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ABSTRACT:  Airflow-induced bronchoconstriction (AIB) in mammals can be broad-
ly categorized as either vagal-dependent or vagal-independent.  Among mammals,
rabbits and cats belong to the former and guinea-pigs belong to the latter cate-
gories.  Although insufficient data are available to classify monkeys, dogs and man
appear to occupy the middle ground in which a small but significant parasympa-
thetic component modulates airflow-induced bronchoconstriction.  The fact that
vagal activity can only partially account for airflow-induced bronchoconstriction in
some asthmatic subjects suggests that vagal-dependent models may be of limited
value in studying the human condition, but should prove valuable in elucidating the
parasympathetic component of this mechanism.  Although airflow-induced bron-
choconstriction appears to be remarkably similar in guinea-pigs, dogs and humans,
there are important differences concerning the potential role of specific mediators
in producing airflow limitation. 

Concordant data from animal models and man suggest that:  1)  airflow-induced
bronchoconstriction is a basic mammalian response to airway desiccation;  2)  air-
way drying stimulates and cooling inhibits this response;  3)  hyperpnoea with dry
air may damage the bronchial mucosa and contribute to this response;  4)  bio-
chemical mediators contribute to the development of this response;  5)  vascular
engorgement and airway oedema do not appear to be the primary effectors of this
response, and in fact may antagonize it;  6) airway smooth muscle constriction is
involved in the production of airflow-induced bronchoconstriction, and airway oede-
ma may enhance its effect; and  7)  airway and vascular responses to dehydration
may protect against acute dry air-induced mucosal injury.  

Finally, although one must be cautious in extrapolating results from animals to
humans, the similarities that do exist suggest that the investigation of airflow-induced
bronchoconstriction in carefully selected animal models will continue to provide new
insights concerning its development in humans.
Eur Respir J., 1995, 8, 1770–1785.

Dept of Environmental Health Sciences,
The Johns Hopkins Medical Institutions,
Baltimore, Maryland, USA.

Correspondence:  A.N. Freed
Division of Physiology
7006 Hygiene
The Johns Hopkins University
615 North Wolfe Street
Baltimore
Maryland 21205
USA

Keywords:  Airway injury
airway reactivity
bronchoconstriction
bronchovascular hyperpermeability
vascular leakage

Received: April 29 1994
Accepted after revision July 1 1995

About 1,800 yrs ago, Aretaeus (120–200 AD) noted
that physical exertion provoked airway obstruction [1];
300 yrs have past since FLOYER [2] speculated as to its
cause, and 50 yrs have elapsed since HERXHEIMER [3] sug-
gested that hyperventilation stimulated airway narrow-
ing.  Despite the fact that animals have been used for
almost two centuries to help us understand human phys-
iology and disease [4], it is only within the last decade
that animal models have been developed to investigate
the mechanisms by which hyperventilation results in
airway obstruction.

Exercise, hyperventilation, and exposure to frigid air
cause a transient increase in pulmonary resistance (RL)
in approximately 75–80% of patients with asthma [5].
Airway narrowing usually peaks 2–10 min after expo-
sure to dry air, and spontaneously recovers in 30–60 min
(fig. 1).  For a fixed level of ventilation, colder, dryer
inspired air exacerbates this response, whilst warmer
more humidified air reduces its severity.  Increasing the
duration and strength of the stimulus also increases the

magnitude of obstruction (fig. 1c and table 1).  Although
subtle differences may exist in the underlying mecha-
nism triggered by these stimuli,  there are numerous simi-
larities in terms of the time-course of airway narrowing
(fig. 1), the degree of evaporative heat and water loss
[117], and the efficacy of a wide spectrum of drugs that
attenuate their effects (table 1).  Because of these simi-
larities, the airway narrowing elicited by these stimuli
will be referred to as "airflow-induced bronchoconstric-
tion" (AIB).

The mechanism(s) responsible for AIB are unknown,
although several hypotheses offer alternative explana-
tions for its development in asthmatic subjects.  One
states that drying increases airway fluid osmolality,
stimulates local mediator release, and results in air-
way smooth muscle contraction [30]. Another specu-
lates that rapid airway cooling and rewarming causes
bronchovascular hyperaemia and mucosal oedema, and
this narrows the bronchial lumen [22].  A third sug-
gests that AIB results from an imbalance between airway
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Fig. 1.  –  Time course for hyperpnoea-induced responses in four mammalian species.  Unless otherwise specified, all species were hyperventilat-
ed with either dry room air or 5% CO2 and dry air.  a) Guinea-pigs:  hyperventilated with dry gas containing 95% O2 (– – –❍– – –) (data from RAY

et al. [6]); hyperventilated with dry gas containing 21% O2 (    ∆ ) (data from CHAPMAN and DANKO [7]).  b)  Rabbits: sensitized to ovalbumin
(– – –❍– – –); nonsensitized (    ∆ ) (data from KOYAMA et al. [8]).  c)  Dogs: hyperventilated with 2,000 mL·min-1 for 5 min (– – –❍– – –) (data from
FREED and ADKINSON [9]);  hyperventilated with 1,500 mL·min-1 for 2 min (    ∆ ) (data from FREED and co-workers [10]).  d)  Asthmatic humans
(data from FINNERTY et al. [11]).  RL;  pulmonary resistance;  Rp: peripheral airway resistance (see fig. 2);  ∆FEV1%: percentage change in forced
expiratory volume in one second.

drying, which stimulates, and airway cooling, which
inhibits bronchoconstriction [113].  The fact that guinea-
pigs, rabbits, cats, dogs, monkeys, and humans exhibit
AIB to varying degrees (table 1) suggests that the phys-
iological response to dry air reflects a basic mechanism
that has evolved in mammals to limit exposure of the
peripheral airways to provocative stimuli. Thus, the
mechanisms that contribute to the aetiology of AIB in
humans may not be unique to individuals with asthma.
Exercise-induced bronchoconstriction in asthmatics and
bronchodilation in normal subjects correlate with inspired
water content [73].  This confirms the tendency of nor-
mal human airways to narrow in response to hyperven-
tilation [118–120].  The enhancement of AIB in asthmatic
as compared to normal humans may reflect the presence
of inflammatory mediators and an increased sensitivity
to stimuli that are tolerated by normal airways during
and after exposure to cool dry air.  If this is correct, then
understanding the mechanisms responsible for AIB in
animal models may help in a better understanding, not
only of the responses of normal human airways when
exposed to excessive cooling and drying, but also of the
exaggerated responses that are exhibited by asthmatic
subjects under similar conditions.

The purpose of this review is to compare and contrast
AIB in humans and animals, and to evaluate the rele-
vance of each model in terms of its ability to mimic AIB

in man. Because of the potential contribution of the
bronchial circulation to the development of AIB, con-
siderable attention will be devoted to this area of research.
Data from human studies will be examined in the light
of relevant data that can be obtained only through the
use of animal models.

Animal models and their relevance to 
AIB in humans

Most models of AIB are whole animal models, in
which both lungs are either exposed to or hyperventi-
lated with cold dry air.  An exception is the canine model
of AIB, that uses a bronchoscope to isolate and hyper-
ventilate peripheral airways with room temperature dry
air (table 1 and fig. 2).  All of these models can be crit-
icized for bypassing some part of the upper airways and
delivering dry air directly either to the lower trachea or
lungs.  In addition, the respiratory system of the dog
performs a thermoregulatory function, which does not
exist in man, and unidirectional airflow in this model
eliminates one heat and water recovery mechanism that
operates in humans.  However, thermoregulation in pant-
ing dogs primarily involves the evaporative surfaces of
the nose, mouth and tongue [122], which are bypassed
in all animal models.  DAVISKAS et al. [123] calculated
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Table 1.  –  Characterization of airflow-induced bronchoconstriction in six mammalian species

Factor                                 Guinea-pig           Rabbit         Cat              Dog            Monkey             Man

Acute response
Time course of AIB

Peak AIB during challenge [12]# [13]# 

Peak AIB 2–10 min [6, 7, 14–16] [8, 17] [18–21] [11, 22–26]
postchallenge 
Peak AIB 10–25 min postchallenge [27]
Recovery <60 min [6, 14, 15] [8, 17] [18–20] [11, 22, 23, 26]
Recovery >60 min [16]? [27]?
Correlated with stimulus [6, 14, 28, 29] [18, 19] [23, 30–34]
strength or duration

Allergic component (+) [8, 12]
(-) [35]

AIB-induced (+) [36–39]
hyperreactivity (-) [10] [39–42]
Refractory period (+) [17] [31, 43–49]

(-) [6] [19] [27]? [47–50]
Mediators in BALF

Histamine [21]? [51]
Prostanoids [52] [9, 10, 20, [51]?

21, 53]
Leukotrienes [52] [9]? [51]

Late phase response [9] [54–57]
Correlation with hypertonic [10, 58] [24, 25, 59–62]
aerosol induced bronchospasm
Morphological changes

Airway narrowing [15, 28]
Mucosal injury [52] [10, 20, 53, 63–65] [51]
Mast cell degranulation [64] [66]
Bronchovascular leakage [67–69] [63–65]

Interventions that
attenuate AIB

Humidification [6, 14, 52] [70, 71] [18–20, 72] [30, 73–76]
Anticholinergics/ (+) [12, 70] [13] [18, 77] [50, 78–82]
vagotomy (-) [6, 7] [83]
α1-adrenergic agonists [84] [85, 86]
α1-antagonists [87, 89]
β2-adrenergic agonists [7] [70] [53, 90] [42, 78, 80, 91]
Ca++ antagonists (+) [94–96]

(-) [7] [92, 93] [62, 97, 98]
Methylxathines (+) [7] [21] [78, 99]

(-) [100]
Mast cell stabilizers [8, 12, 70] [54, 78, 79, 101]
Antihistamines (+) [8] [11, 87, 102]**

(-) [7] [87]*
Eicosanoid antagonists

Cyclooxygenase (+) [67] [18, 20] [102]
inhibitors (-) [7] [17] [11]
Thromboxane (+)
receptor antagonists (-) [103, 104]
Leukotriene receptor [67] [26, 101,
antagonists 105, 106]
Leukotriene bio- (+) [67] [107] [108]
synthesis inhibitors (-) [7]

Loop diuretics ++ [109–112]
Neuropeptide antagonists

Neurokinin receptor [69]
antagonists
Capsaicin [16, 29, 68]

O2 radical scavengers [16]
Airway cooling [113–115] [22, 116]

#:  did not examine postchallenge responses;  ?: data are suggestive but inconclusive; *: data for exercise-induced responses;  **:
data for hyperventilation-induced responses; (+): characteristic present or drug beneficial; (-): characteristic absent or drug not bene-
ficial;  ++: Omori and Freed, unpublished data.  AIB:  airflow-induced bronchoconstriction; BALF: bronchoalveolar lavage fluid.
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that during hyperpnoea, the total recovery of heat and
water during expiration was ~40 and 38% of the heat
and water lost during inspiration, respectively.  Their
model reveals that moving just one generation either
up or down the human tracheobronchial tree would alter
the local strength of this hydrothermal stimulus (i.e. the
amount of heat and water loss) by 40–60% [123]. 

Data from man [124] and dog [125] show that the site,
magnitude, and mechanisms of respiratory heat and water
loss vary with breathing pattern and the condition of
inspired gas.  However, if different breathing patterns
resulted in equivalent local net hydrothermal losses,
then the physiological response should be similar.  Thus,
the use of unidirectional hyperventilation in the canine
model would simply increase the stimulus strength at any
point along the bronchial tree. This is analogous to
increasing bidirectional hyperventilation (via an increase
in tidal volume) in guinea-pigs, which would also in-
crease stimulus penetration deeper into the lung [28].  In
stressing the analogy between man and dog, it is impor-
tant to note that the temperature changes that occur dur-
ing and after normal hyperventilation with subfreezing
air in 5th generation human bronchi (~3.5 mm in diam-
eter) are similar to the temperature changes that occur
during and after unidirectional hyperventilation with room
temperature air in canine bronchi of similar size [18,
126].  This is a result of using a bronchoscope to bypass
large airways and delivering dry room temperature air
directly into the lung periphery.  Thus, the local stimu-
lus strengths associated with these two different modes

of hyperventilation appear to be similar, as are the phys-
iological responses they produce.  Despite all of these
differences, and the fact that all animals are anaesthe-
tized and either tracheotomized or thoracotomized, their
airways respond to excessive cooling and drying in a
manner similar to that seen in humans with asthma (fig.
1).

The acute response

Time-course. In guinea-pigs [14], rabbits [8], and dogs
[58] AIB does not usually develop until after hyper-
pnoea stops.  In man, it can occur during exercise [127],
but is more common when exercise stops [23].  Ther-
mal [113, 114] and mechanical [14, 23] inhibition that
occurs during hyperventilation may account for this delay.
Once initiated, the time-course over which AIB deve-
lops and subsides in guinea-pigs, rabbits, and dogs is
similar to that seen in humans (fig. 1), and their res-
ponses to variations in stimulus strength and duration are
also analogous (table 1).  However, rabbits appear to be
less sensitive to dry air challenge than either guinea-pigs,
dogs, or asthmatic humans (fig. 1).  AIB also occurs in
cats [13] and monkeys [27].  Although RL was not record-
ed in cats for more than a few minutes after cold air
challenge, it fell to about 50% of maximum within 3 min
after rewarming occurred.  Thus, the time-course in this
species appears to be considerably shorter than in other
models, and may reflect differences in either the challenge
or the underlying mechanism.  In contrast,  AIB appears
to develop more slowly in monkeys, with maximum
changes in RL occurring around 25 min after exposure,
compared to the 2–10 min usually reported for guinea-
pig, rabbit, dog and man (fig. 1 and table 1).

Allergic component.  Although AIB and allergy appear
to be independent traits [35], increased bronchial res-
ponsiveness to exercise does occur after allergen provo-
cation in children with asthma [128].  The rabbit is unique
among animal models of AIB in that hyperventilation
with room temperature dry gas elicits significant airway
obstruction only in sensitized animals (fig. 1b).  Sensi-
tized rabbits were hyperresponsive to histamine, and
exhibited enhanced response to cold air when compared
to normal rabbits (table 1).  It is unknown whether sen-
sitization and allergen provocation would enhance AIB
in other animal models.

AIB-induced hvperreactivity.  The acute effect of expo-
sure to cool dry air on human airway responsiveness,
either at rest or during hyperventilation, is unclear.  Sev-
eral laboratories have reported that after exercise whilst
breathing cold, dry air neither normal nor asthmatic sub-
jects exhibited enhanced responsiveness to either inhaled
histamine or methacholine.  In contrast, other labora-
tories have reported that breathing cold dry air increa-
sed airway reactivity in normal and asthmatic subjects
(table 1).  Differences in patient population, methods of
exposure, or the methods used in evaluating pulmonary
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Fig. 2.  –  Measurement of peripheral airway resistance (Rp).  The dia-
gram depicts the tip of a bronchoscopy wedged in a 5.5 mm airway.
A 5F catheter protrudes from its port and is used to deliver 5% CO2
in air at 200 mL·min-1 into the wedged sublobar segment, and moni-
tor pressure at the tip of the bronchoscope (Pb).  Respiratory bron-
chioles and alveolar ducts are believed to provide the pathways for
collateral flow [121].  Rp (cmH2O·mL-1·s) is determined at functional
residual capacity, when Pb plateaus, and the pressure in the surround-
ing unobstructed lobe is assumed to equal zero. Pb was recorded as
follows:  a) the ventilator was stopped, sublobar airflow at this time
was 200 mL·min-1;  b) after Pb plateaued, the transducer was opened to
atmospheric pressure;  c) the recorded speed was slowed from 10 to 1
cm·min-1; d) airflow was increased to 1,500 mL·min-1 for 2 min, Pb

went off scale; and e) the gain was reduced by 50%; f) airflow was
reduced to 200 mL·min-1 and gain was increased to its original setting,
a gradual rise in end-expiratory Pb can be seen during the first 2 min
postchallenge; g) the recorder speed was increased; and h) the venti-
lator was stopped at functional residual capacity.  Note that Pb plateaued
at a higher level than when the ventilator was stopped at (a).  Zero is
checked at (i).  (Reproduced from FREED and co-workers [10]).



function may account for this discrepancy.  Post-AIB air-
way hyperreactivity has been investigated only in dogs,
which do not exhibit hyperreactivity after dry air chal-
lenge [10]. 

The refractory period

Asthmatic subjects with AIB can be classified as either
refractory or nonrefractory (table 1).  Individuals who
exhibit a refractory period experience less obstruction in
response to repetitive challenge.  The presence of a re-
fractory period appears to be independent of the mag-
nitude of obstruction provoked by the first challenge
[129], and inversely related to the time separating any
two consecutive challenges [31].  Studies examining the
effect of indomethacin in man [43, 44] and sensitized
rabbit [17] suggest that refractoriness to repeated bouts
of exercise and hyperpnoea, respectively, is dependent
on the generation of bronchodilating prostaglandins.
However, indomethacin appears to be ineffective in
blocking refractoriness to hyperpnoea in asthmatic sub-
jects [44].  This is one of the few inconsistencies that
distinguish exercise- from hyperpnoea-induced respon-
ses in man;  the other being the ability of antihistamine
to inhibit exercise- but not hyperpnoea-induced airway
obstruction [87].  In addition, although a histamine H2-
receptor antagonist had no effect on exercise-induced
refractoriness in humans [45], it abolished hyperpnoea-
induced refractoriness in rabbits [17].  These discrepan-
cies suggest that the refractory period in these two species
result from different underlying mechanisms.  Other stu-
dies of asthmatic subjects indicate that exercise-induced
refractoriness is associated with a leukotriene-induced
release of inhibitory prostaglandins [46], but it remains
to be determined if this potential interaction also influ-
ences hyperpnoea-induced refractoriness in rabbits.

It is important to note that refractoriness is expressed
in about half of the asthmatic patients that exhibit AIB
[47–49], and as such is not a universal characteristic of
the human condition.  BELCHER et a1. [48] reported that
40% of their asthmatic subjects were refractory to exer-
cise and hypertonic aerosol challenge, and were also
cross-refractory to these stimuli.  However, 60% of their
subjects were not refractory to either stimulus, and were
not cross-refractory to these stimuli.  Similar results were
reported for dogs, which were neither refractory nor
cross-refractory to dry air [18–20] and hypertonic aero-
sol challenges [10, 58].  If the mechanism responsible
for refractoriness is related to the initiation of AIB, then
nonrefractory guinea-pig, dog, and monkey models may
be relevant only to the subset of asthmatic humans who
are nonrefractory (table 1). 

Biochemical mediators recovered in bronchoalveolar
lavage fluid (BALF)

Although a variety of biochemical mediators have been
implicated in the development of AIB in humans and
animals (table 1), there is little direct evidence to sup-
port their role in the development of AIB.  PLISS et al.

[51] reported that isocapnic hyperpnoea increased the
concentrations of leukotrienes in BALF recovered from
asthmatic patients, although this was not confirmed in
similar studies by other investigators [130, 131].  Possi-
ble explanations for this apparent discrepancy will be
discussed under the subheading "Evidence for biochem-
ical mediators in the development of AIB".  It is impor-
tant to note that similar experiments performed in dogs
[9, 20, 21, 53] and guinea-pigs [52] did show that
eicosanoids were elevated immediately after hyperventi-
lation.

The late phase response

Although a decrease in airway function 3–13 h after
exercise is well-documented in asthmatic individuals
(table 1), the mechanism responsible for this delayed
response is the subject of great debate [66, 132, 133].
A cellular basis for this late event has not been demon-
strated in man, although neutrophil chemotactic activity
has been detected in the plasma of asthmatic subjects
during this response [134].  The fact that a purported
mast cell "stabilizing" drug attenuated the delayed res-
ponse to exercise [54] suggests that mediator release con-
tributes to its development,  which is believed to primarily
involve small airways [135].  A late increase in peri-
pheral airway resistance (Rp) in the canine model is analo-
gous to that reported in humans, and is characterized by
neutrophil and eosinophil infiltration, and an increased
concentration of leukotriene C4/D4 in BALF recovered
from dry air-exposed bronchi [9].

Hypertonic aerosol-induced bronchoconstriction (HAIB)

Numerous studies have revealed that hypertonic aero-
sol challenge produces varying degrees of airway obst-
ruction in asthmatic subjects, and these responses are
significantly correlated with AIB (table 1). There also
exists a strong positive correlation between HAIB and
AIB in dogs.  However, unlike AIB, HAIB in both spe-
cies normally occurs in the absence of airway cooling
and peaks immediately after challenge [10, 24, 58].  This
difference in time-course appears to be unrelated to stimu-
lus strength [10], but may result from the differential
activation or inactivation of biochemical pathways by
these two stimuli. The implications of these observa-
tions will be discussed under "Roles for airway cooling
and drying in the development of AIB". 

Morphological changes associated with AIB

Airway narrowing.  Hyperpnoea-induced airways con-
striction in guinea-pigs was directly measured via mor-
phometric analysis [15], and tantalum bronchography
[28].  Central airway narrowing was prominent after
mild hyperpnoea, and peripheral airway constriction oc-
curred after more severe challenge.  These findings are
consistent with the post-hyperpnoea partitioning of RL

A.N. FREED1774
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in man, suggesting mild central airway narrowing in
normal subjects [118, 119], and severe peripheral air-
way obstruction in asthmatic individuals [136, 137].  In
addition to airway narrowing, increases in pulmonary
tissue resistance and distortion appear to contribute to
AIB in guinea-pigs [15].  The relevance of these tissue
events to the development of AIB in other models and
man requires investigation.

Mucosal injury. Bronchoalveolar lavage (BAL) studies
of guinea-pigs, dogs and humans suggest that mucosal
injury is associated with AIB (table 1).  Morphometric
analysis of canine bronchi confirms this hyperpnoea-
induced mucosal damage [63, 64].  Increasing the flow
rate of dry air from 1,000 to 2,000 mL·min-1 increases
the magnitude of AIB, but only the higher flow rate
results in greater penetration of the dry air stimulus and
marked mucosal injury [63].  Warm-wet air attenuates
AIB in guinea-pigs, rabbits, dogs and man (table 1), and
based on BALF cell profile data [20], and image ana-
lysis of dry and wet air challenged bronchi in dogs [63],
reduces dry air-induced mucosal injury.  Pretreatment
with β-agonists also protect the canine mucosa from
injury when compared to untreated dry air challenged
segments (table 1).  Conditioning of the inspired air sim-
ply reduces the strength of the stimulus, whereas β-ago-
nists may decrease airway desiccation (and damage) by
increasing fluid flux across the bronchial mucosa [53,
138].

Mast cell degranulation.  Mast cell degranulation was
evident in bronchial biopsy specimens 3 h after asth-
matic subjects exercised [66].  Morphometric analyses
of canine bronchial tissues also revealed that mast cell
degranulation occurred either during or immediately after
hyperpnoea with dry air [64].  Numerous other studies
indirectly implicate mast cell degranulation in the deve-
lopment of AIB, and these will be discussed under the
subheading "Interventions that attenuate AIB".

Bronchovascular leakage. It is unknown whether or
not bronchovascular leakage occurs in humans during
AIB.  However, the fact that hyperpnoea with dry air
causes bronchovascular hyperpermeability in animals
(table 1) suggests that this association is likely to be
found in man.  Bronchovascular leakage represents a
useful subepithelial marker of perturbation in canine
peripheral airways [63].  In dogs, leakage occurs imme-
diately after hyperpnoea ceases, leucocyte infiltration
begins 1–2 h later, and both continue for at least 24 h
after the initial exposure [64].  Although few data exist
concerning the association between vascular leakage and
AIB, guinea-pig [67] and canine [64, 84] data suggest
that changes in bronchovascular permeability are un-
likely to contribute to the development of AIB.  It remains
to be determined whether or not these changes contribute
to the late response that is evident 5 h after dry air chal-
lenge in dogs [9].  This prolonged late response is of
particular interest in light of the hypothesized contri-
bution of persistent obstruction to the recurrence of asth-
ma attacks in humans [139].

Interventions that attenuate AIB

Pretreatment with anticholinergics, α1-adrenoreceptor
agonists and antagonists, β2-agonists, Ca++ antagonists,
methylxanthines, mast cell stabilizers, antihistamines,
cyclooxygenase inhibitors, thromboxane and leukotriene
receptor antagonists, leukotriene biosynthesis inhibitors,
loop diuretics (table 1), mu opioid receptor antagonist
[140], platelet-activating factor (PAF)-antagonist [141],
and corticosteroid [142] provide some asthmatic indi-
viduals with at least partial protection against AIB.
Although some of these effects result from either non-
specific or unknown modes of action, these varied and
sometimes contradictory findings suggest that AIB does
not result from a single mechanism in an individual asth-
matic, nor from the same mechanisms in all asthmatics.
Thus, differences in the mechanisms responsible for AIB
in different animal models may be useful in delineating
the mechanisms that contribute to the development of
AIB in the heterogeneous group of humans collectively
referred to as asthmatic.

Humidification.  As in asthmatic subjects, exercise or
hyperventilation with warm-humid air inhibits AIB in
every animal model studied (table 1).  Conditioning of
the inspired air apparently reduces the magnitude of the
stimulus and its penetration into the lung periphery.

Anticholinergics. Most studies indicate that a parasym-
pathetic reflex pathway plays a small but significant role
in the development of AIB in some asthmatic subjects
(table 1), and about 60% of all asthmatic children that
exhibit AIB benefit to some degree from treatment with
a parasympatholytic agent [78].  Although guinea-pigs
lack this parasympathetic component, rabbits, cats, and
dogs exhibit it to varying degrees:  AIB is mildly atte-
nuated in dogs, but completely abolished in rabbits and
cats, by either muscarinic antagonists or vagotomy (table
1).  This indicates that rabbits and cats are not suitable
for studying the nonvagal residual component that char-
acterizes AIB in human asthmatics.  The fact that a
parasympathetic component can only partially account
for AIB in some but not all asthmatic individuals fur-
ther suggests that rabbits and cats may provide a limit-
ed model for studying the human condition.  However,
within this context, these models will probably provide
important insights concerning the vagally-mediated com-
ponent of AIB.

α1-adrenergic agents. Considerable confusion surrounds
the role of α-adrenoceptor activity in AIB, because
both α-adrenergic agonist and antagonist drugs appear
to inhibit this response (table 1).  Early studies using
antagonists were based on the assumption that dry air-
induced stimulation of α1-receptors resulted in bron-
choconstriction.  Later studies using agonists focused on
their potential role in stimulating vasoconstriction [143],
which can theoretically inhibit AIB either by reducing
mucosal swelling or increasing mucus secretion.  The
former may reduce airway obstruction, whereas the lat-
ter may reduce evaporative water loss during challenge.



Some of these studies will be discussed in greater detail
under the subheading "Roles for airway and vascular
smooth muscle in the development of AIB".

β2-adrenergic agonists.  Beta2-adrenoreceptor agonists
are potent inhibitors of AIB in guinea-pigs,  rabbits,  dogs
and man (table 1).  These drugs are believed to act either
by reducing smooth muscle responsiveness, inhibiting
mediator production and release from effector cells, or
facilitating the replacement of water lost during expo-
sure to dry air [53].  Beta2-agonists will be discussed
again under the subheading:  "Roles for airway and vas-
cular smooth muscle in the development of AIB".

Calcium antagonists. Voltage sensitive calcium chan-
nel (VSCC) blocking drugs are completely ineffective
in dogs and guinea-pigs, and are at best inconsistent in
their ability to attenuate human AIB (table 1).  Some
human studies reveal that Ca++ antagonists either com-
pletely or partially inhibit AIB, whereas others directly
contradict these observations (table 1).  Even in studies
demonstrating statistically significant effects, not all indi-
viduals benefit from treatment [94–96].  Those that do,
may benefit from the drug's circulatory effects, which
could enhance either air-conditioning or mediator clear-
ance.

Methylxanthines. Studies of asthmatic humans, dogs
and guinea-pigs reveal that xanthine derivatives provide
moderate protection against AIB (table 1).  Although
their mode of action remains uncertain, methylxanthines
may inhibit phosphodiesterase, adenosine receptor, or
mast cell activity, and increase circulating catechola-
mines.  Aminophylline is ineffective in reducing either
mediator release or smooth muscle responsiveness in
dogs, but does elevate airway wall temperature during
hyperpnoea [21].  These data suggest that methylxan-
thines may, in part, inhibit AIB by reducing evaporative
heat and water loss during hyperpnoea.

Mast cell stabilizers. Disodium cromoglycate and nedo-
cromil sodium significantly inhibit AIB in asthmatic
subjects.  Rabbits, the only animal model in which cro-
molyn has been tested, also derive significant protection
against AIB from this drug (table 1).  These studies are
generally cited as evidence supporting a role for media-
tor release in the development of AIB.  However, in
addition to the purported efficacy of these drugs in "sta-
bilizing" mast cells and inhibiting mediator release, they
may also inhibit the afferent limb of a vagal reflex [144,
145].  This is particularly important in the rabbit model,
which is completely vagal-dependent.

Antihistamines.  Most but not all studies of asthmatic
subjects implicate a role for histamine in AIB (table 1).
Terfenadine inhibits AIB [102] and HAIB [146] simi-
larly.  Studies of allergic rabbits also implicate a role for
histamine in AIB (table 1).  However, chlorpheniramine
was used to inhibit H1-receptors in the rabbit [8], and
this drug can also inhibit vagal activity [147].  In con-
trast, AIB in guinea-pigs appears to be independent of
histamine (table 1).

Eicosanoid antagonists.  The mediation of AIB by meta-
bolites of arachidonic acid was first described in dogs,
and later confirmed in guinea-pigs and asthmatic humans.
Other studies have also implicated peptidoleukotrienes
in the development of AIB in these three species (table
1).  Although hyperpnoea-induced generation of eicosa-
noids may directly initiate AIB, recent experiments sug-
gest that eicosanoids may modulate AIB in guinea-pigs
by influencing airway C-fibre neuropeptide secretion
[67].

Loop diuretics.  The loop diuretic, furosemide, inhibits
AIB in humans and dogs when administered as an aero-
sol to the mucosal surface (table 1).  Furosemide may
do so by inhibiting airway sensory nerves [148], stabi-
lizing mast cells [149], stimulating prostaglandin release
[109], or producing local vasodilation [110].  In addi-
tion, it inhibits epithelial cell Na+-Cl- and Na+-K+-2Cl-
co-transport, and may provide protection against AIB by
reducing intraepithelial water loss.

Neuropeptide antagonists. Although no evidence yet
exists for the participation of neuropeptides in human
AIB, tachykinins appear to be key mediators of hyper-
pnoea-induced responses in guinea-pigs [68, 69].  Thus,
the endogenous release of tachykinins may also play an
important role in the development of AIB in other spe-
cies, including man.  However, the tracheobronchial tree
of guinea-pigs exhibit about 10 times more tachykinin
immunoreactivity than do human bronchi [150]. Tachy-
kinin receptors are sparsely distributed on the airway
smooth muscle and epithelium in man [151], and sub-
stance P is about 1,000 times less potent in isolated
human airway than in guinea-pig trachea [152].  Thus,
significant differences in the modulatory role of neu-
ropeptides may exist among different species.

Neurokinin (NK)-1 and NK-2 receptor antagonists
inhibit AIB in guinea-pigs by 50 and 70%, respectively
[69].  This and other studies suggest that dry gas hyper-
pnoea with 95% O2/5% CO2 causes bronchoconstric-
tion in guinea-pigs through the activation of tachykinin
receptors [29, 68].  Neither ganglionic blockade nor the
abolition of nerve impulse conduction alters AIB in this
model, suggesting that tachykinins are released directly
from afferent C-fibres [16].  The fact that NK-receptor
antagonists do not abolish AIB in guinea-pigs [69] sug-
gests that other mediators or mechanisms account for the
residual component in this model.  The magnitude of
AIB (measured as an increase over baseline resistance)
elicited from guinea-pigs hyperventilated with hyper-
oxic gas [6, 15] tends to be markedly greater than that
reported for either this species [7, 52], or other species
[8, 9, 12, 13], hyperventilated with normoxic gas (fig.
1).  This difference may result from the generation of
O2 radicals produced during hyperoxic hyperventilation.
O2 radicals appear to enhance AIB in guinea-pigs by
augmenting the release of tachykinins during hyperpnoea
[16].  However, the interaction between O2 radical pro-
duction and tachykinin release cannot account for the
residual component of AIB in this model.
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Mechanisms that contribute to the 
development of AIB

Roles for airway cooling and drying in the development
of AIB

Exercise, hyperventilation of dry air, and inhalation of
hypertonic aerosols produce similar responses in most
asthmatic subjects [24, 25, 59].  The fact that AIB cor-
relates with HAIB in human and canine airways (table
1) supports the hypothesis originally proposed by ANDERSON

et al. [30] that hyperpnoea-induced airway hyperosmo-
lality initiates AIB.  The fact that a hypertonic stimulus
causes mast cell mediator release in vitro [153] is con-
sistent with this hypothesis, although its effects in vivo

remain unclear [154, 155].  Data from man and dog
reveal that the stimulatory effects of evaporative water
loss may be counterbalanced by an inhibitory pathway
associated with airway cooling, and further alludes to the
complexity of this process (table 1).  Figure 3 shows that
when either asthmatic (fig. 3a) or canine bronchi (fig.
3b) are challenged and allowed to recover under normal
conditions, airway obstruction develops and peaks bet-
ween 2–6 min after hyperpnoea stops.  In contrast, when
airway cooling continues after hyperpnoea ceases, air-
way obstruction is significantly reduced in man and dog.
This suggests that both airway cooling and rewarming
may be necessary for the initiation of AIB [22]. How-
ever, AIB does not develop in canine airways when
cooling and rewarming occur in the absence of hyper-
pnoea-induced airway drying (fig. 4).
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Fig. 3.  –  a) Percentage change in forced expiratory volume in one
second (∆FEV1 %)  in asthmatic humans (n=8) during recovery from
cold air hyperpnoea while breathing room temperature (    ● ) or
cold (    ❍ ) air for about 10 min after challenge.  Vertical bar: 4
min of hyperpnoea with cold air;  horizontal bar:  approximate time
subjects breathed cold air after hyperpnoea ended.  (Data from MCFADDEN

et al. [22]).  b)  Sublobar  pressure (Pb) in canine bronchi (n=7) be-
fore and during recovery from dry air hyperpnoea at body temperature
(    ●     ) or when bronchi were cooled to 30°C (    ❍ ) during and
for 15 min after challenge.  Vertical bar: 2 min of hyperpnoea with
dry air; horizontal bar: time after hyperventilation that sublobar bronchi
were cooled. (Data from FREED and co-workers [113]).  Values are pre-
sented as mean±SEM.  *: p<0.05.
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Fig 4.  –  a)  Sublobar pressure (Pb) for consecutive exposures of the
same sublobar segment to either pulmonary perfusion with cold blood
(    ❍ ) or to dry air challenge (    ● ).  Vertical bar: 2 min peri-
od of exposure to either dry air or cold blood.  b) Airway wall tem-
peratures (taw) are recorded before, during, and after challenges shown
in (a).  Values are presented as mean±SEM, (n=6).  *: p<0.05.  (Data
from FREED and co-workers [113]).



Although one must be cautious in extrapolating results
from animals to humans, figures 1, 3 and 4 confirm that
canine and human airways respond similarly to hyper-
pnoea, and demonstrate that abrupt changes in airway
temperature are not a prerequisite for the initiation of
AIB.  In fact, data from adult man and dog (table 1) are
consistent with the hypothesis that airway cooling per se
inhibits hyperpnoea-induced airway obstruction dur-
ing challenge, possibly by reducing neuronal activity or
mediator release. However, SMITH et al. [156] were
unable to demonstrate any effect of temperature on exer-
cise-induced responses in children with asthma, sug-
gesting that this mechanism may not be a universal
characteristic of all subjects that exhibit AIB.

If drying alters periciliary, paracellular, or intracellu-
lar fluid osmolality to initiate AIB, and if cooling antag-
onizes this response, then the time course of AIB and
HAIB should be similar, and should be similarly antag-
onized by airway cooling. Although airway cooling
does inhibit canine AIB and HAIB [114], HAIB in man
[24] and dog [58, 114] appears to develop during and
not after the exposure.  The fact that transient airway
cooling during hypertonic aerosol challenge delays the
onset of HAIB in dogs [114] suggests that hyperpnoea-
induced cooling may delay the onset of AIB via the inhi-
bition of either mediator or neuronal activity.  This also
implies that dry air and hypertonic aerosol may activate
portions of the same regulatory pathway.  Interestingly,
atropine attenuates canine AIB [18] and HAIB [58] by
~30 and ~60%, respectively, and dry air challenge appears
to induce greater mediator release than that produced
by hypertonic aerosol challenge [10].  These observa-
tions imply that although AIB and HAIB may result from
the activation of common, pathways, dry air and hyper-
tonic stimuli differentially activate mediator release and
neuronal activity.

The role of dry air-induced mucosal injury, a charac-
teristic of AIB in guinea-pig, dog and man (table 1), has
been all but ignored as either a potential initiating or
contributing factor in the development of AIB.  Analy-
sis of cells recovered in BALF samples from dogs sug-
gest that exposure to hypertonic aerosols may also produce
mucosal injury [10].  It is possible that either direct
mucosal cell stimulation or damage may independently
initiate AIB via the release of epithelial cell-derived medi-
ators, and that airway cooling may moderate dry air-
induced injury by "stabilizing" ciliated, secretory, and
mediator releasing cells. 

Evidence for biochemical mediators in the development
of AIB

The role of biochemical mediators in the development
of hyperpnoea- and exercise-induced asthma remains
controversial.  Although a post-hyperpnoea increase in
BALF eicosanoids recovered from guinea-pigs, dogs, and
asthmatic humans does not address the issue of cause
and effect, it does implicate mediator activity in the devel-
opment of AIB (table 1).  However, other studies of asth-
matic subjects, notably those involving exercise, fail to

detect any change in mast cell-derived mediators during
AIB [130, 131].  Although bronchial blood flow increa-
ses during hyperventilation [157–159], exercise may
increase it even further.  In comparison to the post-hyper-
pnoea condition, an exercise-enhanced bronchial cir-
culation may augment mediator clearance [160, 161], and
account for the discrepancy between exercise- and hyper-
pnoea-based studies.  Other discrepancies, such as those
between BALF mediator data and the action of specific
mediator antagonists (table 1), emphasize the fact that
BALF-derived data may not adequately reflect mediator
activity within the bronchial mucosa.  Thus, the histo-
logical documentation of mast cell degranulation [64, 66]
and the reported efficacy of mast cell stabilizing, bio-
synthesis inhibiting, and receptor blocking drugs in atte-
nuating AIB in man, dog, rabbit, and guinea-pig (table
1) represent the strongest evidence that biochemical medi-
ators contribute to the development of AIB.

Although an early study reported that pretreatment
with aerosolized vasoactive intestinal peptide (VIP) did
not protect asthmatics against AIB, VIP did tend to
increase peak expiratory flow rates after exercise [162],
and inhibited bronchial reactivity to histamine [163].
These observations, in conjunction with the fact that
exogenous VIP inhibits canine AIB [77], suggest that the
endogenous release of VIP may normally antagonize AIB.
The fact that tryptase can rapidly hydrolyse VIP sug-
gests that the dry air-induced release of this mast cell
enzyme may also contribute to AIB [164].  Although
tryptase inactivates VIP it does not hydrolyse tachykin-
ins [164], and as such may enhance the role of these
mediators in AIB.  Endothelin is another peptide that
may contribute to AIB.  It is produced by epithelium and
endothelium alike, and can increase smooth muscle tone
and microvascular permeability [165].  Other potential
contributors include numerous cytokines,  which are pro-
duced by stimulated airway epithelial cells [166, 167],
and are involved in many aspects of the acute-phase
response to infection and injury [168].  Finally, the fact
that nitric oxide (NO) can attenuate methacholine-induced
bronchoconstriction in guinea-pigs and man [169, 170],
and NO synthesis inhibitors can enhance airway reac-
tivity in guinea-pigs [171], raises questions concerning
its potential role in AIB.  The development and use of
highly specific receptor blockers or enzyme inhibitors
will ultimately determine the direct and indirect actions
of these substances, and the consequences of their meta-
bolic activities on the development of AIB.

Roles for airway smooth muscle and vasculature in the
development of AIB

Beta2-adrenoreceptor agonists are among the most ef-
fective inhibitors of AIB (table 1), and are believed to
act primarily by reducing smooth muscle responsive-
ness.  It is the efficacy with which these drugs protect
against AIB and the speed with which AIB develops and
subsides (table 1) that have convinced many investi-
gators that mediator-induced smooth muscle contraction
is the primary cause of hyperpnoea-induced bronchial
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obstruction. However, MCFADDEN et al. [22] speculated
that airway obstruction resulted from cooling-induced
vasoconstriction of the bronchial vasculature.   This hypo-
thesis was based on the assumptions that airway cool-
ing transiently decreased bronchial blood flow and that
a rewarming-induced hyperaemia resulted in broncho-
vascular engorgement and airway oedema that narrowed
the bronchial lumen. The use of intravascular radio-
labelled microspheres to measure airway blood flow in
dogs and sheep revealed that bronchial blood flow increa-
sed during periods of hyperpnoea with dry air [157–
159].  BAILE et al. [157] found that hyperventilation with
warm, dry air produced a greater increase in airway
blood flow than hyperventilation with cold, dry air, and
suggested that airway drying was the primary stimulus
for increasing blood flow.  The local release of vasodila-
tory prostaglandins and neuropeptides was implicated in
the modulation of this vascular response to dry air [158].
Although airway drying has been hypothesized to stimu-
late airway constriction via an increase in airway sur-
face fluid osmolality [30], delivering a hypertonic aerosol
into the airway lumen did not alter tracheobronchial
blood flow in dogs [172].  This suggests that if dry air-
induced hyperosmolality increased tracheobronchial blood
flow, then either its site of action or access differs from
that resulting from a hypertonic aerosol challenge.  Although
animal data do not support the original hypothesis that
cooling induces airway vasoconstriction, they do not rule
out the possibility that bronchovascular hyperaemia and
oedema formation contributes to the development of AIB
[22].

If bronchovascular hyperaemia does contribute to the
development of AIB, then α1-adrenoreceptor agonists,
which presumably cause bronchovascular constriction,
should inhibit airway obstruction.  Pretreatment with the
α1-agonist methoxamine (MX) did protect individuals
exhibiting mild airway obstruction, but failed to alter the
more severe responses to exercise challenge [85].  MX
was not very impressive in attenuating AIB in dogs either
[84].  Inhalation of noradrenaline (NA) produced more
impressive results:  GILBERT and McFADDEN [86] sug-
gested that the magnitude of cooling was linearly relat-
ed to bronchial narrowing, and that the drug-induced
reduction of airway mucosal blood flow limited the
obstructive process.  However, similar experiments per-
formed in β-blocked dogs suggest that NA attenuated
human AIB by inhibiting airway smooth muscle con-
traction, and not by stimulating bronchial vasoconstric-
tion [84].  In addition, BLOSSER et al. [173] revealed that
when bronchial blood flow in sheep was elevated 300%
above baseline for 3 h, despite vascular engorgement and
oedema formation,  airway resistance remained unchang-
ed [173].

In an attempt to demonstrate that vascular engorge-
ment and fluid extravasation could influence hyperpnoea-
induced alterations in the pulmonary function of asthmatic
subjects, experiments were performed in which either
blood volume was acutely shifted from the legs into the
thorax via anti-shock trousers [174], or warm saline
was rapidly infused to expand intravascular volume [175].
In asthmatic subjects, volume expansion with saline

produced pulmonary obstruction similar to that seen with
hyperventilation. This obstruction was blunted when
saline was infused before hyperpnoea, and was enhanced
when saline was infused late in the challenge [175].  The
shifting of blood into the thorax during hyperventilation
also attenuated the obstructive response and slowed the
rate of rewarming [174].  Similar volume expansion stud-
ies were performed in dogs:  loading with normal saline
increased pulmonary capillary wedge pressure (PCWP)
and increased Rp. Unlike saline, Dextran 70 (a poly-
saccharide which is hyperoncotic to plasma) did not
increase Rp when infused at a rate that produced simi-
lar changes in PCWP [176].

These results suggested that oedema formation and not
vascular engorgement was responsible for the rise in Rp
caused by saline infusion.  In addition, as reported in
asthmatic subjects [175], hyperpnoea with dry air prior
to saline infusion enhanced airway obstruction [176].
These observations suggest that any protection derived
by expanding the pulmonary fluid reservoir is time- or
injury-dependent. These data are consistent with the
hypothesis that hyperpnoea-induced bronchovascular leak-
age inhibits AIB by counterbalancing the evaporative water
loss that occurs during and immediately after exertion.
If this is correct, then intravascular plasma expansion
before challenge should contribute to the maintenance
of airway fluid balance during hyperventilation.  If hy-
perpnoea with dry air increases microvascular perme-
ability, as suggested, then volume loading after hyperpnoea
should exacerbate AIB by contributing to airway oede-
ma [175].  Thus, although both intravascular volume
expansion and hyperpnoea are stimuli that can alter air-
way function, there is no evidence to suggest that the
mechanisms responsible for fluid loading-induced air-
way obstruction contribute to the development of AIB.

Studies examining dry air-induced bronchovascular
leakage in guinea-pigs [68] and dogs [63] suggest that a
dry air-induced increase in bronchial blood flow [157,
158] is accompanied by an increase in bronchovascular
permeability and a concomitant movement of extrava-
sated fluid into the airway wall.  Vascular congestion
may increase capillary hydrostatic pressure via the bronchial
circulation, increase fluid exudation, and cause airway
oedema [173, 177, 178].  However, the fact that bron-
chovascular hyperpermeability in dogs persists for at least
24 h after hyperpnoea [64] suggests that the transient
and reproducible bronchoconstriction that characterizes
AIB in this model [19] is unlikely to be a consequence
of this ongoing vascular response.  Morphometric analy-
sis of guinea-pig bronchi further suggests that smooth
muscle constriction, and not airway wall oedema, is
responsible for hyperpnoea-induced airway narrowing
[15].  In addition, although eicosanoid and tachykinin
antagonists in guinea-pigs and β2-receptor agonists in
dogs significantly attenuate AIB (table 1), they do not
alter hyperpnoea-induced vascular leakage in these species
[67, 69, 179].  Finally, ligation of the bronchial artery
during hyperpnoea abolishes bronchovascular leakage
and increases mucosal injury, but fails to affect hyper-
pnoea-induced airway obstruction in dogs [65].  This
finding represents the first direct demonstration that blood



flow within the bronchial circulation does not determine
the magnitude of AIB.  Thus, AIB and bronchovascular
leakage appear to be independent events.

Considering the dearth of data directly demonstrating
a role for the bronchial circulation in the development
of AIB, it seems reasonable to hypothesize that the air-
way and vascular responses to dehydration may act-
ually protect the bronchial mucosa from acute injury
[180].  The fact that excessive airway drying stimulates
secretory and mast cell degranulation, and results in
mucus secretion, smooth muscle constriction and bron-
chovascular hyperpermeability in normal canine bronchi
[63, 64] suggests that, under appropriate conditions, these
events may also occur in normal humans.  An increase
in smooth muscle tone would narrow the airway lumen,
and not only reduce the penetration of cool dry air, but
reduce the mucosal surface area exposed to this insult.
Figures 3 and 4 reminds us that in vivo cooling inhibits
dry air-induced constriction of canine and human air-
ways, and under normal circumstances may provide neg-
ative feedback to limit the development of AIB.  The
fact that during a post-exercise recovery period the tra-
cheae of normal subjects rewarm more slowly than those
of asthmatic individuals [181] is consistent with the
hypothesis that airway cooling modulates smooth mus-
cle responsiveness in normal man. With regard to air-
way dehydration, bronchovascular leakage may replace
water lost from the mucosa, which in turn would help
to maintain mucosal hydration above a critical level.
Alternatively, assuming that the hyperpnoea-induced
increase in bronchial blood flow [157–159] was accom-
panied by an increase in bronchovascular permeability
(table 1), movement of extravasated fluid towards the
airway lumen may increase the clearance of mediators
[160, 161] released either during or after hyperpnoea.  It
is interesting to speculate that the high prevalence of
asthma in endurance athletes [182, 183] is a result of
repeatedly overwhelming the mechanisms that protect
against dry air-induced mucosal injury.   If repeated injury
in susceptible individuals results in chronic inflamma-
tion, then repeated exposure to dry air may contribute to
the pathogenesis of asthma.  

In conclusion, exercise, hyperpnoea, or exposure to
cold dry air increases airway resistance and damages the
bronchial mucosa in animals and man.  Exposure to dry
air also increases bronchovascular permeability in guinea-
pig and dog, and there is little reason to believe that this
association does not occur in humans.  Data from ani-
mal and human studies suggest that AIB and bron-
chovascular leakage are a consequence of two independent
mechanisms.  Instead of contributing to the development
of AIB, it appears that bronchovascular leakage may
protect the airway mucosa from dry air-induced injury.
In addition, human and animal studies reveal that airway
cooling can attenuate AIB, and may do so by inhibiting
either neuronal activity or mediator production and re-
lease.  Finally, there is strong evidence implicating a
variety of biochemical mediators in the initiation of AIB,
although it is unclear at this time which mediators are a
consequence of and which contribute to the development
of either AIB or vascular hyperpermeability.  The fact

that AIB can occur in animals and normal man suggests
that asthmatic subjects exhibit an enhanced version of a
typical mammalian response to airway desiccation. If
this is correct, then understanding the mechanisms respon-
sible for AIB in animals and normal humans will pro-
vide important insights into its aetiology in asthmatic
subjects.
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