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ABSTRACT:  The underlying mechanisms of bronchial obstruction in asthma are
complex.  Both bronchospasm and bronchial oedema are thought to play pivotal
roles in asthma, but their respective importance in a given asthmatic individual is
unknown.  To address this question, we assessed the effects of pretreatment with
inhaled methoxamine, a potent α1-adrenoceptor agonist, on bronchial response to
inhaled histamine in 10 asthmatic subjects.

The study was conducted according to a double-blind, cross-over, randomized
and placebo-controlled design.  In each subject, dose-response curves for the effects
on forced expiratory volume in one second (FEV1) of serially doubling doses of
inhaled histamine were obtained on three different days, 15 min after pretreatment
with either methoxamine (10 mg) or duplicated placebo.  Histamine, first dose 100
µg (543 nmol), was delivered by a breath-activated dosimeter every 5 min.  FEV1

was measured in triplicate after each dose and the largest value was retained.
There was no difference in baseline and prechallenge FEV1 after placebo and

methoxamine. Mean coefficient of variation of decrease in FEV1 induced by hista-
mine on the two placebo days was 6.7±2%.  On average, the bronchial responses
to histamine were not modified by pretreatment with methoxamine as compared
to placebo (∆FEV1= 0.83±0.14 l on methoxamine versus 0.85±0.11 l and 0.86±0.13 l
on the two placebo days).  However, using 95% confidence intervals of repeated
measurements, analysis of individual results showed that the histamine-induced fall
in FEV1 was significantly reduced by pretreatment with methoxamine in three
subjects (Nos 3, 8 and 10); whereas, it was enhanced in three subjects (Nos 1, 4 and
9), and remained unchanged in the remaining four.

We conclude that the effects of methoxamine on the bronchial response to hista-
mine are highly variable among asthmatic subjects.  Methoxamine and histamine
both cause contraction of bronchial smooth muscle, whereas methoxamine opposes
the action of histamine in causing airways oedema.  Therefore, we submit that his-
tamine induced bronchial obstruction is reduced by methoxamine in asthmatic
subjects in whom airflow obstruction is due mainly to bronchial oedema, whereas
it is aggravated in patients with predominant bronchospasm. 
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Airways narrowing in asthmatic subjects is not only
caused by bronchospasm.  There is now compelling evi-
dence to suggest that mucosal and submucosal bronchial
oedema is also instrumental in reducing airways patency
[1, 2], thus causing airflow obstruction.  Conditions
which increase bronchial blood flow and microvascular
leakage are likely to favour bronchial oedema [3, 4];
whereas, it is thereotically possible to lessen the degree
of bronchial obstruction by reducing bronchial blood
flow and microvascular permeability [5].

Methoxamine is an α1-adrenergic agonist [6] that
can, through stimulation of postjunctional α1-adreno-
ceptors, contract bronchial smooth muscle [7, 8], reduce
bronchial blood flow [9, 10], and inhibit microvascular
leakage [11–13].  We have previously demonstrated that

pretreatment with inhaled methoxamine is effective against
methacholine-induced bronchial obstruction in patients
with left ventricular failure [14], and in the prevention
of exercise-induced asthma of some teenagers suffering
from mild asthma [15].  Recent data also suggest that
methoxamine reduces the level of maximal airway nar-
rowing induced by methacholine in young adults with
asthma [16].  Over all, these results are best explained
by the actions of methoxamine on the airways vascular
bed rather than on bronchial smooth muscle.

Histamine is a potent agonist that causes broncho-
constriction [17], increase in bronchial blood flow [18,
19], and microvascular leakage of airways [11]. All
these effects are known to contribute to airflow obstruc-
tion.  However, we have previously suggested that the
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respective importance of these factors may vary greatly
among asthmatic subjects [15]; and this variability re-
mains to be assessed.

By studying the effect of pretreatment of inhaled me-
thoxamine on the bronchial response to histamine, our
aim was to assess the respective contribution of bron-
chial oedema and bronchospasm in narrowing the air-
ways of asthmatic subjects.  We hypothesized that if
bronchial oedema was predominant, methoxamine, by
reducing bronchial blood flow and microvascular leak-
age induced by histamine, should have beneficial ef-
fects in these subjects.  Conversely, if bronchospasm was
the main factor, methoxamine, by its agonist action
on bronchial smooth muscle, would then potentiate
histamine-induced bronchial obstruction.

Methods

Subjects

We studied 10 nonsmoking subjects (3 females and 7
males) aged 20–25 yrs (mean 23 yrs).  All subjects had
mild asthma, as evidenced by at least one asthma crisis
in the previous 6 months, a personal history of atopy,
and known bronchial hyperresponsiveness to inhaled
histamine [20, 21].  All subjects had normal resting lung
function, with mean forced expiratory volume in one
second (FEV1) 3.78±0.24 l (92±5% pred), range 2.77
–5.37 l (72–115% pred) that did not significantly vary
during the study.  None of the subjects was receiving
anti-asthma medication on a regular basis, although
some of them made occasional use of inhaled β2-adren-
ergic agonists and/or cromoglycate.  All therapy was
suspended at least 72 h before each study, according to
usual recommendations [22].  None of the subjects had
suffered from an acute respiratory tract infection dur-
ing the 6 weeks preceding the tests.  The study was ap-
proved by the Ethics Committee of our Medical  School,
and informed consent was obtained from each subject
who volunteered for the study.

Outline of the study

Each subject was studied on three different days at
least 72 h apart, with an interval between the first and
the last study day of less than 2 weeks.  On each study
day and at the same time of day, a dose-response curve
for the effects on FEV1 of serially doubling doses of
inhaled histamine was obtained after pretreatment with
either placebo or methoxamine.  The study day on
placebo was duplicated, in order to assess reproduci-
bility of bronchial responses to histamine.  The study
was double-blind and the three study days were ran-
domly allocated.  All subjects were asked to abstain  from
drinking tea or coffee between the preceding evening and
the end of each trial day.

Each trial day started with the measurement of base-
line FEV1, before and after inhalation of two doses of

nebulized saline (0.15 M NaCl).  Variation of less than
5% between pre- and postsaline values was required to
allow the subject to enter the trial.  Immediately after-
wards, the subject inhaled methoxamine or placebo.
After an interval of 15 min, FEV1 was measured again
as a post-treatment value and histamine challenge was
then started.  At either the highest dose of histamine, or
the dose for which there was a fall of FEV1 ≥20% from
baseline, the challenge was stopped and the subject in-
haled two puffs (2 × 100 µg) of salbutamol.  FEV1 was
determined again 10 min later to assess reversibility
of histamine-induced bronchial obstruction.

Technical details

Spirometric measurements. To avoid any operator bias
in the measurement of FEV1, we used an automated elec-
tronic spirometer (Autospiro AS 500, Minato, Medical
Science Co., Osaka, Japan), which was calibrated with
a 3 l syringe at least once a week, and in previous stud-
ies produced  FEV1 values comparable to those obtained
with a water-sealed spirometer [20, 21]. At all time-
points, FEV1 was measured in triplicate, and the largest
value was retained.

Inhalation procedures. Methoxamine and histamine were
administered with a breath-activated dosimeter (Rosen-
thal-French, model D-2A, Laboratory for Applied Im-
munology, Baltimore, MD, USA) and a nebulizer (No.
646, DeVilbiss Co., Somerset, Pa, USA).  The aerosol
was produced by an oxygen flow at a pressure of 1.38
kPa, and was inhaled during tidal breathing with the
patient's nose occluded.  Each activation of the dosime-
ter delivered a preset quantity of nebulized solution
(output 120 µl·min-1) in order to deliver the required
amount of either methoxamine or histamine.  Volume
history was standardized by having each participant
inhale from functional residual capacity to total lung
capacity.  Methoxamine hydrochloride (MW 247.5 g)
was diluted in 0.15 M NaCl at a concentration (W/V)
of 40 g·l-1. Osmolarity of the solution was 300 mosm·l-1,
and pH 7.  The dose of methoxamine delivered to each
subject was 10 mg.  The histamine challenge tests were
performed according to standard recommendations [23].
Histamine dichloride (MW 184 g) was diluted in 0.15
M NaCl at a concentration of 10 g·l-1.  The first dose of
histamine delivered was 100 µg (543 nmol).  There-
after, one to four serially doubling doses (2–16 times
the initial dose) were administered at intervals of 5 min,
until a fall in FEV1 ≥20% from prechallenge FEV1 was
reached.  A cumulative dose of 3,100 µg (8,688 nmol)
of histamine was chosen as the end-point, even if a fall
in FEV1 ≥20% could not be achieved on some occasions,
as we have previously noticed that higher doses of hista-
mine might cause unpleasant side-effects such as intense
headache and facial flush in some subjects.  Provoca-
tive dose of histamine (PD10) was calculated for each
patient on each study day from the percentage change
from prechallenge FEV1 versus log10 cumulative dose of
histamine by linear interpolation.
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Statistical analysis

Homogeneity of baseline FEV1 on the three study
days, and before and after inhalation of 0.15 M NaCl,
was tested by a two-way analysis of variance (ANOVA)
[24]. Post-treatment values of FEV1 obtained 15 min
after methoxamine or placebo were compared to base-
line values by a two-way ANOVA.  The nonparametric
Friedman test [24] was used to compare PD10 and the
maximal fall in FEV1 (∆FEV1), expressed as the differ-
ence between baseline FEV1 and the lowest FEV1 ob-
tained at the highest common dose of histamine for
each patient on the three study days.  Ninety five per-
cent confidence interval (95% CI) of repeated measure-
ments of PD10 and ∆FEV1 on the two placebo days were
determined for each individual (table 1).  Pretreatment
with methoxamine was deemed to have an effect when
both ∆FEV1 and PD10 measured on the methoxamine
study day exceeded the 95% CI limits on placebo peri-
ods.  From this, three subgroups of subjects were indi-
vidualized, according to whether methoxamine caused a
greater, a smaller, or no change in bronchial respon-
siveness to histamine as compared with the duplicated
placebo periods.  Analysis of variance was again applied
to assess statistical significance between methoxamine
and placebo within each of the three subgroups.  Correl-
ation was sought using simple linear regression bet-
ween the degree of bronchial reversibility, as measured
by the increase in FEV1 after salbutamol over baseline
FEV1, (bronchodilatory index), and the effect of meth-
oxamine on bronchial responsiveness to histamine, as
measured by the difference between the mean of the low-
est FEV1 obtained on the two placebo days (P1 and P2)
and the lowest FEV1 obtained on methoxamine (Mx)
(methoxamine index), according to the following for-
mula:

[(P1 + P2)/ 2 ] - Mx

Thus, a positive value for this difference reflects a larger
fall in FEV1 on methoxamine as compared to placebo,

i.e. an increased bronchial responsiveness, whereas a
negative value reflects a decreased responsiveness to his-
tamine.

All results are expressed as mean±SEM.  Values of
p<0.05 were considered statistically significant.

Results

Group-average results

There was no difference in baseline FEV1 on methox-
amine (3.75±0.25 l)  and the two placebo days (3.75±0.23
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Table 1.  –  Individual maximal fall in FEV1 and PD10 measured on the three study days

∆FEV1*  l 95%  CI# PD10 µg 95% CI#

Subject
No. P1 P2 Mx P1 P2 Mx

1 0.63 0.37 1.47 (0.25–0.75) 173 294 60 (115–352)
2 0.57 0.33 0.68 (0.21–0.69) 48 79 37 (33–94)
3 0.83 0.89 0.48 (0.80–0.92) 47 25 62 (14–58)
4 0.60 0.75 0.98 (0.53–0.82) 200 205 123 (198–207)
5 1.00 1.62 1.20 (0.70–1.92) 36 22 35 (15–43)
6 1.08 0.85 1.12 (0.74–1.19) 233 137 178 (91–279)
7 0.40 0.65 0.50 (0.28–0.77) 2860 2213 2151 (1902–3171)
8 0.97 0.77 0.22 (0.67–1.07) 1051 2255 >3100 (473–2833)
9 0.77 0.85 1.27 (0.73–0.89) 38 39 34 (38–39)

10 1.67 1.53 0.42 (1.46–1.74) 169 214 2191 (147–236)

*: ∆FEV1 is the difference between baseline FEV1 and FEV1 obtained at the highest common dose of histamine on the three study
days.  #: for values on the two days on placebo treatment.  FEV1: forced expiratory volume in one second;  95% CI: 95% confi-
dence interval;  P1 and P2: placebo days 1 and 2;  Mx: methoxamine; PD10: provocative dose of histamine calculated from the
percentage change from prechallenge FEV1 versus log10 cumulative dose of histamine by linear interpolation.  
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Fig. 1.  –  Average dose-response curves for the effects on FEV1 (%
baseline) of successive doubling doses of histamine (1=100 µg; 16=
1,600 µg) after pretreatment with methoxamine (  ● ) or placebo 1 and
2 (   ❍    and    ❏ , respectively).  B and PT: FEV1 measured at
baseline and 15 min after pretreatment with methoxamine or place-
bo.  Numbers in brackets indicate the number of subjects actually
tested with a given cumulative dose of inhaled histamine.  Note that
the vertical axis is cut off from zero.  FEV1: forced expiratory vol-
ume in one second.
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Analysis of individual ∆FEV1 and PD10 (table 1) showed
that three subjects (Nos. 1, 4 and 9) had increased res-
ponsiveness to histamine (higher ∆FEV1 and lower PD10)
after pretreatment with methoxamine as compared with
the two placebo periods (p<0.05) (table 1 and fig. 3b).
Decreased responsiveness (lower ∆FEV1 and higher
PD10) was found in three subjects (Nos. 3, 8 and 10)
(table 1 and fig. 3c).  In the four remaining subjects (Nos.
2, 5, 6 and 7), methoxamine was deemed having no
effect on bronchial response to histamine as ∆FEV1

and PD10 obtained on the methoxamine day were with-
in the 95% CI of the two placebo days (table 1 and fig.
3a).

Bronchial reversibility

Significant correlation was found between the degree
of bronchial reversibility (bronchodilatory index) and the
effect of methoxamine on bronchial responsiveness to
histamine (methoxamine index) (r=0.69; p<0.05), (fig.
4).  Patients in whom responsiveness to histamine was
increased by methoxamine also had the largest bron-
chodilatory response to salbutamol.
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Fig. 2.  –  Individual dose-response curves, after pretreatment with methoxamine (    ● ) or placebo ( ❍,  ❏).    See legend to figure 1 for full
explanation.

and 3.76±0.26 l, respectively).  On average, there was no
modification in resting prechallenge FEV1 measured 15
min after inhalation of either methoxamine (3.61±0.26 l)
or 0.15 M NaCl on placebo days (3.74±0.25 and 3.75±
0.25 l, respectively).  Comparison of group-average
dose-response curves to histamine obtained on methox-
amine or placebo showed no significant difference between
the three curves (fig. 1).  Similarly, maximal fall in FEV1

(∆FEV1) at the highest common dose of histamine ob-
tained on the methoxamine day (0.83±0.14 l) did not sig-
nificantly differ from those obtained on the two placebo
days (0.85±0.11 and 0.86±0.13 l, respectively).

Individual results

Individual results showed a highly variable pattern of
response among subjects when looking at the dose-response
curve obtained on methoxamine as compared to the two
dose-response curves obtained on placebo (fig. 2).  The lat-
ters were, however, superimposable (coefficient of varia-
tion ranging 2.4–7.8%) in all but one subject (No. 5), in
whom the coefficient of variation between the two pla-
cebo days was 23.6%.
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Discussion

The main finding of this study is that pretreatment with
inhaled methoxamine did not, on average, alter the
bronchial response to histamine in subjects suffering
from mild asthma.  There were, however, marked dif-
ferences between subjects.  Indeed, histamine-induced
bronchial obstruction was reduced by pretreatment with
methoxamine in three subjects, aggravated in three, and
remained apparently unaffected in the remaining four
subjects.

Design of the study, i.e. inhalation of 10 mg of methox-
amine 15 min prior to the histamine challenge, has been
chosen in accordance with results of our previous stud-
ies [14, 15].  Indeed, inhalation of methoxamine, used
at the same dose and the same interval, was effective in
preventing methacholine-induced bronchial obstruction
in patients with left ventricular failure [14], exercise-
induced asthma in teenagers [15], and maximal airway
narrowing to methacholine in atopic asthmatic adults
[16].  A second placebo day was studied to test the
intraindividual reproducibility of dose-response curves
to histamine.  The consistent superimposable slope of
the two dose-response curves on placebo allows us to
rule out any possible bias due to random daily variation
of nonspecific bronchial hyperreactivity in all but one
subject (No. 5).  It seems, therefore, that any change in
the slope or the end-point of the curves observed after
methoxamine is more likely to be the result of pharma-
cological effects of the latter rather than intraindivi-
dual variation of bronchial responsiveness to histamine.

Methoxamine is one of the selective agonists for α1,-
adrenoceptors [6] that may have various effects on human
airways.  Those agonists contract isolated bronchial
smooth muscle [7, 8], enhance in vitro secretion of air-
ways submucosal glands [25], and facilitate histamine
release from sensitized human lung tissue [26].  These
effects probably account for the development of bron-
chial obstruction ascribed to stimulation of α1-adreno-
ceptors in some asthmatic subjects [7, 27–29].  They are
also consistent with reported beneficial effects of vari-
ous α1-adrenoceptor antagonists in asthma [30–32].
However, neither the consistency of α1-adrenoceptor
agonists in causing bronchial obstruction nor the speci-
ficity of α1-adrenoceptor antagonists to prevent it are un-
animously recognized [33, 34], and there is debate as to
the relevance of using α1-adrenoceptors blocking drugs
in asthma [34].

Controversies about the bronchoconstrictor effects of
α1-adrenoceptor agonists probably relate to the fact that
their potential effects on the bronchial circulation and
microvascular permeability have been somewhat over-
looked.  Alpha1-adrenoceptor agonists have vascular
effects that can reduce bronchial blood flow [9, 10], and
inhibit microvascular leakage of airways [11, 12].  It is,
therefore, reasonable to predict beneficial effects of
α1-adrenoceptor agonists in conditions where bronchial
oedema is likely to occur.  Indeed, we have shown that
pretreatment with inhaled methoxamine could either
reduce or suppress bronchial obstruction induced by
methacholine in patients with left heart failure [14], and
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partially prevent exercise-induced asthma in teenagers
[15].  Recent data from a study by CHEUNG et al. [16]
are also consistent with a beneficial effect of methox-
amine in reducing methacholine-induced maximal air-
way narrowing in asthma.  In all these conditions, either
direct or circumstantial evidence of presence of oedema
in the airways has been provided [35–37].  However, an
acute asthma crisis occurred with inhalation of methox-
amine in one subject from our second study [15], high-
lighting differences among individuals in response to
bronchial α1-adrenoceptor stimulation.

Histamine has several pharmacological effects that may
contribute to narrow the airways of asthmatic subjects.
It contracts isolated bronchial smooth muscle [17], increas-
es bronchial blood flow in a variety of experimental con-
ditions [18, 19], enhances mucus secretion from cultured
cells [38], and favours microvascular leakage to large
molecules in the airways [11].

Comparison of their pharmacological properties indi-
cates that histamine and methoxamine are similar with
regard to their effects on bronchial smooth muscle and
glands. However, they strongly differ and even have
opposite effects upon the bronchial vasculature.  Indeed,
as a potent vasoconstrictor, not only could methox-
amine reduce the increased bronchial blood flow, but it
might also prevent the occurrence of microvascular leak-
age caused by histamine and, as a result, lessen the degree
of airways oedema.  This is probably the explanation for
the beneficial effects of methoxamine in subjects Nos.
3, 8 and 10.  By contrast, the aggravation of histamine-
induced bronchial obstruction caused by pretreatment
with methoxamine in subjects Nos. 1, 4 and 9 is proba-
bly a reflection of predominant bronchospasm, as both
agonists are acting in concert causing contraction of
bronchial smooth muscle.  Alternatively, by reducing
mucosal blood flow, methoxamine may impede the clear-
ance of histamine from the airways.  As a result, this
might increase local concentrations of histamine and,
therefore, potentiate its effects upon various target cells
in the airways. 

Subjects in whom salbutamol had a greater bron-
chodilatory effect were also those who had enhanced
bronchial responsiveness to histamine after methox-
amine.  This suggests that bronchospasm might be the
predominant factor in causing airway narrowing in
these subjects.  Conversely, the smaller bronchial reversi-
bility with salbutamol was observed in subjects who had
reduced bronchial responsiveness to histamine after
methoxamine.  In these, vascular congestion, rather than
constriction of bronchial smooth muscle, is probably the
main factor contributing to narrowing the airway.  The
apparent lack of effect of methoxamine in the five remain-
ing subjects could be the result of absence, or scarcity,
of pulmonary α1-adrenoceptors. Alternatively, this could
be explained by an even degree of bronchospasm and
bronchial oedema, which might, in turn, balance the
putative beneficial and deleterious effects of methox-
amine on airways patency in these subjects.

In conclusion, we were able to demonstrate marked
interindividual differences in the effects of methox-
amine in this small group of asthmatic subjects.  Although

they need confirmation, our results also suggest that his-
tamine has a greater action on bronchial smooth muscle,
relative to mucosa, compared with methacholine and
exercise, as the protective effect of methoxamine is more
consistent with the latter [14–16] than with histamine.
Whilst reconciling previous controversial results ob-
tained with α1-adrenoceptor agonists, our study also
demonstrated the uneven importance of various factors
causing bronchial obstruction among asthmatic sub-
jects.  Refining the syndrome may, therefore, prove nec-
essary in order to more specifically target drugs to be
effectively used in asthma.
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