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ABSTRACT:  Pseudomonas aeruginosa commonly infects the airways of patients
with cystic fibrosis and bronchiectasis.  It produces several toxins that slow ciliary
beat, stimulate mucus production and damage epithelium.  It adheres to epithelial
cells, damaged mucosa (in animal models), and mucus.  However, little is known of
the interaction of P. aeruginosa with intact human respiratory mucosa. 

We have studied the interactions of a nonmucoid clinical isolate of P. aeruginosa
with adenoid tissue in a novel organ culture model with an air-mucosal interphase
P. aeruginosa  (5.9±0.9×106 colony-forming units (cfu)) was pipetted onto the organ
culture surface, and incubated for 15 min, 1, 2, 4, 8, 12, 16, and 24 h, at 37°C in
5% CO2 in a humidified atmosphere.  Assessment has been made by transmission
and scanning electron microscopy.

Transmission electron microscopy (TEM) showed that uninfected organ cul-
tures had normal ultrastructure.  TEM of infected organ cultures at 8 h showed
significant epithelial damage: 43.9±10% of cells extruding from the epithelial
surface, 17.7±3% of cells with loss of cilia, 32.9±10.2% of cells with mitochondrial
damage, and 11.6±3% of cells with cytoplasmic blebbing.  P. aeruginosa only infre-
quently adhered to normal epithelium, but adhered to areas of epithelial damage
and to basement membrane.  Scanning electron microscopy (SEM) of organ cul-
tures up to 2 h found P. aeruginosa only infrequently associated with mucus.
SEM at 4 h revealed P. aeruginosa predominantly associated with mucus and ex-
truded damaged epithelial cells, but also occasionally associated with cilia, and
very occasionally with unciliated cells.  SEM also revealed loss of epithelial tight
junctions in P. aeruginosa infected organ cultures, and P. aeruginosa were fre-
quently seen in the gaps between epithelial cells.  An extracellular matrix, pos-
sibly of bacterial origin, was seen bridging the space between bacteria and cell
surface.

We conclude that P. aeruginosa infection of this organ culture caused tissue dam-
age and that P. aeruginosa preferentially adhered to mucus, damaged epithelium
and basement membrane.
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Pseudomonas aeruginosa commonly infects the air-
ways of patients with cystic fibrosis (CF) and other forms
of bronchiectasis.  Once the infection is established, it
is often impossible to eradicate even with intensive antibi-
otic therapy.  Much of the morbidity and mortality of
CF patients is due to chronic respiratory tract infection
caused by P. aeruginosa [1].

P. aeruginosa is extremely versatile biochemically, and
can grow in environments as diverse as jet fuel and
distilled water [2].  However, it seldom, if ever, infects
the lower respiratory tract of healthy people.  Previous
studies have identified numerous virulence factors for
P. aeruginosa including: exotoxin A [3]; lipopoly-
saccharide [2];  the phenazine pigments, pyocyanin and

1-hydroxyphenazine [4, 5];  protease enzymes, such as
elastase [6];  several haemolysins [7], including rham-
nolipid [8]; and exoenzyme S [9]. P. aeruginosa has
been shown to adhere to a number of mammalian cell
types, including buccal epithelial cells [10, 11], the cilia
of nasal and tracheal epithelium [12, 13], nasal epithe-
lial cell culture monolayers [14], and damaged epithelial
cells and exposed collagen [15, 16].  It is also known to
adhere to respiratory mucin [17], and artificial surfaces
[18].  However, these studies either utilize cell systems
or animal tissue, and little is known of the interaction of
P. aeruginosa with intact human respiratory mucosa.

Organ culture experiments usually involve tissue being
immersed in cell culture fluid, so that bacteria can grow
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in the medium as well as growing on the tissue surface.
We have studied P. aeruginosa infection of a novel
organ culture model of intact human respiratory mucosa
exposed to humidified air.  We have investigated the
effects of P. aeruginosa infection on the ultrastructure
of intact human respiratory mucosa, and have studied the
association of P. aeruginosa with the mucosal surface
by transmission and scanning electron microscopy.

Materials and methods

Inoculation of P. aeruginosa

A clinical isolate of a nonmucoid and piliated strain
of P. aeruginosa (P455) was stored in liquid nitrogen
and retrieved on number 2 agar plates (Oxoid, Basing-
stoke, UK).  Passage was limited to three times prior to
experiments.  We have previously shown that P455 pro-
duces alkaline protease, elastase, phenazine pigments,
lipase, deoxyribonuclease (DNase) and rhamnolipid [4,
19].  One colony was touched and dispersed in 3 ml of
brain heart infusion (BHI) broth (Oxoid, Basingstoke,
UK) and cultured for 6 h on a roller stage at 37°C.  The
culture was centrifuged and bacteria washed 3 times,
before being finally resuspended in phosphate-buffered
saline (PBS) (Oxoid, Basingstoke, UK).

Organ cultures

Human adenoid tissue was resected from children who
had adenoid hypertrophy and transported to the labora-
tory in minimal essential medium (MEM); (Gibco, Paisley,
UK), which contained antibiotics (50 µg·ml-1 strepto-
mycin, 50 IU·ml-1 penicillin, and 50 µg·ml-1 gentamicin).
Dissection was performed carefully to yield smaller pieces
of adenoid of approximately 3×3 mm2 with a thickness
of 1–3 mm.  Adenoid pieces with at least two completely
cilia-free edges were selected.  Tissue was immersed in

MEM with antibiotics for a minimum of 4 h and a maxi-
mum of 6 h to eradicate commensal bacteria.  The time
varied because of the time needed to transport the tissue
to the laboratory and the time required for dissection.
The adenoid pieces were then immersed in 30 ml of
MEM without antibiotics for one hour.

A 3 cm petri dish (Sterilin, Stone, UK) was placed in
the centre of a 5 cm Petri dish (Sterilin, Stone, UK)
aseptically (fig. 1).  Four millilitres of MEM without
antibiotics were added to the 5 cm Petri dish carefully,
so that the inside of the 3 cm Petri dish remained dry.
A strip of filter paper measuring 5 cm × 5 mm (What-
man 1, Maidstone, UK) was soaked in sterile MEM
and then laid aseptically onto and across the diameters
of the two Petri dishes.  The two ends of the filter paper
strip were positioned using a pair of sterile fine forceps,
so that they were immersed in MEM.  One piece of the
adenoid tissue was placed with its ciliated surface upwards
onto the filter paper strip at the centre of the smaller
inner Petri dish.  Approximately 0.25 ml of 1% semi-
molten agar (Oxoid No. 1, Basingstoke, UK) at 40°C
was carefully pipetted around the edge of the adenoid
tissue in order to seal its cut edges.  This solidified as
it cooled and created an approximately 3 mm edge of
agar.

Ten microlitres of a suspension of washed bacteria or
PBS alone (for uninfected control) was dropped direct-
ly onto the centre of the organ culture.  Uninfected and
infected pairs of organ cultures were incubated at 37°C
in 5% CO2 in a well humidified atmosphere for 15 min
(scanning electron microscopy, (SEM) n=2); 1 h (SEM
n=2); 2 h (SEM n=1); 4 h (SEM n=2); 8 h (SEM n=2)
and (transmission electron microscopy, (TEM) n=6); 12
h (TEM n=3); 16 h (TEM n=3); and 24 h (TEM n=4).
Thereafter, each of the four edges of the organ culture
were touched gently with a sterile plastic disposable loop
in order to assess the purity of bacterial growth or steril-
ity of control organ cultures.  The organ culture with its
adherent edge of agar and a small strip of filter paper
was then removed from the Petri dishes and fixed for
electron microscopic assessment.

TEM assessment

The adenoid tissue was fixed in 0.05 M sodium
cacodylate-buffered 2.5% glutaraldehyde (pH 7.2) and
postfixed in 1% osmium tetroxide in 0.05 M sodium
cacodylate buffer (pH 7.2), followed by serial dehydra-
tion in alcohol and embedding in Araldite.  A single
section (70–90 nm thick) was taken through the centre
of each organ culture for TEM assessment using a
Hitachi H-7000 (Katsuta-Shi, Ibaraki-Ken, Japan) and
typically contained 150–250 cells.  The mean basement
membrane length of a section was 2,473 µm (range
2,044–2,841 µm). For TEM, the specimens were coded
so that the observer was unaware of their treatment.  Each
cell was scored for four parameters [20]: 1) loss of cilia
from ciliated cells, 0 (fully ciliated), 1, 2, 3 (only one
or two visible cilia); 2) extrusion of the cells from the
epithelial surface, 0 (absent), 1, 2, 3 ,4 (cell completely
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Fig. 1.  –  A photograph of the organ culture model showing the
arrangement of the two Petri dishes and the adenoid tissue with
an agar edge.  The adenoid tissue was placed on a strip of filter pa-
per, the ends of which were immersed in 4 ml of minimal essential
medium.



extruded from epithelial surface but still in contact with
other epithelial cells); 3) cytoplasmic blebbing, 0 (absent),
1 (minor) or 2 (major); and 4) mitochondrial damage,
manifested as swelling and disruption of mitochondrial
cristae, 0 (absent) or 1 (present).  As the relative signif-
icance of the TEM parameters was unclear, the score
attributed to each was adjusted, so that a final maximum
possible damage score of 100 was obtained for each of
the four parameters.  The total damage score for the tis-
sue was obtained by summation of the adjusted scores
of each of the four parameters (maximum possible 400).
The percentages of cells with extrusion from the epithe-
lial surface was calculated by the difference between 100
and the percentage of cells with no extrusion.  Likewise,
the percentages of cells with loss of cilia, cytoplasmic
blebbing and mitochondrial damage were calculated [20].

SEM assessment

The methodology used was described previously [21].
Briefly, adenoid tissue was fixed in 2.5% glutaraldehyde
for a minimum of 24 h before routine processing through
gentle buffer washes, then 1% osmium tetroxide for 1 h,
followed by dehydration through graded ethanols to ace-
tone and critical point drying in CO2.  Tissue was mount-
ed on aluminium stubs, sputter-coated with gold, and
examined in a Hitachi S-4000 scanning electron micro-
scope (Katsuta-Shi, Ibaraki-Ken, Japan) by an examiner
blind to the experimental protocol.

Statistical analysis

Wilcoxon signed ranked test was employed to analyse
the data [22].  A p-value less than 0.05 was taken as a
statistical significant difference between two groups of
data.

Results

Bacteria

The mean inoculum of P. aeruginosa for the infected
organ cultures was 5.9±0.9 × 106 colony forming units
(cfu).  P. aeruginosa infected organ cultures produced
pure growth of P. aeruginosa from all four edges after
incubation and the controls were sterile.

Gross appearance of the organ cultures

After incubation, by naked eye examination the unin-
fected organ cultures appeared unchanged.   However,
P. aeruginosa infected organ cultures developed a green-
ish blue colour that was detectable from 12 h.

TEM assessment (table 1)

The uninfected control organ culture had an essentially
normal ultrastructure in all the experiments.  After 8 h
infection with P. aeruginosa, there was a significant
(p<0.05) increase in the percentage of cells displaying
extrusion from the epithelial surface, loss of cilia, mito-
chondrial damage and cytoplasmic blebbing (fig. 2).  The
mean combined mucosal damage score of the infected
organ cultures was significantly (p<0.05) increased when
compared with the uninfected controls.  However, dam-
age to the epithelium was patchy, and some areas exam-
ined had relatively normal ultrastructure.  This is reflected
in the combined mucosal damage score, which has a pos-
sible maximum value of 400.

In all TEM sections of the infected organ cultures at
8 h, bacteria were seen closely associated with the mucos-
al surface.  P. aeruginosa was found predominantly adher-
ent to damaged epithelial cells and mucus.  In all the
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Table 1.  –  Transmission electron microscopy assessment of adenoid organ cultures at 8 h

Organ Cells Cells Cells Cells Combined
culture with loss extruding with with mucosal

of cilia from the cytoplasmic mitochondrial damage
epithelial blebbing damage score
surface

% % % %

Uninfected 7.8±1.1 13.1±1.2 1.7±0.4 1.8±0.5 9.5±1.0

Infected 17.3±3.0* 43.9±10* 11.6±3.0* 32.9±10.2* 32.9±18*
with PA

All data are mean of six separate experiments±SEM.  For explanation of the morphometric scoring system
please see text.  *:  p<0.05 versus uninfected organ culture.  PA:  Pseudomonas aeruginosa (P455 strain).

Fig. 2.  –  Transmission electron micrograph of an adenoid organ cul-
ture infected with Pseudomonas aeruginosa for 8 h, showing damage
to the epithelium.   There is loss of cilia (cell to right of centre), cell
extrusion (part of cell to left of centre), and mitochondrial damage (all
cells). (scale bar=2.0 µm).
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infected organ cultures, large colonies of bacteria were
found infiltrating the epithelium and adhering to the base-
ment membrane (fig. 3).

In the organ cultures infected by P. aeruginosa for
12, 16 and 24 h, complete disintegration of the epithe-
lial structure and subepithelial collagen layer was seen.
Bacteria were seen infiltrating the disintegrated mucosa.
No intracellular bacteria were detected.

SEM assessment

In organ cultures incubated for 15 min, 1 and 2 h, P.
aeruginosa was only found infrequently in small colonies
which were associated with mucus, and with occasional
extruded cells.  After 4 h, the bacterial numbers had
increased substantially and mucosal damage had occurred.
Most of the surface mucus, cell debris and extruded cells,
had associated P. aeruginosa (fig. 4).  When P. aerug-
inosa was seen associated with mucus, there were often
a large number of bacteria in the microcolony.  P. aerug-
inosa were found only occasionally associated with cilia
and unciliated cells.  When P. aeruginosa were seen
associated with ciliated epithelial cells, they were usu-
ally associated with the tips of cilia.   Separation of

epithelial cell junctions was evident in many parts of the
organ culture surface.  Frequently, but not always, colonies
of  P. aeruginosa were seen in the gaps formed between
epithelial cells, confirming the impression gained from
TEM that  P. aeruginosa penetrates the epithelium between
cells to reach the collagen layer (fig. 5).  After 8 h, most
of the surface of the organ cultures was covered with
bacteria that formed continuous sheets covering the sur-
face of a large proportion of the organ culture (fig. 6).
This concealed the structures that the bacteria were asso-
ciated with and made SEM assessment difficult.  Bacteria
in these large colonies were often seen dividing.

In bacterial microcolonies, particularly those with large
numbers of bacteria, an extracellular matrix material
was seen closely associated with bacteria.  This mate-
rial was not seen in uninfected controls, but was seen
associated with P. aeruginosa grown in BHI broth after
6 h, suggesting that it had bacterial origin, although the
amount of the material was less than that seen in organ
cultures.  When P. aeruginosa was seen associated with
the mucosal surface including mucus, cilia, unciliated
cells and extruded cells, the matrix material was often
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Fig. 3.  –  Transmission electron micrograph of an adenoid organ cul-
ture infected with Pseudomonas aeruginosa for 8 h, showing adher-
ence of bacteria to basement membrane. (scale bar=2.22 µm).

Fig. 4.  –  Scanning electron micrographs of an adenoid organ culture
infected with Pseudomonas aeruginosa for 4 h, showing bacteria ad-
hering to extruded and damaged epithelial cells (scale bar=1.79 µm).

Fig. 5.  –  Scanning electron micrograph of an adenoid organ culture
infected with Pseudomonas aeruginosa for 4 h showing bacteria in
a gap between adjacent epithelial cells.  There was an extracellular
matrix material bridging the space between bacteria, and between
bacteria and cell surfaces.  The same appearance was seen between
bacteria and other mucosal structures, such as mucus and cilia.  (scale
bar=0.89 µm).

Fig. 6.  –  Scanning electron micrograph of an adenoid organ culture
infected with Pseudomonas aeruginosa for 8 h, showing a biofilm of
bacteria with a lace-like extracellular matrix material obscuring most
of the organ culture surface.  (scale bar=1.33 µm).



seen "bridging" the gap between the bacteria themselves
(fig. 6), and between bacteria and the mucosal compo-
nent with which the bacterium was associated (fig. 5).

Discussion

In this study, we have used an organ culture with an
air-mucosal interphase to study the interaction of a non-
mucoid strain of P. aeruginosa with human respiratory
mucosa.  We chose a nonmucoid strain partly because
we have investigated this strain (P455) extensively in our
laboratory [4, 23], and partly because the initial colo-
nization of the respiratory mucosa is usually by non-
mucoid strains, which become mucoid with chronic
infection [24].  An organ culture with an air-mucosal
interphase has a number of advantages.  Organ cultures
immersed in cell culture medium are constantly exposed
to reinfection from bacteria growing in the medium and
their products, which may be toxic.  This artificially
biases the infection in favour of the bacteria.  The air-
mucosal interphase is more physiological and the muco-
ciliary system might be expected to function as in vivo.

Adherence of bacteria to host cells is known to be
affected by the microenvironment in which the cells inter-
act with each other [25].  Recently, P. aeruginosa adher-
ence to hamster tracheal cell cultures has been reported
to be pH sensitive and Ca2+-dependent [26, 27].  Therefore,
the presence of cell culture medium in studies of the
interaction of P. aeruginosa with respiratory mucosa may
influence bacterial adherence.  Adenoid tissue was used
in our experiments because it is relatively easily avail-
able human ciliated epithelium, whereas lower respira-
tory tract tracheal or bronchial epithelium is much more
difficult to obtain and more difficult to dissect during
preparation of the organ culture.

Previous studies have mainly concentrated on the ad-
herence of P. aeruginosa to epithelial cells in the ab-
sence of an intact mucociliary system, and little is known
of the effects of P. aeruginosa infection on the ultra-
structure of the respiratory mucosa.  Loss of cilia, extru-
sion of cells from the epithelial surface, cytoplasmic
blebbing and mitochondrial damage were found after 8
h in this study, when respiratory mucosa was infected
by P. aeruginosa. SEM detected P. aeruginosa only
infrequently on the mucosal surface in the first 2 h after
inoculation despite quite a large initial inoculum.  This
suggests that although P. aeruginosa showed an affini-
ty for mucus later in the experiments, washed bacteria
from broth culture do not immediately adhere to mucus
with high affinity.  However, a substantial increase in
bacterial density occurred by 4 h, which was associated
with mucosal damage.  This latency for the detection of
P. aeruginosa on the mucosal surface has also been
reported previously in hamster and mouse tracheal organ
cultures [15, 28–30].

In this study, we have shown that P. aeruginosa
preferentially adhered to mucus and extruded and dam-
aged epithelial cells, in preference to cilia and uncilia-
ted cells.  Adherence to damaged epithelial cells has
previously been shown in hamster trachea organ culture,

in which adherence only occurred after influenza A virus
infection or treatment with acid that injured the epithe-
lium [15, 31].  These studies have suggested that both
mucoid and nonmucoid strains of P. aeruginosa only
adhered to damaged but not normal cells [32].  Recently
BALTIMORE et al. [33] only found adherence of P. aerug-
inosa to intraluminal secretions, damaged epithelium and
exposed connective tissue, in a histological study of the
airways of patients with cystic fibrosis infected by P.
aeruginosa.  Our results agree with these observations.
P. aeruginosa also adhered less frequently to ultrastruc-
turally normal cilia, which has been observed pre-
viously with human respiratory epithelial cells [12–14].
Although the cilia were ultrastructurally normal, we do
not know about their function at the time of bacterial
adherence. P. aeruginosa produces a number of factors
which slow or stop ciliary beating [4, 8], which may pre-
cede bacterial adherence to cilia.

In studies using organ cultures of whole trachea or
tracheal rings from hamsters, mucoid strains were found
to adhere as aggregates, primarily to ciliated cells, with
the bacterial extracellular matrix itself binding directly
to the cilia [27–30].  Epithelium of different species may
have different receptors for P. aeruginosa adhesins, and
the experimental conditions may influence the results
obtained.  Nonmucoid P. aeruginosa adhered primari-
ly to unciliated cells in a study using hamster tracheal
cell cultures [26]; to mucus and damaged cells, and very
uncommonly to ciliated epithelium in sulphur dioxide
injured canine trachea in organ culture [16]; and to both
ciliated and unciliated cells in canine tracheal cell cul-
tures [34].

P. aeruginosa has a high affinity for human tracheo-
bronchial mucin [17, 35–38], and our study shows that
it also has a high affinity for mucus in organ culture.  P.
aeruginosa also produces a number of toxins which stim-
ulate mucus production (19, 39, 40).  In the 8 h organ
cultures, P. aeruginosa formed continuous sheets over
the organ culture surface.  It has been suggested that per-
sistence of P. aeruginosa in the lower respiratory tract
may be helped by the formation of such biofilms.   Biofilms
may protect the bacteria against host defences [41], such
as opsonophagocytic killing by neutrophils [42].

In our study P. aeruginosa was also found adherent
to the basement membrane.  Adherence of a nonmucoid
strain of P. aeruginosa to the tracheal collagen layer was
also found in rat trachea injured by brushing [43].
PLOTKOWSKI and co-workers [14, 44, 45] have also report-
ed adherence of nonmucoid P. aeruginosa to type I
collagen matrix [14], and to submucosal connective
tissue obtained from the frog palate [44, 45].

Pili have been identified as an important adhesin
for P. aeruginosa to buccal cells [11], damaged tra-
cheal epithelial cells [46], and mucin [47], but do not
account for all the adhesive properties of P. aeruginosa
[48], and other adhesins, such as exoenzyme S have
been identified [9].  The alginate of mucoid strains
may be another P. aeruginosa adhesin and nonmucoid
strains may also produce alginate [49].  Mucoid strains
of P. aeruginosa produce an exopolysaccharide that
forms a loose capsule of organized linear strands of
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polysaccharide radiating outwards from the cell surface.
This has been shown to mediate attachment to human
respiratory epithelium [50, 51].  In our SEM study, a
matrix-like material was closely associated with colonies
of P. aeruginosa and bridged the space between bacte-
ria and cell surfaces.  A similar matrix-like material was
seen closely associated with colonies of aggregated bac-
teria in a recent study performed with primary cultures
of human respiratory epithelium obtained from nasal
polyps [14].  In this study, the matrix-like material seemed
to play a role in the association of aggregated bacteria
with cilia, although the adherence of nonaggregated P.
aeruginosa to unciliated cells occurred without it.  A
preliminary analysis suggested that because the matrix-
like material reacted with antimucin antibody it may
have an epithelial origin [14].  However, we have iden-
tified similar material around P. aeruginosa cultured in
broth, and, therefore, suggest that the matrix could have
a bacterial origin.  In our study, the matrix-like mate-
rial was frequently seen between bacteria and the point
of mucosal contact (including mucus), and it may thus
act as an adhesin.  The matrix could occur by conver-
sion to the mucoid phenotype during organ culture [52,
53], or be the slime of nonmucoid P. aeruginosa [18,
49].

Tight junctions between cells are important in main-
taining the integrity of the epithelial surface.  They form
a barrier to the diffusion of molecules and ions across
the epithelial cell layer and their loss may lead to changes
in transepithelial electrical resistance, exposure of sub-
epithelial structures to bacteria and their toxins, and
leakage of tissue fluid, which contributes to the increas-
ed secretions during infection [54].  In our study, both
TEM and SEM examination of the tissue infected by P.
aeruginosa showed epithelial cells separated from their
neighbours, and bacteria were sometimes seen invading
the epithelium by this route.  Cell separation is consis-
tent with loss of epithelial cell tight junctions and may
be a precursor to extrusion of cells from the epithelial
surface.  Current knowledge of the effects of bacterial
infection on human respiratory epithelial cell tight junc-
tions is lacking, although it has been shown in animal
studies that exposure to cigarette smoke [55, 56], nitrous
oxide [57, 58], P. aeruginosa elastase [59], neutrophils
[60, 61], and reduced Ca2+ [62] disrupts epithelial cell
tight junctions.

Chronic infection of the respiratory tract by P. aerugi-
nosa is difficult to eradicate, even with prolonged use of
potent antibiotics.  Deoxyribonucleic acid [DNA] fin-
gerprinting techniques suggest that most CF patients har-
bour genetically related P. aeruginosa strains in their
respiratory tract over long periods of time [63].  Our study
has shown that during infection, P. aeruginosa damages
the respiratory mucosa and adheres to secretions, dam-
aged epithelial cells and collagen.  P. aeruginosa adher-
ence to mucus, and its lack of adherence to normal
epithelium, may explain why it does not infect the nor-
mal airway, which has efficient mucociliary defences.
However in bronchiectasis and CF, in which mucus is
poorly cleared, P. aeruginosa may colonize static secre-
tions and produce toxins which damage the mucosa and

further disable remaining host defences.  P. aeruginosa
infection stimulates a florid chronic inflammatory response,
which is ineffective in clearing P. aeruginosa and dam-
ages the lung, encouraging persistence and spread of the
infection in the airways [64].
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