease processes in OSA remains uncertain. However, the 

reliability of the arousal index based on a one-night polysomnography as marker of SF is still 

uncertain and there are no clear normative values of the arousal index in various demographic 

groups. 

The role of SF in cardiometabolic disease processes has also been in the focus of 

numerous animal studies. In earlier studies using canine or rat models, SF induced by 

recurrent acoustic arousals failed to contribute to hypertension [83, 84]. However, Launois et 

al. compared the hemodynamic responses of respiratory and non-respiratory arousals in a 

porcine model and found, that only respiratory arousals led to blood pressure surges 

providing a potential explanation for the lack of response in the previous studies [85]. Over 

the last decade, substantial advances in our understanding of responses to SF have been made 

by studies utilizing a murine model that requires no direct human interaction and arousals are 

induced by recurrent minimally stressful tactile stimuli. Long term exposure to this model of 

SF initiated the development of mild hypertension, endothelial dysfunction and early 

structural vascular changes in C57Bl/6J wild-type mice and led to a significant progression of 

atherosclerotic lesion in Apoe
-/-

 mice [86, 87]. Furthermore, SF induces insulin resistance 

predominantly mediated by visceral adipose tissue inflammation [88]. In summary, SF in 



mice leads to adverse cardiometabolic consequences but the detailed contribution of this 

triggering factor in OSA requires further translational studies. 

Short Sleep Duration 

In recent years there has been mounting evidence of a U-shaped association between 

both, abnormally short and long sleep duration and numerous adverse health outcomes 

including mortality and diabetes [89, 90]. Evidence is particularly strong for short sleep 

duration, defined as a habitual sleep time of ≤6 hours, which has been linked with increased 

morbidity and mortality attributed mainly to adverse cardiometabolic risk including obesity, 

hypertension, cardiovascular disease and T2D [89, 91-93]. This is of specific public health 

concern, as sleep duration has been declining in the last few decades and approximately 35% 

of the general population sleep less than 6 hours per night [94, 95]. In particular, various 

cross-sectional and prospective studies have linked short sleep duration to increased 

prevalence and incidence of insulin resistance and T2D [90, 96, 97] and a meta-analysis on 

this topic revealed that self-reported sleeping ≤5 hours imposed a 45% increase in the risk of 

diabetes [97]. Furthermore, insufficient sleep is associated with poorer glycemic control in 

diabetic subjects and may also be related to poorer diabetes self-care behaviors leading to 

recommendations by the American Diabetes Association to include evaluation of sleep 

duration and pattern as part of comprehensive diabetes care [98, 99]. In support of a causal 

relationship between short sleep and metabolic dysregulation, experimental sleep restriction 

in humans leads to increased calorie intake, weight gain, insulin resistance and possibly 

impaired insulin secretion with sympathetic excitation, inflammation, changes in the 

composition of the gut microbiota and alterations of the 24-hour cortisol profile with blunting 

of the usual nocturnal decline proposed to be the underlying mechanistic links [100-102]. 

However, some of these alterations have been found to be transient and how these results 

correlate with diabetes as a consequence of long-term sleep restriction remains unknown. In 



addition, studies evaluating the benefit of experimental sleep extension on glucose 

metabolisms have yielded conflicting results [103-107]. However, the ability of subjects to 

extent their sleep time greatly varies and a recent cross-over study on 21 short-sleeping 

healthy participants revealed that only those who could sleep more than 6 hours during sleep 

extension showed improvement of fasting insulin resistance and -cell function [106]. Thus, 

there are still unanswered questions surrounding the association of sleep duration with 

cardiometabolic diseases and we require further large-scale well-designed epidemiological 

and translational studies before definite conclusions can be drawn. 

The specific role of short sleep in OSA and its relative contribution to the 

pathophysiology of cardiometabolic co-morbidities are also as yet unclear. Several studies 

using wrist actigraphy or polysomnography as tools to measure sleep length have identified 

shorter sleep in OSA subjects in comparison to non-OSA counterparts [108, 109]. However, 

data from the ELSA-Brasil cohort, comprising of over 2,000 participants, revealed only a 

significant association of OSA, but not sleep duration, with prevalent obesity, hypertension 

and dyslipidaemia [108]. Similarly, a recent cross-sectional analysis of the Nagahama study 

of over 7,000 subjects identified an independent association of OSA and obesity, but not of 

actigraphy-evaluated sleep duration, with prevalent diabetes and hypertension [110]. In 

contrast, Ren et al found that in subjects with OSA, objectively measured sleep duration of 5-

6 hours and < 5 hours increased the odds of prevalent hypertension by 45% and 80%, 

respectively [111].  Furthermore, in a prospective study of over 13,000 subjects with recent 

acute coronary syndrome, both, OSA and short sleep were identified as independent 

predictors of major coronary events, however, the reliance on the Berlin questionnaire and 

subjectively reported sleep time were substantial limitations [112]. 

Circadian Misalignment 



All life on Earth benefits from an internal timing mechanism to permit adaptations to 

the predictive changes from day to night, and this is termed the circadian clock. Most cells of 

the immune system have an intact clock, and inflammatory and immune parameters 

frequently show circadian control, including vaccine responses, innate inflammatory 

reactions, and aspects of the adaptive immune response [113-115]. Manipulations of the core 

clock machinery, or environmental disruptions, such as changes to the lighting schedule or 

fast/feeding cycles, result in changes to the immune response with in most cases an 

exaggerated inflammatory component [116]. In mammals, the internal circadian clock is 

synchronised to the external light-dark environment through a retinal pathway to the central 

clock in the brain. The central clock, the suprachiasmatic nucleus, then entrains peripheral 

clocks through neural and humoral pathways [117] (Figure 2).   

Circadian rhythms influence virtually all aspects of physiological architecture and 

chronic disruptions, as for instance seen in shift workers, have been linked to obesity, 

metabolic derangements, cardiovascular diseases, mood disorders or cancers [118-121]. 

Laboratory studies using forced circadian misalignment have lend support to this evidence 

demonstrating insulin resistance, inverted cortisol rhythms, and increased blood pressure in 

participants subjected to this protocol [122, 123].  

The circadian rhythm and sleep are mutually linked in a bidirectional relationship. 

The sleep-wake cycle is one of the most prominent circadian-regulated behaviours and the 

circadian clock acts as a gating mechanism to confine sleep to specific parts of the diurnal 

cycle [124, 125]. Genetic disruptions of the clock lead to alterations of physiological sleep 

regulation. At the same time, changes in sleep timing or duration can feedback on clock 

function and experimental studies have demonstrated that sleep curtailment or mistiming 

strongly affects molecular correlates of the circadian clock [126-129].  



Given the profound sleep disturbances in OSA, disruptions in clock oscillations are 

also likely. However, surprisingly, the prevalence of circadian misalignments in OSA is 

hardly investigated and the potential contribution of this trait to cardiometabolic 

comorbidities has been largely neglected. Some studies have demonstrated alterations of the 

normal circadian variations of blood pressure, arterial stiffness as well as circulating 

cytokines, hormones, prothrombotic and fibrinolytic markers in OSA subjects compared to 

controls with improvement following effective CPAP therapy [130-135]. Furthermore, 

Martinez-Nicholas et al. evaluated the circadian rhythm of distal skin temperature and 

identified significant alterations in OSA with lower temperature at night in comparison to 

controls and these disturbances correlated with the severity of the disease and improved with 

CPAP therapy. Moreover, these changes correlated with the level of daytime sleepiness and 

the authors suggested that the measurement of skin temperature may facilitate understanding 

of the pathophysiology of sleepiness in these patients [136].  

Beside disruptions of peripheral tissue clocks there is also limited evidence of an 

impact of OSA on central clock function. Burioka et al. reported a blunted daily variability of 

the expression of the master clock-regulating gene Period1 (PER1) in leukocytes of OSA 

subjects versus matched controls with higher levels at night-time and restoration of the 

normal pattern with CPAP [137]. In addition, OSA adversely affects melatonin secretion. 

Synthesized by the pineal gland, melatonin production and secretion are directly dependent 

on the ambient light-dark cycle and hence, melatonin is a main output signal of the central 

circadian pacemaker, the suprachiasmatic nucleus [138]. Alteration of the pattern of 

melatonin secretion with loss of the nocturnal peak has been reported in OSA subjects. 

However, studies so far have failed to show a benefit on this finding with CPAP therapy 

[139].  



In summary, circadian disruptions in OSA are poorly understood and the 

identification of the detailed contribution of these processes to cardiometabolic disease 

processes is a major research priority and targeting these alterations may identify important 

novel treatment approaches. 

 

Hypercapnia – a forgotten dimension 

Repetitive episodes of hypoxia and reoxygenation in OSA are inextricably coupled 

with oscillations in the partial pressure of carbon dioxide (CO2) ranging from hypocapnia to 

hypercapnia. Notably, hypercapnia in combination with hypoxia results in increased 

sympathetic activity which is not seen with hypocapnic hypoxia [140]. In contrast to IH, the 

consequences of intermittent hypercapnia are poorly understood and the potentially 

pathophysiological and modifying roles of this identity in OSA patients, which are 

predominantly eucapnic during daytime have been grossly ignored. This is partly attributable 

to the fact that CO2 monitoring is currently not routinely used in clinical practice and 

methods such as end-tidal or transcutaneous CO2 measurements have significant limitations. 

Furthermore, most commonly used animal models have focused on IH without controlling for 

CO2. However, extrapolating from other respiratory conditions there is now ample evidence 

suggesting possibly important pathophysiological responses to hypercapnia. Depending on 

the clinical scenario, the consequences of high CO2 have been referred to as a “double-edged 

sword” with the potential to be both detrimental and beneficial for patients. Hypercapnia is an 

independent predictor of mortality in Chronic Obstructive Pulmonary Disease (COPD) and in 

patients with Acute Respiratory Distress Syndrome (ARDS) admitted to the intensive care 

unit [141, 142]. Furthermore, studies in mice demonstrate that hypercapnia is damaging in the 

context of a bacterial challenge, likely as a consequence of CO2-dependent 

immunosuppression [143]. Conversely, mild hypercapnia as results of a protective ventilation 



strategy improves mortality in ARDS patients which has led to the concept of “permissive 

hypercapnia” [144, 145]. In support, murine studies have demonstrated hypercapnia-

associated acidosis to be markedly protective in the context of a lipopolysaccharide (LPS)-

induced destructive inflammatory challenge and in stretch-induced lung injury [146, 147]. 

Although this field is still in its infancy, there is emerging knowledge of how altered CO2 

levels affect cell signalling and gene expression and subsequent immunity and inflammation. 

Studies from model organisms and cell cultures indicate that hypercapnia elicits changes in 

cellular signalling and gene expression in a variety of different cell types, e.g. lung 

epithelium [148, 149], smooth muscle [150], skeletal muscle [151] and monocytes [152]. 

These changes are thought to be independent of hypercapnia-associated acidosis and reveal 

distinct clusters of differentially expressed genes from those elicited by hypoxia. Notably, 

genes associated with the immune response (e.g. Rel-dependent antimicrobial peptides) are 

differentially expressed in hypercapnia. To date, a master regulator of CO2-dependent gene 

expression, analogous to HIF for the hypoxia response, has not been identified. However, 

work on the nuclear factor NF-κB pathway has revealed sensitivity of both the canonical 

(RelA-dependent) and non-canonical (RelB-dependent) pathway to CO2. In particular, non-

canonical NF-κB family members, such as IKKα, RelB and p100 are sensitive to CO2, 

independent of an external inflammatory stimulus supporting a potentially important role of 

this pathway in immune regulation [149, 153, 154].  

Thus, hypercapnia is much more than a simple waste product of aerobic respiration. 

CO2 has the ability to elicit changes in gene expression, particularly those associated with 

immune and inflammatory signalling. These findings imply that CO2 is likely a highly 

relevant dimension in OSA and the role of hypercapnia should be given greater consideration 

in the future, particularly in the context of immune regulation. As we strive to better 

understand the pathophysiological mechanisms of OSA-associated cardiometabolic 



complications we must give due consideration to the role of circulating CO2 levels and 

control for altered CO2 levels in our models.  

 

What next: CPAP for everyone or personalized treatments? 

As extensively discussed in the Research Seminar and summarized in this perspective, 

the pathophysiology of cardiovascular and metabolic diseases in OSA is complex and 

remains incompletely understood. It has become increasingly clear that focusing on single 

mechanistic traits is too simplistic. Most research into this subject so far has been directed to 

IH and SF as dominant triggering factors. Intrathoracic pressure swings as a result of forced 

inspiration against an occluded upper airway leading to shear stress on the heart and 

intrathoracic blood vessels have also been recognized to contribute to adverse consequences, 

in particular to atrial fibrillation and heart failure [155-157]. Other features such as alterations 

in sleep beyond disruptions as consequence of recurrent arousals as well as intermittent 

changes in CO2 partial pressure may play important detrimental or attenuating roles and there 

is likely considerable interaction between those mechanistic pathways. Furthermore, many 

modifying factors such as age, sex, genetic makeup, anthropometric features, physical 

activity or comorbid conditions which are frequent in OSA may influence disease processes. 

In addition, there is likely a substantial influence with diet. Above all, cardiometabolic 

disease process are considerably amplified in the presence of a high-fat diet, potentially 

mediated through alteration of the gut microbiome, and this interaction will require further 

attention in future studies [158, 159] (Figure 3).  

While past and current experimental models have been fundamental to our 

understanding of the direct consequences of single pathophysiological triggering factors, 

there are, however, too simplistic to reflect the clinical condition of OSA in all its 

complexity. Thus, not surprisingly, results obtained from pre-clinical models often failed to 



translate into human populations and consequently, this has left us with limited knowledge of 

potential therapeutic targets. Furthermore, OSA is a very heterogenous condition 

characterized by a wide diversity of clinical symptoms and presentations. Several cluster 

analyses have identified a variety of different clinical and polysomnographic phenotypes and 

between those OSA subgroups, there is considerable variability in age, obesity, the degree of 

sleepiness and burden of co-morbidities [160-163]. Importantly, clusters substantially differ 

in their susceptibility to adverse cardiovascular complications [162] and thus, detailed 

understanding of the mechanisms underlying cardiometabolic disease processes with 

identification of these different phenotypes in OSA are crucial steps for the detection of 

effective treatment strategies. CPAP therapy is the treatment of choice for the majority of 

OSA patients. It improves sleepiness, quality of life and neurocognitive function but its 

benefit on cardiovascular and metabolic outcomes is uncertain. Controversy remains 

especially of the usefulness of CPAP therapy in minimally symptomatic or asymptomatic 

OSA patients, recently highlighted in excellent Pro/Con debates [164-167]. Although CPAP 

has demonstrated its positive effects on early cardiovascular disease processes, i.e. 

endothelial dysfunction [168, 169], blood pressure control [170] or insulin resistance [171, 

172], several recent randomized controlled trials, despite their limitations, have questioned its 

efficacy in preventing cardiac events in patients with established cardiovascular disease [173-

177]. The effectiveness of CPAP may vary depending on the phenotype and, for example, 25-

30% of OSA patients with adequate adherence to CPAP treatment (>4 hours per night) do not 

benefit from CPAP treatment in blood pressure control and some may even experience an 

increase [178-180]. Following a post-hoc analysis of the SAVE study, cluster analysis 

suggested that OSA patients with multimorbidity (OSA combined with diabetes and/or 

several cardiovascular disease) may benefit most from CPAP therapy [181]. Data from the 

Spanish Sleep Network revealed that in OSA patients with resistant hypertension a single 



cluster of cardiovascular system–related functional miRNA’s distinguished CPAP responders 

to non-responders suggesting the usefulness of such epigenetic biomarkers in the guidance of 

personalized treatments and this field requires further exploration [182]. The benefits of 

available alternative single treatment strategies for OSA on cardiometabolic processes are 

also unclear. Mandibular advance devices (MAD) are an effective alternative to CPAP 

especially for patients with moderate disease or poor adaptation to CPAP. There is evidence 

of blood pressure reduction with MAD but the effect on other disease processes remains 

unexplored [183]. Undoubtedly, we need to identify therapeutic approaches targeted to the 

needs and characteristics of individual patients through implementation of personalized 

medicine and OSA-specific treatments need to be embedded in a multidisciplinary 

management in conjunction with lifestyle measures and optimal pharmaceutical treatments 

for comorbid conditions. As supported by a recent American Thoracic Society (ATS) clinical 

practice guideline, weight reduction should be incorporated into the management of all 

overweight and obese OSA patients [184] and CPAP combined with weight loss leads to 

incremental reductions in blood pressure and insulin resistance [185]. However, weight loss 

is difficult to achieve with conventional measures alone and bariatric surgery, although 

effective in achieving weight reduction and metabolic improvements, is not a suitable 

intervention for everyone. A Liraglutide-facilitated weight loss regimen may be an intriguing 

alternative [186], but further studies are needed to explore this approach in OSA. Long-term 

increased physical exercise is also associated with weight loss and in addition, leads to 

improvement in blood pressure, and hence, should also be part of an integrated care plan 

[187, 188].  

An optimal treatment approach also includes targeted pharmacological treatment of 

cardiovascular risk factors and co-morbidities. This has been best studied in the setting of 



hypertension and while antihypertensive drugs are far more effective than CPAP therapy in 

lowering blood pressure, there is added benefit with CPAP therapy [189].  

Finally, targeting daytime sleepiness which has been suggested as an independent 

predictor of adverse cardiovascular outcomes in OSA [162] may be an alternative treatment 

approach. Several pharmacological agents including Modafinil, Solriamfetol or Pitolisant 

have shown to improve sleepiness in OSA patients and future studies evaluating the benefit 

of these agents on cardiometabolic endpoints are required [190-192]. 

 

Concluding remarks and future directions 

The future of medicine relies on the ability to assess disease risk at an individual 

level, the understanding of molecular mechanisms underlying progression of disease and 

aggregation of comorbidities and early initiation of personalized interventions [193]. The 

ERS research seminar “Targeting the detrimental effects of sleep disturbances and disorders” 

held in Dublin in 2019 was a founding event for stimulating scientific exchanges and eliciting 

a European research consortium at the critical mass. The common objective was to address 

the biological mechanisms of consequences of OSA in a continuum from molecules to cells, 

tissues, organs, systems, persons and impact on populations. The overarching goals for 

improving OSA management include the identification of significant OSA phenotypes and 

actionable pathways mediating cardiometabolic consequences, and to facilitate the 

development of innovative therapeutic approaches.  

To achieve these goals of precision and personalized medicine in OSA and to 

formulate advice for value-based care, the following approaches will be prerequisites: 

 A first step already ongoing is the innovative use of real world data [194, 195], well-

managed cohorts and wearable monitoring [196] for enabling physiological profiling 

and identification of homogeneous OSA groups of interest (i.e. main OSA clusters 



composed of relevant individual, social and environmental context factors and their 

interdependencies). The absence of definition of these relevant phenotypes might be a 

reason that large CPAP randomized controlled trials have shown no or modest effects 

on reduction of late cardiovascular events [173, 174, 197]. 

 Large randomized controlled trials have failed to show benefit of CPAP therapy on 

cardiovascular outcomes, however, as highlighted in the previous chapter, they had 

significant limitations and in the majority of studies the most appropriate, i.e. sleepy, 

patients for treatment were excluded leaving us with numerous questions and 

uncertainties. Realistically, further large RCTs will be difficult to conduct in the field 

as the costs are prohibitive with unacceptable delays before getting the answer. Thus, 

there is a crucial need to implement innovations in clinical research methods for 

reducing costs and increasing productivity. Recently, alternative solutions have been 

proposed including conducting randomized trials in existing cohorts [198], usage of 

Electronic Health Records (EMR) to derive control arms [199], and/or use of new 

statistical methods such as causal inference to affirm causality from observational 

data [199]. 

 Cell culture, animal and human models of IH exposures need to be technically 

improved by including hypercapnia as an associated stimulus. Less severe and more 

clinically relevant forms of IH exposure should also be considered in murine models 

to better understand adaptive and detrimental effects in OSA and findings should also 

be reproduced in different species.  Organ-on-a-chips multi-channel 3-D microfluidic 

cell cultures will be a step forward to simulate the activities, mechanics and 

physiological responses of entire organs to IH allowing to overcome the current 

limitations of conventional cell culture paradigms. The combination of sleep 

fragmentation/deprivation and circadian misalignment with IH exposures is also 



crucial to truly represent the multiple OSA clinical scenarios. These methodological 

improvements have the potential to allow identification of clinically relevant 

molecular pathways and to discover new pharmacological targets with their respective 

companion biomarkers in the near future. Such developments will contest the current 

paradigm for management of OSA largely reflecting a “one-size-fits-all” approach 

whereby a large majority of patients are exclusively treated with CPAP without 

appropriate combined therapies targeting OSA-related organ-specific damages. 

 Progression and accumulation of comorbidities during OSA life courses need to be 

better characterized and anticipated to define disease activity and delineate early and 

personalized interventions. This requires deep longitudinal profiling implying to make 

repeated deep phenotyping evaluations available and to longitudinally collect multiple 

bio-samples analyzed with multi-omics strategies. In addition, we require reliable 

markers predicting cardiometabolic outcomes which may guide treatment decisions. 

The recently identified hypoxic burden derived from overnight polysomnography is a 

promising indicator, but it requires further large longitudinal studies. 

 Artificial intelligence will be fundamental for harnessing the dynamics and 

heterogeneity of OSA longitudinal trajectories [200, 201]. It may provide unique 

insights for organizing the huge diversity of factors contributing to individual OSA 

patients’ trajectories into a rational framework amenable for clinical decision, 

therapeutic intervention and reform of the health system. 

 Furthermore, diagnostic and therapeutic pathways will be completely reshaped by 

new automated methods and artificial intelligence. This will be the case for new 

techniques for identifying abnormal respiratory events during sleep [202] or new 

methods for analysing sleep electroencephalogram [203]. Finally, the interest of 



repeated patient profiling is supported by intra-subject night-to-night variability in 

OSA severity impacting on the occurrence of major outcomes [204].  

 

To achieve these ambitious goals for OSA patients and the society, structuration of 

international consortiums is absolutely required and the ERS seminar was a critical step into 

this direction. 
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Table 1: Important contributions from experimental studies investigating the effects of IH on 

cardiovascular and metabolic outcomes published within the last 3 years 
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Arnaud C et al. 
2018 [205] 

21-5 % O2, 60 events/h, 
8 h/day, 14 days 

12 wks-old wildtype 
and nmMLCK-/-mice 

Non-muscle myosin light chain kinase is a key mechanism in IH-
induced vascular oxidative stress, inflammation and barrier 
dysfunction 

Badran M et al. 
2019 [59] 

21–12% O2, 60 
events/h, 12 h/day, 18 
days 

8 wks-old mice 
Gestational intermittent hypoxia promotes vascular disease in 
adult male offsprings 

Castro-Grattoni 

AL et al. 2016 
[57] 

20-6 % O2, 60 events/h, 

6 h/day, 6 wks and 6 
wks recovery 

6 wks-old mice IH-induced cardiovascular injury can be reversed by normoxia 

Cortese R et al. 

2017 [206] 

21-6 % O2, 20 events/h, 

12 h/day, 20 wks 

22–25 g C57Bl/6 WT 

and CD36-/- mice  

IH promotes the recruitment of metabolic active macrophages to 
the aortic wall triggering atherogenesis and this was absent in 
CD36-/- mice 

Farre N et al. 
2018 [207] 

20-6 % O2, 60 events/h, 
6 h/day, 8 wks 

2 and 18 months-old 
mice 

IH increases passive stiffness of myocardial extracellular matrix 

Rubies C et al. 
2019 [208] 

15 s upper airway 

obstructions (60/h, 
6 h/day, 21 days. 

250–300 g Sprague-
Dawley rats 

Mesenchymal stem cell infusion blunts OSA-related vascular 
changes 

Sharma P et al. 
2018 [55] 

30 min 1% O2, 30 min 
21% O2, 9 cycles 

Human coronary artery 
endothelial cells 

IH upregulates caveolin-1 and endothelin-1 expression 

Song D et al. 
2018 [56] 

20-6 % O2, 60 events/h, 
8 h/day, 9 wks 

ApoE-/- and ApoE-/-

overexpressing an IκB 
mutant mice 

IH activates NFκB-pathway in aorta with progression of 
atherosclerosis with significant attenuation in mutant mice 

Suarez-Giron 

MC et al. 2018 
[209] 

20-6 % O2, 60 events/h, 
6 h/day, 8 wks 

6 wks-old C57Bl/6J 
mice  

Acetylsalicylic acid prevents IH-Induced vascular remodeling 

Takahashi K et 

al. 2018 [52] 

21-10 % O2, 12 
events/h, 8 h/day, 4 
wks 

8 wks-old male 

C57Bl/6J mice  

 IH-induced renal sympathetic nerve activation is involved in 
systemic oxidative stress, endothelial dysfunction, and renin-
angiotensin activation 
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Conotte S et al. 
2018 [210] 

21-6 % O2, 60 events/h, 
8 h/day, 35 days 

9 wks-old mice  
Alteration in energy metabolism towards anaerobic pathways. 
Excess production of vitamin B3, liver function modulations and 

a stimulation of creatine synthesis 

Gozal D et al. 
2017 [65] 

21-6 % O2, 20 events/h, 
12 h/day, 6 wks vs 
continuous 8% O2 (SH) 

8 wks-old C57Bl/6J 
mice 

In contrast to SH, IH induces whitening and inflammation of 
adipose tissue with insulin resistance 

Khalyfa et al. 
2018 [211] 

21-6 % O2, 20 events/h, 
12 h/day, 2-20 wks 

22–25 g mice  
Alterations in exosomal cargo in response to IH impede on 
insulin-signalling pathway in cultured adipocytes 

Murphy AM et 
al 2017 [24] 

Mice: 21-5 % O2, 60 
events/h, 8 h/day, 6 
wks 
Cells: 40s 16% O2, 40s 
3% O2, 8 hrs/d, 3 d 

19 wks C57Bl/6J mice 
fed on low or high-fat 
diet 
3T3-L1 murine 
adipocytes 
THP-1-derived 
moacrophages 

IH induces a pro-inflammatory phenotype of adipose tissue with 
polarization of macrophages towards an M1-phenotype 
contributing to the pathogenesis of IH-mediated insulin resistance 

Polak J et al 
2018 [66] 

21-6 % O2, 60 events/h, 
12 h/day, 2 weeks 

6-8 wks old male 
C57Bl/6J mice 

IH led to impaired glucose tolerance and insulin resistance and 

these responses were partially ameliorated with pharmacological 
blockage of Endothelin-1 type B receptor  

Poulain L et al. 

2017 [62] 

21-5% O2, 60 s cycle, 

8 h/day, 6 wks 

8 wks-old C57Bl/6J 

mice  

IH reduces epididymal adipose tissue but induces glucose 
dysregulation. Thus, IH-induced inflammatory remodeling could 
represent the main determinant of metabolic dysfunction 

Thomas A et al. 

2017 [212] 

21-5 % O2, 60 events/h, 

8 h/day, 5 days 

8 wks-old 
wildtype, AMPKα2−/−, 

muscle-specific 
AMPKα1α2−/− mice 

IH impairs insulin sensitivity but improves glucose tolerance by 

activating skeletal muscle AMPK 

  



Figure Legends 

Figure 1: Protective and detrimental effects of intermittent hypoxia depending on the 

characteristics of the pattern of obstructive sleep apnoea and other modifying factors. 

Figure 2: Schematic depiction of the normal mammalian circadian clock. Environmental 

cues such as light/dark cycle, mealtimes or physical activity influence the central and 

peripheral clocks. The central clock, located in the suprachiasmatic nucleus (SCN) of the 

hypothalamus, synchronizes and entrains peripheral circadian clocks via neural and 

endocrine pathways. The resulting oscillations of clock proteins and activity translates into 

circadian behaviour and physiology, i.e. sleep/wakefulness, upper airway collapsibility, 

metabolic rhythms or immune responses. 

Figure 3: Pathophysiological traits for cardiovascular and metabolic diseases in obstructive 

sleep apnoea (OSA). 
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