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ABSTRACT 

Inflammation is a key feature in the pathogenesis of sepsis and acute respiratory 

distress syndrome (ARDS). Sepsis and ARDS continue to be associated with high 

mortality. A key contributory factor is the rudimentary understanding of the early 

events in pulmonary and systemic inflammation in humans, which are difficult to 

study in clinical practice, as they precede the patient’s presentation to medical 

services. Lipopolysaccharide (LPS), a constituent of the outer membrane of Gram-

negative bacteria, is a trigger of inflammation and the dysregulated host response in 

sepsis. Human LPS models deliver a small quantity of LPS to healthy volunteers, 

triggering an inflammatory response and providing a window to study early 

inflammation in humans. This allows biological/mechanistic insights to be made and 

new therapeutic strategies to be tested in a controlled, reproducible environment 

from a defined point in time. We review the use of human LPS models, focusing on 

the underlying mechanistic insights that have been gained by studying the response 

to intravenous and pulmonary LPS challenge. We discuss variables that may 

influence the response to LPS before considering factors that should be considered 

when designing future human LPS studies.  
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INTRODUCTION 

 

Systemic inflammation is central to the pathogenesis of sepsis, which carries a   

mortality of up to 25% [1]. Acute respiratory distress syndrome (ARDS), which has a 

mortality of 2-40%, is characterised by acute pulmonary neutrophilic inflammation 

accompanied by systemic inflammation [2]. 

 

Characterising sepsis and ARDS is hampered by incomplete understanding of the 

pathogenesis of acute systemic and pulmonary inflammatory responses in humans. 

Clinically, the earliest host responses can rarely be studied, as patients develop 

illness before presentation. Animal (particularly rodent) models provide some insight 

but there are differences in the immune responses in human and rodents [3].  

 

Bacterial lipopolysaccharide (LPS, or endotoxin) is a virulence factor of the outer 

membrane of Gram-negative bacterial cell walls (Figure 1) that elicits an 

inflammatory response [4] (Figure 2).  Experimental administration of LPS to humans 

allows access to the initial inflammatory response and how it evolves, thus allowing 

mechanistic insights into human inflammation to be made. Understanding the 

mechanism of the response helps to identify potential therapeutic targets.  

 

In this article we provide an overview of different human LPS models including the 

temporal inflammatory changes induced, limitations and challenges, and future 

considerations for ongoing human LPS studies. Extensive literature around the role 

of LPS in pulmonary/occupational lung pathology [5] or inhaled LPS models in 

smokers and atopic patients [6, 7] will not be considered.  



 

Types of Human LPS Model 

LPS models vary in their route of delivery and the inflammatory response generated. 

A summary of the source and dose of LPS used in the studies referenced in this 

review is available in Table 1.  

 

Intravenous LPS triggers production of cytokines and trafficking of leukocytes from 

and to the systemic circulation [8]; doses of IV LPS vary between studies from 0.06-

4ng/kg. The response is dose-dependent: [9] 2ng and 4ng/kg doses have been used 

to induce a more pronounced inflammatory response (2ng/kg has been validated as 

eliciting a systemic inflammatory response syndrome [8]), whereas lower doses are 

used to model conditions where chronic, low-grade inflammation plays a role, such 

as type 2 diabetes [10]. 

 

Respiratory LPS models exist in two forms; inhaled challenge uses a nebulised 

saline solution containing LPS, aiming to induce a diffuse pulmonary inflammatory 

response. Alternatively, LPS can be instilled bronchoscopically, producing a 

localised response in a bronchopulmonary segment, simulating the inflammatory 

response in bronchopneumonia. Pathophysiologically, LPS-induced chemokines 

drive recruitment of activated neutrophils to the lungs, with leak of protein-rich fluid 

across the alveolar-capillary membrane [11], similar to that seen in the 

hyperinflammatory endotype of ARDS [12].  

 

Dose comparisons between respiratory models are difficult; in contrast to IV models, 

where LPS used is almost uniformly NIH Clinical Centre Reference Endotoxin 



(CCRE), derived from Escherichia coli 0113, many respiratory studies use 20-60g 

of other commercially available preparations (see Table 1). 

 

Whilst respiratory challenge models provide tissue specific information, repeated 

sampling and analysing the stromal response remains challenging. As such, nasal 

models, whereby LPS is applied to the mucosa followed by lavage at pre-determined 

time points have been developed. These provide an alternative means of analysing 

local inflammatory responses with less invasive sampling [13]. Doses vary from 10-

100g and tend to use non-CCRE commercial preparations [13–15]. Finally, intra-

dermal injection of CCRE grade LPS has been used as a model to gain insight into 

the localised inflammatory response in tissue and is the only model that allows 

detailed insights into the stromal response [16].   

 

LPS structure and chemistry 

The LPS molecule is found in the outer membrane of Gram-negative bacteria and is 

comprised of an O-specific side chain, a core region and lipid A molecule [4, 17, 18] 

(Figure 1). The O-specific side chain is composed of oligosaccharide units attached 

to the outer region of the carbohydrate core [4,15]. The inner core contains both 

heptose and 2-keto-3-deoxyoctonic acid (KDO) and is joined to lipid A by a ketosidic 

bond [4, 17, 18]. Lipid A is composed of a phosphorylated glucosamine disaccharide 

backbone with fatty acid chains attached [4, 17, 18]. Lipid A is the immunologically 

active component of LPS. 

 

LPS stimulates an inflammatory response by binding to cells expressing Toll-like 

receptor 4 (TLR4). Circulating LPS binds LPS-binding protein (LBP) [19] which is 



recognised by the membrane-anchored co-receptor, CD14 [19]. This allows LPS to 

bind to a membrane protein, MD-2, and the extracellular portion of TLR4, which 

activates two signaling cascades [19, 20]. The Toll-IL-1-resistance (TIR) domain 

recruits adaptor proteins MyD88-adaptor-like protein (Mal) and MyD88, which allows 

activation of several IL-1 receptor-associated kinases (IRAKs). These IRAKs allow 

for ubiquitination of the adaptor molecule TNF- receptor-associated factor 6 (TRAF-

6) which activates the transforming growth factor beta-activated kinase 1 (TAK1) 

[20–22]. TAK1 phosphorylates several kinases, freeing their respective transcription 

factors NF-kappaB, cyclic AMP-responsive element-binding protein (CREB) and 

activator protein 1 (AP1) to translocate into the nucleus [20–22]. In the second 

pathway, TLR4 is transported to an endosome where it recruits two more adaptor 

proteins; TIR domain-containing adaptor protein inducing IFN-β (TRIF) and TRIF-

related adaptor protein (TRAM) [19, 20, 22]. This complex can recruit TRAF6 and 

stimulate NF-kappaB nuclear translocation through TAK1. TRIF ubiquitinates 

TRAF3, allowing it to recruit two kinases, TANK-binding kinase 1 (TBK1) and IKKi, 

which phosphorylate interferon regulatory factor 3 (IRF3) [20, 21]. IRF3 translocates 

to the nucleus and stimulates the production of type I interferons [20–22]. A graphical 

summary of the LPS signalling pathway is found in Figure 2.  

 

METHODS 

 

References in this narrative review were selected by a Pubmed search using the 

terms ‘LPS’, ‘lipopolysaccharide’, ‘endotoxin’, ‘endotoxaemia’ and ‘endotoxemia’ 

from 1990. Results were screened for investigation of biological/clinical endpoints, 

mechanistic insights or therapeutic agents and those considered by the authors to be 



most relevant for building a comprehensive oversight of the effects of LPS in humans 

were selected for inclusion.  

 

Values for Figures 3 and 4 were obtained from either graphs or the body of text from 

papers identified in the search strategy. These values were used to calculate a mean 

for each time point and plotted to create a summary display.   

 

INTRAVENOUS LPS MODEL 
 

Clinical parameters 

The clinical response appears within an hour and begins with headache and 

myalgias, followed by a tachypnoea 2-3 hours later [8]. Core temperature rises by 1-

3°C with maximal increases seen 3-4 hours post-administration [8, 23–27], which 

coincides with a tachycardia of ~90-100bpm [8, 23, 24, 26–29]. A small decrease in 

mean arterial pressure is observed by 3 hours [26, 29–31]. Temperature and blood 

pressure normalise by 24 hours, whereas heart rate remains mildly elevated [8, 28]. 

 

LPS exerts complex cardiovascular effects characterised by a hyperdynamic state 

but with reduced ventricular contractility. Left ventricle function is impaired relative to 

saline-loaded controls, and load-independent contractility indices are reduced. This 

implies LPS enhances cardiac output through decreased systemic vascular 

resistance [29–32]. There are reports of transient bradycardic episodes occurring in 

fasted volunteers following LPS exposure [33, 34]. This is an exaggerated Bezold-

Jarisch reflex (a triad of bradycardia, vasodilation and hypotension resulting from 

stimulation of cardiac receptors as a homeostatic response to hypovolaemia) in a 

setting of high vagal tone [35]. Many researchers try to prevent this by hydrating 



volunteers with isotonic crystalloid solutions, this increases intravascular volume but 

can attenuate the inflammatory response [36].  

 

Haemostatic parameters 

Activation of the coagulation system is demonstrated by increased levels of fibrin 

[37] and tissue factor [38, 39] at 2 hours, followed by rises in plasma prothrombin 

fragments [40–47] and thrombin-antithrombin (TAT) complexes [41–45, 48, 49] , 

which peak at 4 hours. This haemostatic response is unaffected by inhibition of IL-6 

[45]. 

 

Changes in coagulation are followed by upregulation of fibrinolysis, with plasmin-

antiplasmin (PAP), tissue plasminogen activator (tPA) and d-dimer levels peaking at 

2, 3 and 4 hours respectively [41–43, 46, 48, 49]. By 4 hours, levels of plasminogen 

activator inhibitor-1 (PAI-1) rise, indicating a switch to fibrinolytic inhibition [41–43]. 

Coagulation and fibrinolysis are susceptible to modulation, and both are inhibited by 

IL-10 [31]. Adrenaline inhibits coagulation but enhances fibrinolysis, demonstrating 

anti-thrombotic effects in the presence of LPS [50]. All haematological parameters 

return to baseline by 24 hours.  

 

Cellular parameters 

Circulating neutrophils initially fall, with a nadir at 1 hour, rising to maximal levels 

around 4-6 hours [24, 25, 43, 51]. This can be attenuated by co-administration of IL-

1 receptor antagonist [52]. Granulocyte colony-stimulating factor (G-CSF) 

concentrations peak around 4 hours, suggesting neutrophils are mobilised from bone 



marrow [25, 27, 51]. Absolute monocyte and lymphocyte counts fall, reaching lowest 

levels between 1 and 3 hours [9, 24, 53]; both return to baseline by 24 hours.  

 

Molecular changes and LPS tolerance 

Epigenetic changes have been described in vitro 1 hour after LPS exposure in 

monocytes; they result in promotion of the pro-inflammatory response and inhibition 

of differentiation [54, 55]. Histone modifications result in an open chromatin 

architecture and increased transcription of genes potentiating the inflammatory 

response [54, 56–58]. Nucleosome remodelling [56], DNA methylation and micro-

RNAs also play a role in the transcriptional response to LPS in macrophages in vitro 

[56, 58].  

 

By 2 hours, macrophage expression of transcription factors (TFs) in vitro has 

changed significantly [59]. In vivo, the transcriptional response to LPS can be divided 

into early up-regulated (such as those coding for key inflammatory mediators), late 

up-regulated (anti-inflammatory products, apoptosis) or down-regulated genes (bio-

energetic processes like oxidative phosphorylation) [60–62]. Recently, one group 

has demonstrated that the transcriptomic response to LPS is dose dependent, 

identifying 3736 genes differentially regulated by dose. Multivariate modelling 

showed up-regulated genes again included those coding for TLR4 signalling and 

interleukin production as well apoptosis, with down-regulated genes coding for 

lymphocyte signalling pathways. Univariate analysis revealed that nearly 40% of the 

variance in the dose-dependent gene set was due to changes in leukocyte counts 

[63]. These findings again highlight that the response to LPS is dose-dependent. 



Furthermore they show that transcriptomic analysis may be used to unmask subtle 

variations in LPS response which have previously gone undetected.  

 

Metabolomic analysis of plasma reveals that at 6 hours, lipid metabolism is 

upregulated whilst protein metabolism is suppressed; by 24 hours, lipid metabolism 

is downregulated and amino acid metabolites are upregulated [64]. In one study, 15 

of 16 significantly altered metabolites had similar changes in IV LPS-challenged 

individuals  and septic patients [65]. Additionally, septic patients who survived shared 

directionality in 18 of 20 differentially regulated metabolites at 24 hours with LPS-

exposed subjects, compared to 9 of 20 for non-survivors [65], suggesting that, LPS 

models mimic the “controlled response leading to recovery” phenotype in sepsis. 

 

Tolerance to LPS, whereby cells exposed to repeated doses display a diminished 

capacity to generate an inflammatory response [66] is an important feature of IV LPS 

models both in terms of experimental design and in providing insights into 

immunosuppression in critical illness. Ex vivo and in vivo tolerance have different 

kinetics; ex vivo tolerance appears rapidly, by 3 hours [67], and resolves within 7 

days, whereas in vivo tolerance persists for at least two weeks [68], abating by 5 

weeks [69].  

 

In vitro models demonstrate tolerance is accompanied by enhancement of inhibitory 

intra-cellular signalling pathways (e.g. p53 signalling), accumulation of transcriptional 

repressors, the absence of pro-inflammatory activators (e.g. STAT) at gene 

promoters [54] and down-regulation of TLR4 expression (in vivo) [70].  

 



Biochemical and cytokine parameters 

TNF- [9, 27, 28, 71], interferon-gamma (IFN-γ) [72], IL-6 [9, 24, 27, 28, 51] and IL-8 

[9, 24, 27, 51] reach peak levels within 1-2 hours and return to baseline after 3-6 

hours (TNF- and IL-6) [9, 24, 27, 28, 71] or 24 hours (IL-8) [9, 27]. Markers of 

neutrophil degranulation are seen within 6 hours [25, 26, 40, 42]. Several 

chemotactic mediators are also released, macrophage inflammatory protein (MIP-

1α) [27], growth-related oncogene-alpha (GRO-α) [27, 28], monocyte 

chemoattractant protein (MCP-1) [42] and interferon gamma-induced protein (IP-10) 

[73] levels peak at 2-5 hours. Antecedent oral corticosteroids inhibit the rise in 

several inflammatory cytokines and chemokines [42], as does blocking P2Y12 

receptors [74]. 

 

LPS also triggers a compensatory anti-inflammatory response. IL-10 peaks at 3 

hours [27, 42, 43, 51, 72] with IL-1 receptor antagonist (IL-1Ra) following at 4 hours 

[25, 27, 28, 42, 51]. Induced circulating soluble TNF- receptor is highest between 2-

4 hours [25, 27, 42, 75]. Several interventions aimed at manipulating the anti-

inflammatory response have been trialled using IV LPS models. Adrenaline 

attenuates pro-inflammatory cytokine release [76] whilst enhancing levels of IL-10 

[76, 77]. IL-10 release is also increased by the action of nicotine (which stimulates 

α7-nicotinic acetylcholine receptors, the end point of the vagal anti-inflammatory 

reflex), highlighting a role for the autonomic nervous system in modulating acute 

inflammation [78]. Dipyridamole augments anti-inflammatory cytokine secretion [79], 

which may help explain the association between anti-platelet therapy and improved 

survival in sepsis [80]. Allogenic adipose mesenchymal stem cell (MSC) infusion, 



when delivered prior to LPS exposure, has immunomodulatory effects that could be 

beneficial in sepsis [81].  

 

Following IV LPS, the vascular response to noradrenaline [82] is reduced. This is a 

result of oxidative stress and correctable with high doses of anti-oxidants [82, 83]. 

Intrinsic catecholamine production is increased however, with adrenaline levels rising 

by 1-2 hours [8, 27, 71]. Endothelial cell activation is triggered by TNF- [43] and is 

indicated by maximal blood concentrations of vascular endothelial growth factor 

(VEGF) [40] and soluble thrombomodulin (sTM) [84] at 3-4 hours, von Willebrand 

factor (vWF) at 5-6 hours [26, 48] and E-selectin at 6-12 hours [25, 27, 43, 48, 84]. 

vWF and E-selectin levels are still raised at 24 hours [25, 43, 48].  

 

Whilst there is no change in urea and creatinine clearance, renal plasma flow 

increases 3 hours after LPS infusion [85]. Evidence of localised damage is present; 

levels of cytosolic glutathione-S-transferase-A1 (GSTA1-1), a marker of proximal 

tubular damage, are raised between 6 and 12 hours [86]. Local formation of reactive 

oxygen and nitrogen species are thought to contribute to this damage, as iNOS 

mRNA levels isolated from urinary cells are significantly increased [86]. Novel 

biomarkers of early kidney injury, such as kidney injury molecule 1 (KIM1), are also 

increased by LPS [87]. Treating patients with sepsis/septic shock with alkaline 

phosphate infusions (which detoxifies lipopolysaccharide) improves renal function by 

inhibiting upregulation of iNOS and thus the formation of damaging reactive oxygen 

and nitrogen species [88]. 

 



Increases in acute phase proteins are evident at 24 hours; levels of LBP have 

increased 2-5 fold [89–91], serum amyloid-A (SAA) levels by at least 17-fold [92, 93], 

fibrinogen by approximately 30% [46, 94] and C-reactive protein (CRP) by at least 

two-fold [9, 24, 72]. 

 

RESPIRATORY LPS MODELS 
 

Clinical parameters 

Inhaled 

Inhalation of LPS raises body temperature by 0.5-1.5°C, peaking 6-8 hours post-

exposure [95, 96]. Flu-like symptoms such as headache and fatigue occur [97, 98]. 

Changes in blood pressure, respiratory rate or heart rate are uncommon [6, 95]. 

Significant heterogeneity in forced expiratory volume in 1 second (FEV1) in healthy 

volunteers following LPS inhalation occurs [99, 100], which may explain why no 

significant change is demonstrated when evaluating interventions [95, 101–106].  

 
Instilled 

Segmental LPS challenge produces minimal clinical symptoms. Some studies have 

observed a fall in arterial pressure 4 hours after exposure [107, 108], decreased 

PaO2 and increased PaCO2 [108] or a reduction in FEV1 [107]. Changes in heart rate 

are variable, with reductions reported at 4 [108] and 24 hours [107] but others finding 

no change [109, 110]. The most consistently reported changes are flu-like symptoms 

and increases in temperature of ~0.5C by 6 hours [108, 109, 111–114]. 

 

Haemostatic parameters 

Inhaled 



At the alveolar level, soluble tissue factor and TAT complexes are found in increased 

concentrations in bronchoalveolar lavage fluid (BALF) at 6 hours [115, 116] whilst 

protein C activity is reduced [116]. Increased PAI-1 levels are also found, indicating 

local inhibition of fibrinolysis [115, 116].  

 

Instilled 

Instilled LPS results in raised levels of TAT, prothrombin fragments and soluble 

tissue factor, and depressed protein C levels, in BALF by 6 hours [117–119]. 

Elevated levels of tPA and PAP complexes demonstrate activation of the fibrinolytic 

system – this is followed by a rise in PAI-1, indicating fibrinolytic depression [117, 

119]. 

 

Cellular parameters 

Inhaled 

Evidence of a cellular response is seen in induced sputum samples following LPS 

inhalation. The sputum neutrophil count peaks between 4-6 hours and remains 

elevated at 24 hours [95, 102, 120–122], occurring as a result of p38 MAPK-

stimulated [123] production of TNF-, IL-1 and IL-8 [121, 122].  

 

Lymphocyte levels are raised by 24 hours and normalise within 7 days [120, 121]. 

Macrophage levels are variably reported as either static [95, 102, 122] or increased 

[120, 121]. Biochemical evidence of cell activation mirrors increased cell counts, with 

the neutrophil enzymes myeloperoxidase (MPO), matrix metalloproteinase-9 (MMP9) 

and human neutrophil elastase (HNE) peaking at 6 hours [95, 104, 123, 124].  

 



There is a significant increase in BALF neutrophil count by 90 minutes [7], which 

remains elevated at 24 hours compared to placebo [106, 125, 126]. Long acting β-

agonists impair alveolar recruitment of neutrophils through inhibition of adenylate 

cyclase [125]. Alveolar macrophage (AM) and lymphocyte counts probably do not 

increase [106, 125]. There is evidence of increased populations of blood derived 

monocytes and dendritic cells subtypes within the alveoli by 8 hours; these recruited 

cells rapidly develop similar gene expression profiles to native airway monocytic cells 

[127]. Interestingly, LPS is a factor in determining whether a Th1 or Th2 response is 

generated [128], with AM exposed to low doses of inhaled LPS (approximately 2μg), 

adopting a Th2 cytokine profile [129]. Inhalation of 60μg of LPS leads to the 

appearance of pulmonary monocyte-like cells (PMLCs) in the alveolar spaces [130] 

with reduced proliferative and phagocytic capacity compared to AM [131]. 

 

Systemically, a rise in peripheral circulating neutrophils is seen by 6-8 hours [95, 96, 

101, 104, 120, 132] which persists to 24 hours [96, 101, 120]. The effect on 

monocytes is unclear; one study found a fall at 6 hours [95] and another, using a 

similar dose, found an increase at 8 hours [132]. Lymphocyte numbers are 

unaffected [95, 132].  

 

Instilled 

A large increase in BALF neutrophil count occurs by 6 hours, which persists to at 

least 24 hours and is accompanied by smaller increases in macrophage and 

lymphocyte numbers [108, 113, 133]. Neutrophils recruited to the alveoli have a 

transcriptomic profile distinct from circulating neutrophils [134]. Instilled LPS results 



in a peripheral blood neutrophilia with a decrease in the percentage of lymphocytes 

and monocytes [108, 110].  

 

Biochemical and cytokine parameters 

Inhaled 

Levels of IL-6, IL-8 and TNF-, stimulated through p38 MAPK signalling and 

subsequent IL-1 production [122, 123], peak at 6 hours in induced sputum samples 

[6, 95, 97, 123], as does secretion of the chemotactic marker MIP-1β [123].  

 

In BALF, TNF- is detectable at significantly elevated concentrations by 90 minutes 

and remains raised out to 24 hours [7, 105, 125, 126]. Levels of IL-1β [7] and IL-8 

are also raised by 90 minutes, with IL-8 levels still high at 24 hours [7, 125, 126]. 

This is followed by an increase in IL-6 levels at 3-6 hours [105, 125]. Markers of 

increased neutrophil activity such as MPO and HNE peak at 6-9 hours [125, 132, 

135]. Various chemoattractant molecules, such as MIP-1β and MCP-1 also rise by 6 

hours [125, 136].  

 

Systemically, IL-6 and IL-8 rise between 6 and 8 hours [122, 123, 132], with no 

change in TNF-, IL-1, IL-10 or MCP-1 [122, 123, 132]. Evidence of neutrophil 

activation is detectable systemically with HNE [132] and MPO [124] raised at 8 and 

24 hours respectively. As with IV models, several strategies aimed at modifying the 

inflammatory response have been trialled using inhaled LPS. Statins reduce alveolar 

neutrophil recruitment and TNF-, MPO and MMP levels [103], although did not 

improve outcomes in non-selected ARDS patients [137]. This is possibly because 

inhaled LPS may only model the hyper-inflammatory endotype of ARDS [138]. 



Recently, infusion of keratinocyte growth factor (KGF) prior to LPS inhalation has 

been shown to increase type II pneumocyte proliferation, suggesting it may promote 

lung repair [139]. 

 

Inhaled LPS also results in evidence of activation of endothelial cells locally, with 

raised levels of soluble thrombomodulin in BALF [116], and systemically, where 

circulating levels of soluble E-selectin rise by 24 hours [96, 104, 140].  

 

By 24 hours a rise in acute phase proteins is seen systemically, with LBP increasing 

2-5 fold [99, 104], fibrinogen increasing by approximately 30% [118] and CRP levels 

rising to between 2 and 10 times baseline values [104, 120]. Oral corticosteroids 

have been given in inhaled LPS models, reducing the rise in systemic CRP [104] 

(though with no effect on cytokine secretion [104, 121]).  

 

No change in systemic haematological markers is observed [116].  

 

Instilled 

Both pro- and anti-inflammatory activity is detectable in BALF after segmental LPS 

instillation. TNF-, IL-1β, IL-6, IL-8 and G-CSF peak at 6 hours [108, 111, 113, 133] 

and may remain significantly above baseline by 24 hours [108, 113]. IL-1Ra levels 

rise by 6 hours [108]; TNF receptor levels are also raised by this point and remain so 

at 48 hours [108]. ENA-78, lactoferrin, MPO and HNE are similarly elevated by 6 

hours [108, 111]. Local secretion of chemotactic molecules occurs by 6 hours [108, 

111]. By 12 hours, neutrophil-derived MMP-8 and β-defensin-2 concentrations are 



increased [133]. This pattern of alveolar response parallels the hyper-inflammatory 

endotype in ARDS [138].  

 

Evidence of endothelial activation following instilled LPS is variable, one study found 

soluble thrombomodulin in significantly raised quantities in BALF at 6 hours [117], 

whilst in another no increase was detected [112]. 

 

Systemically, there are significant increases in G-CSF, IL-6 and IL-1Ra over the 24 

hours following LPS instillation, with CRP levels rising at 24 hours [108, 110].  

 

The development of tolerance is less clear in respiratory models, with alveolar 

macrophages exposed to bronchoscopically instilled LPS in vivo, producing higher 

levels of inflammatory cytokines upon subsequent ex vivo LPS stimulation than 

macrophages from the contralateral lung exposed to saline [141].   

 

CHALLENGES AND LIMITATIONS OF HUMAN LPS MODELS 

 

Most IV LPS models involve healthy young males given a single dose of LPS early in 

the morning. However, the response to IV LPS in healthy young males is not the 

same as other subjects. Females have higher levels of TNF- [89, 142], CRP [89], 

cortisol [142], IL-6 [142] and a greater fall in mean blood pressure [89], whilst also 

avoiding the loss of sensitivity to noradrenaline that occurs in males [89] in response 

to LPS. Participation by older subjects is limited, but increasing age is associated 

with a prolonged fever response and more rapid rise in concentrations of TNF- 

[143], and a greater fall in systolic blood pressure [144]. Body mass index (BMI) has 



not been shown to affect the response to experimental LPS [145, 146], although the 

range of BMIs assessed has been limited.  

 

Racial differences in the response also exist – Duffy antigen negative Africans have 

reduced thrombin formation and generate fewer TAT complexes, F1+2 fragments 

and prothrombin fragments [147], with lower levels of chemokines MCP-1 and GRO-

 than Duffy antigen positive Caucasians (though no changes in circulating 

leukocyte or pro-/anti-inflammatory cytokine levels are found) [148]. In general, 

people of African ancestry have lower cytokine and CRP responses to LPS than 

those of European ancestry [92].  

 

Diurnal variation of should also be considered; secretion of several cytokines in 

response to LPS is higher at night [149].  

Additionally, most IV models deliver LPS as a single bolus, which may not accurately 

represent prolonged stimuli in critical illness. Similarly, sepsis and ARDS have a 

range of causes with variable outcomes whereas LPS is a single insult that 

represents only one of the virulence factors of Gram-negative bacteria. Additionally, 

models will not account for the modification of the clinical picture caused by 

interventions such as antibiotics, fluid resuscitation and organ support [150]. Current 

models also tend to give interventions prior to LPS exposure, which poorly reflects 

the temporal relationship of illness and therapy. Finally, the magnitude of the 

inflammatory response that can be induced in human volunteers is obviously 

restricted by ethical constraints. 

 



For inhaled LPS models, the use of commercial LPS sources could obscure the 

dose-response relationship, though some more recent models have used CCRE 

LPS, generally at a dose of 20,000 endotoxin units (EU) (equivalent to 2g) (see 

Table 2b). Inhaled LPS models are subject to greater experimental variation than 

others; different nebulisers produce particles of different sizes [140] and different 

lung distributions [151] which affects the exposure of lung tissue.   

 

As such, current experimental design models may not fully encapsulate the 

heterogeneity of relevant patient populations. Refinement of LPS models should 

ensure they are not overly reductionist and remain clinically relevant. Furthermore, 

LPS challenge may only model a specific endotype of a condition (e.g. hyper-

inflammatory ARDS) which partially explain the failure to translate therapies 

demonstrating efficacy in LPS models into successful treatments for critical illness. 

 

Reproducibility of response to LPS 

Human LPS models are considered to provide a means of generating a controlled 

inflammatory response in a reproducible manner. Both bronchoscopic and inhaled 

LPS respiratory challenges have been shown to produce consistent intra-subject 

cytokine responses to recurrent challenges (regardless of time between exposures 

for inhaled LPS) [114, 152, 153]. In IV models similar ratios of induced cytokines 

have been demonstrated in the same subjects when the exposures are separated by 

at least 5 weeks [69].  

 

A review of the literature demonstrates that across thousands of volunteers, 

exposure to LPS generates a predictable response, with localised/systemic 



neutrophilia and induction of pro- and anti-inflammatory cytokines to broadly similar 

levels. This is consistent with the personal experience of authors of this review. 

However, even when models are restricted to phenotypically similar subjects there 

exists the potential for inter-subject variability. Variable inflammatory responses are 

an important aspect of human LPS models, as they may help us understand why 

some patients develop conditions such as ARDS, whilst others, under the same 

circumstances, do not.  

  

Underlying genetic differences may contribute to this variability, though the 

relationship is complex; neither the well characterized TLR4 receptor co-segregating 

mis-sense mutations ‘Asp299Gly’ and ‘Thr399Ile’ nor a number of other frequently 

studied polymorphisms in genes coding for TNF-, IFN- and IL-10 have effect the 

response to IV LPS [154–156] (though the TLR4 mutations do result in a reduced 

acute phase protein and leukocyte response after LPS inhalation [157]).  

 

Polymorphisms altering the TNF- response have perhaps been focused on most. 

Mutations in the genes coding for MMP-8 (259A/G), resulting in suppressed MMP-8 

production) [158], CRP (+1444C/T polymorphism) [159], the -chain of the fibrinogen 

molecule (-148C/T polymorphism) [160], result in lower TNF- levels, whereas 

mutations in apolipoprotein E alleles cause significantly higher levels of TNF- to be 

produced [161].  

 

The cellular and haemostatic responses are also subject to genetic variation; a 

mutation in the gene coding for E-selectin (561A/C) results in significantly higher 

F1+2 and d-dimer fragment generation [162], as does the +1444C/T CRP mutation 



[159]. People who are homozygous for a 163G/T mutation in the coagulation factor 

XIII-A gene subunit have a less pronounced neutrophil response and smaller fall in 

circulating monocyte numbers in response to IV LPS [163], whilst the E-selectin 

polymorphism results in monocyte counts 20% higher at 24 hours [162].   

 

The response to inhaled LPS also has a genetic component, potentially linked to a 

deletion polymorphism in an anti-oxidant gene, glutathione-S-transferase Mu1 

(GSTM1), present in 40-50% of the population, resulting in increased circulating 

platelet and total leukocyte counts, and increased sputum neutrophil counts, in 

response to inhaled LPS [164]. 

  

FUTURE CONSIDERATIONS 

 

LPS models do not replicate critical illness, although some similar physiological 

alterations are observed [65] and changes in clinical and inflammatory parameters 

have been shown to be broadly similar in LPS models and sepsis [23, 165]. When 

considering lung injury, raised levels of chemotactic mediators (such as MCP-1) and 

newly characterised inflammatory proteins like whey acidic protein four-disulfide-core 

12 (WFDC12) have been demonstrated in healthy volunteers challenged with LPS 

and ARDS [136, 166].  

 

LPS models provide an important link between basic science and clinical trials, 

offering the ability to generate an inflammatory response from a defined and 

accessible time point in human biological systems in a safe, reproducible manner 

[114, 152, 153].  



 

In vivo LPS models allow inflammation and its interaction with other organ systems, 

such as cardiovascular or neuro-endocrine responses, to be studied in the whole 

organism. The findings have greater inference than studies from isolated blood 

components. For example, it has been shown that ex vivo cytokine production 

cannot be used to predict the in vivo inflammatory response [167] and that endotoxin 

tolerance follows different kinetics in in vivo models compared to ex vivo ones [68].  

 

Furthermore, they are useful for proof of concept studies; negative findings in LPS 

models should give rise to consideration about whether further investigation is 

warranted.  

 

Future research may benefit from several adjustments to the LPS models currently in 

use. Standardisation of the source of LPS, dosing criteria and variables measured to 

assess response, would help comparisons between studies. Expanding models to 

include study cohorts comprised of women, older subjects and those with chronic 

diseases may make observations more generalisable. 

 

LPS tolerance must be taken into account when considering experimental design, 

particularly in IV challenge. Appropriate washout periods must be used. Repeated 

LPS doses are most often given in the investigation of tolerance kinetics [26, 69] or 

during cross-over studies; generally these include a washout period of >5 weeks [38, 

41, 90, 168] However, several studies have given repeated doses of IV LPS with 

washout periods <2 weeks [83, 85] or not specified [169], suggesting observations 

could be affected by a tolerance. Induction of LPS tolerance can be used to study 



the immunosuppressed phenotype of critical illness, with various groups 

demonstrating it can be reversed with IFN- [170] or aspirin [171].  

 

Infusing LPS over several hours may better represent ongoing pathogen exposure. A 

bolus-followed-by-infusion model resulted in higher cytokine levels and longer 

duration of pyrexia compared to a bolus of 1ng/kg (although the total amount of LPS 

delivered was three times greater) [172]. Low doses (0.3ng/kg) produce an earlier 

and more pronounced inflammatory response when delivered via a bolus compared 

to an infusion [173]. Several newer studies have used an LPS infusion over 4 hours 

[174–177]. Further exploration of these models may allow the evaluation of 

interventions in the setting of ongoing inflammation and immunosuppression that 

occurs in sepsis, though repeated exposure places more onerous requirements on 

both volunteers and researchers. Another strategy may be greater use of models 

that deliver the intervention after LPS challenge, more accurately replicating real life. 

This may lead to more rapid exclusion of treatments which only work when applied in 

an antecedent manner. Finally, rapid advances in ‘-omics’ technology will provide 

opportunities to dissect the human inflammatory response using LPS, and to 

compare these responses with endotypes derived from observational cohorts. 
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FIGURE LEGENDS 

 
Figure 1: A schematic diagram of the lipopolysaccharide molecule.  
M = monosaccharide; Ga = galactose; Gl = glucose; H = heptose; KDO = 2-keto-3-
deoxyoctonic acid; G = glucosamine; C = carbon.   
 
 

 
  



 
 
Figure 2: A summarised, simplified version of LPS signaling in the human body (for 
a detailed review see refs [19, 20, 22]).  
 
  



 
 
Figure 3: Graphical summary of the effects of intravenous LPS on clinical, 
haematological, cellular and inflammatory parameters constructed from papers 
infusing 2ng/kg CCRE LPS to healthy volunteers. To provide an overview of the 
effects of IV LPS, the average (mean) values of clinically important parameters were  
calculated from individual papers where data were available for that parameter.  
Clinical parameters were constructed from yet to be published data from a 2ng/kg IV 
LPS model within our own lab.  
For graphs with two x-axes, the parameters displayed on the graph should be read 
relative to the axis under which they are listed. For example, those listed on the left 
hand side of the figure should be read against the left-sided x-axis.  
Cellular: neutrophils [28, 51, 71, 178]; macrophages [71, 178, 179]; lymphocytes [28, 
71, 178, 179]. 

Cytokine: TNF- [8, 24, 28, 51, 71, 72, 75, 178]; IL-6 [8, 24, 28, 43, 51, 72, 178]; IL-8 
[8, 24, 43, 72, 178]; IL-10 [8, 43, 51, 72, 178]; TNF-SRI [28, 75].  

Haematological: F1+2 [40, 43–45, 47, 49]; TAT complexes [43–45, 49]; tPA [47, 49, 
75]; sTF [39, 47, 73].  
 
  



 
 
Figure 4: Graphical summary of the effects of respiratory LPS models. Inhaled LPS 
responses displayed are induced sputum cell counts and induced sputum cytokines. 
Instilled LPS responses displayed are BAL cell counts, BAL cytokine levels and BAL 
haematological parameters. To provide an overview of the effects of respiratory LPS 
models, the average (mean) values of clinically important parameters were 
calculated from individual papers where data were available for that parameter. To 
ensure consistency of responses only papers using CCRE endotoxin (20,000 

endotoxin units (equivalent to 2g) for inhaled papers and 4ng/kg for instilled papers) 
were included.  
Induced sputum cellular: neutrophils [102, 122, 152, 180–182]; macrophages [102, 
152, 180, 182].  
For graphs with two x-axes, the parameters displayed on the graph should be read 
relative to the axis under which they are listed. For example, those listed on the left 
hand side of the figure should be read against the left-sided x-axis.  

Induced sputum cytokines: IL-8 [152, 180, 182]; IL-6 [180–182]; TNF- [180, 181]. 
BAL cellular: neutrophils [109, 111, 113, 114, 118, 183]; macrophages [111, 113, 
114, 118]; lymphocytes [113, 114].  
BAL cytokines: TNF [111, 113, 114, 118, 183]; IL-6 [111, 113, 114, 118, 183]; IL-8 
[111, 113, 114, 118, 183]; TNF-SRI [111, 114, 183].  
BAL haematological: F1+2 fragments [118]; TAT complexes [117–119]; sTF [117–
119]; tPA [117, 119]. 



  
 
 
Table 1a – Summary of source and dose of LPS and subject characteristics in 
studies using intravenous LPS models 
 

LPS 
source 

Subjects Dose References 

CCRE& Healthy males and 
females, aged 18-45* 

4ng/kg [27, 29, 30, 37, 46] 

CCRE Healthy males, aged 
18-45* 

4ng/kg [31, 32, 39, 41, 42, 48, 53, 62, 73, 84, 90, 
110, 165] 

CCRE Healthy males and 
females, aged 23-52 

1, 2, 3 or 4 
ng/kg  

[25] 

CCRE Healthy males, aged 
22-49 

1, 2 or 
4ng/kg 

[9] 

CCRE Healthy males, age 
not specified 

1, 2 or 4 
ng/kg 

[63] 

CCRE Healthy males, aged 
18-30 

3ng/kg [52] 

CCRE Healthy males and 
females, aged 18-45* 

2ng/kg [8, 28, 36, 61, 64, 65, 72, 86, 89, 145, 156, 

161, 167] 

CCRE Healthy males and 
females, aged 20-27 
and 61-69 

2ng/kg [143, 144]^ 

CCRE Healthy males, aged 
18-45* 

2ng/kg [26, 38, 40, 43–45, 47, 49, 50, 70, 71, 74, 
75, 77–79, 81–83, 85, 91, 146–148, 154, 
158–160, 162, 163, 168–170] 

CCRE Healthy males, 
without age specified 

2ng/kg [51, 68, 178] 

CCRE Healthy subjects, 
without age or 
gender specified 

2ng/kg [60, 94, 179] 

CCRE Healthy males, aged 
18-28 

0.5, 1 and 
2ng/kg 
sequentially 

[24] 

CCRE Healthy males, aged 
18-28 

0.5, 1 or 
2ng/kg 

[87] 

CCRE Healthy males and 
females, aged 18-45 

1ng/kg [92] 

CCRE Healthy males, aged 
25-40 

1ng/kg [69] 

CCRE Healthy males and 
females, aged 18-45 

0.6ng/kg [93] 

CCRE Healthy males, aged 
18-45* 

0.5ng/kg/hr 
for 4 hours 

[23, 174–176] 

CCRE Healthy males and 
females, aged 22-41 

0.4ng/kg [142] 

CCRE Healthy males, aged 
19-31 

0.3ng/kg [149] 

CCRE Healthy males, aged 
18-45 

0.1ng/kg [155] 

CCRE Healthy males, aged Bolus [171, 173, 177] 



*to reduce table size multiple age ranges from different studies collapsed into single 
category 
&Clinical Centre Reference Endotoxin 
^[143] does not specify source of LPS, however previous papers by author have used 
CCRE.  
 
 
Table 1b – Summary of source and dose of LPS and subject characteristics in 
studies using pulmonary LPS models 

Inhaled nebulized LPS 

LPS source Subjects Dose References 

Sigma Healthy males and females and asthmatic 
males and females, aged 18-45^ 

100g  [99] 

Difco Healthy males and females, age not specified 100g [101] 

Sigma Healthy males, aged 18-45 100g [116, 125]  

Sigma Healthy males and females, aged 18-40 60g [127] 

Sigma Healthy males, aged 18-40 60g [130–132, 
139]  

Sigma Healthy males, atopic males and asthmatic 
males, aged 18-45^, male 

60g [6] 

Sigma Healthy controls, smokers and pig farmers, 
males and females, aged 22-61 

53.4g [97] 

Sigma Healthy males and females, aged 18-60 50g [103–106, 
136] 

Sigma Healthy males, aged 18-45 50g [115] 

Sigma  Healthy males and females, aged 18-45 0.5, 5 and 

50g 
sequentially  

[96] 

Sigma Healthy subjects, without age or gender 
specified 

5 and 50g [98] 

Sigma  Healthy males and females, aged 26-39 15 or 50g [95] 

Sigma Healthy males and females, aged 20-30 40g [124] 

Sigma Healthy non-smokers and smokers, aged 31-
43, gender not specified 

30g [7] 

Sigma Healthy males and females, aged 18-55* 20g [120, 121, 
140, 157] 

Sigma Healthy males and females, aged 18-59* 0.5, 1.0, 2.0, 
3.0, 5.0, 10 

and 20g 
sequentially 

[100, 126] 

CCRE Healthy males and females and non-smokers 
and smokers, aged 19-48 

20000 EU$ [102, 122] 

CCRE Healthy males and females, aged 18-55* 20000 EU [152, 153, 
180, 182] 

CCRE Healthy subjects, with age or gender 
specified 

20000 EU [164] 

CCRE Healthy males and females and atopic 
asthmatics 

20000 EU [181] 

Sigma Healthy males and females, aged 28-34 15g [123] 

18-35 1ng/kg then 
3 hour 
infusion of 
1ng/kg/hr 



CCRE& Healthy males and females, aged 18-50 0, 2500, 
5000 and 
10000 EU$ 
sequentially 

[129] 

Bronchoscopically instilled LPS 

CCRE Healthy males and females, aged 18-45* 4ng/kg [109, 118, 
119, 134, 
183] 

CCRE Healthy males, aged 18-50* 4ng/kg [110–114, 
117, 141] 

CCRE% Healthy subjects, age and gender not 
specified 

4ng/kg [133]% 

CCRE Healthy males and females, aged 26-31 1, 2 or 
4ng/kg 

[108] 

CCRE Healthy males and females, age not specified 1, 2 or 
4ng/kg 

[107] 

*to reduce table size multiple age ranges from different studies collapsed into single 
category 
^mean/median age given but range not specified 
$endotoxin units 
%Refers to same protocol as [108] but doesn’t specifically state source or dose of LPS used 
&Clinical Centre Reference Endotoxin 
 

Table 1c – Summary of source and dose of LPS and subject characteristics in 
studies using nasal and intradermal LPS model 

Nasal LPS challenge 

LPS source Subjects Dose References 

Sigma Healthy subjects, 
age and gender not 
specified 

100g [14] 

Invivogen Healthy males and 
females, aged 21-57 

1, 10, 30 and 100g [15] 

Sigma Healthy males and 
females, aged 26-43 

0, 10 and 40g [13] 

Intradermal LPS challenge 

LPS source Subjects Dose References 

CCRE Healthy males and 
females, aged 18-50 

15ng [16] 

 

 
 
 
 
 
Table 2a. Summary of biochemical/cytokines changes from intravenous LPS 
models 

Intravenous LPS 

Raised over time course 

1 hour 2 hours 4 hours 6 hours 12 hours 24 hours 

Pro-inflammatory cytokines 

TNF- TNF- TNF-    

IL-6 IL-6 IL-6    

IL-8 IL-8 IL-8 IL-8   



IFN-γ IFN-γ     

Anti-inflammatory cytokines 

IL-10 IL-10 IL-10 IL-10   

TNF-R TNF-R TNF-R TNF-R   

 IL-1Ra IL-1Ra IL-1Ra IL-1Ra  

Chemoattracts and other molecules 

MIP-1α MIP-1α     

GRO-α GRO-α     

 MCP-1 MCP-1 MCP-1   

 MIG MIG MIG MIG MIG 

 IP-10 IP-10 IP-10   

 Cortisol Cortisol Cortisol   

    CRP CRP 

Markers of cellular activation 

Granzyme A Granzyme A     

Granzyme B Granzyme B Granzyme B    

 Lactoferrin Lactoferrin Lactoferrin Lactoferrin  

 HNE HNE HNE HNE HNE 

 
Table 2b. Summary of biochemical/cytokine changes from inhaled/instilled 
LPS models 

Inhaled LPS Bronchoscopically instilled LPS 

Raised over time-course 
90 
minut
es 

4-6 hours 24 
hours 

No 
change 

Raised at 
6 hours 

Raised at 
24 hours 

Raised at 
48 hours 

No 
change 

Sputum 

 TNF-   - - -  

 IL-6   - - -  

 IL-8 IL-8  - - -  

 MIP-1β   - - -  
BALF 

Pro-inflammatory cytokines 

TNF- TNF- TNF-

 

 TNF- TNF-   

IL-1β IL-1β   IL-1β IL-1β   

IL-8 IL-8 IL-8  IL-8    

 IL-6   IL-6 IL-6   

    G-CSF G-CSF   

Anti-inflammatory products 

    IL-1Ra    

    TNF-R TNF-R TNF-R  

Neutrophil derived products 

 MPO   MPO  MPO MPO  

 HNE   HNE    

    Lactoferrin Lactoferrin Lactoferrin  

     MMP-8   

     β-2-def   

Chemoattractants 

 MIP-1β   MIP-1    

 ENA-78   ENA-78    

 MCP-1   MCP-1    

    IP-10    

    GRO- GRO- GRO-  



Markers of endothelial damage/activation 

 sTM       

Systemic 

Pro-inflammatory cytokines 

    Raised 2-24 hours   

 IL-6   IL-6   

 IL-8      

    G-CSF   

   TNF-   TNF- 

Anti-inflammatory products 

    IL-1Ra   

   IL-10     

Neutrophil derived products 

  MPO      

 HNE       

Chemoattracts and other molecules 

   IL-1β     

   MCP-1     

  CRP   CRP   

  α1-
AT 

     

Markers of endothelial damage/activation 

 E-selectin       

        

 
Tabular summary of changes in biochemical/cytokine parameters from all papers 
cited in this review. Obtained from the following references: 

Intravenous: TNF- [9, 27, 28, 71]; IFN-γ [72]; IL-6 [9, 24, 27, 28, 51]; IL-8 [9, 24, 27, 
51]; granzyme A and B [73], HNE [26, 42]; lactoferrin [25, 40]; MIP-1α [27]; GRO-α 
[27, 28]; MCP-1 [42]; MIG, IP-10 [73]; IL-10 [27, 42, 43, 51, 72]; IL-1Ra [25, 27, 28, 
42, 51]; TNF-R [25, 27, 42, 75]; cortisol [8, 9, 27, 71]; CRP [9, 24, 72]. 

Inhaled sputum: IL-6, IL-8, TNF- [6, 95, 97, 123]; MIP-1β [123].  

Inhaled BALF: TNF- [7, 105, 125, 126]; IL-1β [7, 125, 126]; IL-6 [105, 125]; MPO, 
HNE [125, 132]; MIP-1β, (ENA)-78, MCP-1 [125, 136], sTM [116]  

Inhaled systemic: IL-6, IL-8, TNF-, IL-1, IL-10, MCP-1 [122, 123, 132]; HNE [132]; 
MPO [124]; CRP, α1-antitrypsin [104, 120], E-selectin [96, 104, 140]  

Instilled BALF: TNF-, IL-1β, IL-6, IL-8, G-CSF [108, 111, 113, 133]; IL-1Ra and 
TNFR [108]; ENA-78, lactoferrin, MPO, HNE, MIP, GRO-α, IP-10, MCP-1 [108, 111]; 
MMP-8, β-defensin-2 [133].  
Instilled systemic: G-CSF, IL-6, IL-1Ra, CRP [108, 110].  
 
 
 
 
 
 
 
 
 



 

 

 

  



 

 

 

 

 

  



 

 

 

 



 

 

 

 

  



 

 

 

 

 

  



 

 

 




