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Abstract
Background: Interleukin (IL)-6 trans-signalling (IL-6TS) is emerging as a pathogenic mechanism in
chronic respiratory diseases; however, the drivers of IL-6TS in the airways and the phenotypic
characteristic of patients with increased IL-6TS pathway activation remain poorly understood.
Objective: Our aim was to identify and characterise COPD patients with increased airway IL-6TS and to
elucidate the biological drivers of IL-6TS pathway activation.
Methods: We used an IL-6TS-specific sputum biomarker profile (soluble IL-6 receptor (sIL-6R), IL-6, IL-
1β, IL-8, macrophage inflammatory protein-1β) to stratify sputum data from patients with COPD (n=74;
Biomarkers to Target Antibiotic and Systemic Corticosteroid Therapy in COPD Exacerbation (BEAT-
COPD)) by hierarchical clustering. The IL-6TS signature was related to clinical characteristics and sputum
microbiome profiles. The induction of neutrophil extracellular trap formation (NETosis) and IL-6TS by
Haemophilus influenzae were studied in human neutrophils.
Results: Hierarchical clustering revealed an IL-6TS-high subset (n=24) of COPD patients, who shared
phenotypic traits with an IL-6TS-high subset previously identified in asthma. The subset was characterised
by increased sputum cell counts (p=0.0001), persistent sputum neutrophilia (p=0.0004), reduced quality of
life (Chronic Respiratory Questionnaire total score; p=0.008), and increased levels of pro-inflammatory
mediators and matrix metalloproteinases in sputum. IL-6TS-high COPD patients showed an increase in
Proteobacteria, with Haemophilus as the dominating genus. NETosis induced by H. influenzae was
identified as a potential mechanism for increased sIL-6R levels. This was supported by a significant
positive correlation between sIL-6R and NETosis markers in bronchoalveolar lavage fluid from COPD
patients.
Conclusion: IL-6TS pathway activation due to chronic colonisation with Haemophilus may be an
important disease driver in a subset of COPD patients.
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Introduction
COPD is a heterogeneous disease, and an improved understanding of molecular phenotypes characterised
by specific inflammatory pathways may help define subsets of COPD and guide targeted therapy [1]. The
interleukin (IL)-6-trans signalling (IL-6TS) pathway is implicated in the pathophysiology of COPD,
including emphysema, pulmonary fibrosis, epithelial-to-mesenchymal transition, increased epithelial
permeability and Toll-like receptor (TLR)-dependent inflammatory responses [2–6]. Stratification of COPD
patients based on IL-6TS-associated inflammation may enable identification of a COPD patient subset that
benefits from treatments targeting IL-6TS.

The IL-6TS pathway has the capacity to activate cells that do not normally respond to IL-6 due to low
expression of the IL-6 receptor (IL-6R), including bronchial epithelial cells and airway smooth muscle
cells [2, 7]. In these cells, pathway activation is enabled through interaction of the soluble IL-6 receptor
(sIL-6R)/IL-6 complex with the ubiquitously expressed signal-transducing element for the IL-6 family of
cytokines, gp130 [8]. IL-6TS leads to phosphorylation of STAT family transcription factors (STAT3 and/or
STAT1) by the Janus tyrosine kinase family ( JAK1, JAK2, TYK2), and it also causes activation of the
mitogen-activated protein kinase, phosphoinositide 3-kinase and mechanistic target of rapamycin (mTOR)
signalling cascades [3, 9]. Several studies provide evidence that IL-6TS might be active in the lung and
contribute to the pathology of COPD. For instance, higher levels of sIL-6R have been found in sputum of
patients with COPD compared to healthy smokers [10] and increased levels of IL-6 in the airways were
associated with COPD severity, exacerbations and airway obstruction [11, 12]. In addition, increased levels
of sIL-6R and IL-6 in human emphysematous lung tissue showed positive correlation with mTORC1
pathway hyperactivation [3], and STAT3 and STAT1 phosphorylation were shown to be increased in lung
tissue of COPD patients compared to nonsmokers [13].

While sIL-6R can be released following alternative splicing of the IL-6R mRNA, the majority of
circulating sIL-6R is generated by ADAM10- and ADAM17-mediated shedding of membrane-bound
IL-6R (mIL-6R) [14, 15]. At local sites of inflammation, neutrophils have been proposed as the main
source of sIL-6R [16], and a recent study showed that neutrophils may be an important source of sIL-6R in
the lungs of patients with chronic respiratory diseases [17]. However, the pathophysiological processes that
lead to mIL-6R shedding in the lung remain largely unknown.

In a recent study we used cluster analysis of lung epithelium transcriptomics and sputum proteomics data
to highlight the association of IL-6TS-specific gene (TNFAIP6, PDE4B, IL1R2, S100A9, S100A8,
S100A12, CHI3L1 and SPP1) and protein (IL-6, sIL-6R, macrophage inflammatory protein (MIP)-1β,
IL-1β, IL-8, YKL-40 and matrix metalloproteinase (MMP)3) signatures, with a distinct asthma patient
phenotype [2]. These signatures were increased in asthma patients with frequent exacerbations, blood
eosinophilia, submucosal infiltration of T-cells and macrophages, and it did not overlap with systemic
inflammation. Sputum sIL-6R and IL-6 levels correlated with markers of innate immune activation, airway
remodelling and increased sputum neutrophils [2].

Based on the increased sIL-6R levels and activation of IL-6TS downstream pathways observed in COPD
patients, we hypothesised that our IL-6TS-related signatures detected in asthma would be increased in a
subset of COPD patients. Our aims were to explore the existence of such a COPD patient subset, describe
its clinical characteristics and elucidate the pathogenic drivers of IL-6TS in COPD. To this end,
bioinformatic analysis of multi-omics data from four separate COPD cohorts was complemented with
relevant in vitro experimental models (figure 1).

Material and methods
Detailed descriptions of patient cohorts, materials and methods can be found in the supplementary
material.

Patient cohorts
Patient phenotyping was based on bioinformatic analysis of epithelial brushing transcriptomic data and sputum
or bronchoalveolar lavage fluid (BALF) proteomic data from four different cohorts: Southampton cohort
(COPD patients, n=38) [18]; Biomarkers to Target Antibiotic and Systemic Corticosteroid Therapy in COPD
Exacerbations (BEAT-COPD) (COPD patients, n=74) [19]; Manchester cohort 1 (COPD patients, n=23) [20];
and Manchester cohort 2 (COPD patients, n=29; healthy nonsmokers and healthy smokers, n=35) [21].

Measurements in sputum
BEAT-COPD sputum samples were analysed for bacteria (using standard routine culture) and processed to
produce cytospins for cell analysis and supernatant for fluid phase measurements. A broad panel of serum
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and sputum biomarkers were measured using the Meso-Scale-Discovery and single ELISA at stable and
exacerbation visits [19]. Bacterial genomic DNA was extracted from sputum samples and 16S rRNA gene
sequencing was performed as described previously [22, 23] and summarised in the supplementary material.

Unsupervised hierarchical clustering
Hierarchical clustering of gene expression data and sputum proteomic data was performed using the
average linkage and Euclidean metric methods, with each variable normalised to mean 0 and variance 1,
using Qlucore Omics Explorer 3 (Qlucore, Lund, Sweden). Results were visualised as dendrogram heat
maps where the colour scale corresponds to a range from −2.0 (blue), via 0.0 (grey) to +2.0 (red).

NETosis
Human blood neutrophils were treated with H. influenzae for 3 h or with 4 µM ionomycin and 2 mM
calcium chloride (CaCl2) for 1 h. The extracellular DNA associated with NETosis was measured by adding
the cell impermeable SYTOX green nucleic acid stain (ThermoFisher Scientific) to the live neutrophil
culture at the time of H. influenzae or ionomycin/CaCl2 challenge. To assess NETosis by the expression of
citrullinated histone H3 (H3cit) the cells were fixed and analysed by immunofluorescence staining. sIL-6R
levels were measured using Human IL-6R alpha Quantikine ELISA Kit (R&D).

Measurements in BALF
The levels of surrogate NETosis markers and sIL-6R were analysed in BALF from COPD patients and
healthy volunteers from Manchester cohort 2. Cell-free (cf )DNA was measured using PicoGreen Quant-It
assay (Invitrogen P7589). Myeloperoxidase (MPO) and sIL-6R levels were measured using the Human
Myeloperoxidase Kit (MSD K151EEC) and Human IL-6R alpha Quantikine ELISA Kit, respectively.

Statistical analyses
Gene expression and sputum biomarker data was log2-transformed and analysed using general linear model
based statistical tests, adjusting for age and sex, using Qlucore Omics Explorer 3.3. Benjamini–Hochberg
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multiple correction was used for gene expression data to control for rate of false positives (referred to as
q-value). Statistical analysis of clinical variables and biomarker data was performed with Kruskal–Wallis
tests, Mann–Whitney test or Chi-squared test. Proportions of bacteria were considered not normally
distributed and were analysed by Mann–Whitney test. Statistical analyses of in vitro data were performed
using one-way ANOVA (Tukey’s multiple comparisons) and t-tests. All data analyses except analysis of
gene expression data were considered hypothesis based and significance reached if p⩽0.05 (q for gene
expression data). Prism 6.0 (GraphPad Software) was used for data analysis and graphical representation.

Results
An IL-6TS-specific gene signature in bronchial epithelium defines a subset of COPD patients with
increased markers of innate inflammation
Our previously described IL-6TS eight-gene signature (TNFAIP6, PDE4B, IL1R2, S100A9, S100A8,
S100A12, CHI3L1 and SPP1), derived from IL-6TS-stimulated primary human bronchial epithelial cells
[2] was used to investigate whether the IL-6TS pathway is active in bronchial epithelium of patients with
COPD (Southampton cohort; n=38) [18]. Hierarchical clustering identified a subset of patients
(IL-6TS-high, n=12, 31.6%) with increased expression of the IL-6TS eight-gene epithelial signature (figure
2a). The IL-6TS-high subset showed a significantly increased expression of SOCS3, the main
STAT3-inducible gene [24], linking the subset with JAK/STAT3 pathway activation (figure 2b).
Furthermore, the IL-6TS-high patients displayed an increased expression of TLR genes and other genes
associated with innate inflammation, including CCL4, IL1B and IL8 (figure 1c and d). This IL-6TS related
bronchial epithelial gene expression profile supports MIP-1β (CCL4), IL-1β and IL-8, together with the
pathway triggers IL-6 and sIL-6R, as protein biomarkers of IL-6TS pathway activation in COPD patients,
herein referred to as “IL-6TS five-protein sputum signature”. A modest, but significant positive correlation
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FIGURE 2 Clustering of COPD patients based on interleukin (IL)-6 trans-signalling (IL-6TS) eight-gene epithelial signature in the Southampton
cohort. a) Hierarchical clustering by using the IL-6TS eight-gene epithelial signature (TNFAIP6, PDE4B, IL1R2, S100A9, S100A8, S100A12, CHI3L1 and
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(r=0.49; p=0.017) between the IL-6TS eight-gene epithelial signature and the IL-6TS five-protein sputum
signature was confirmed in an additional COPD cohort (Manchester cohort 1; n=23) [20] where paired
bronchial epithelial brushings and sputum samples were available (supplementary figure S1).

IL-6TS five-protein sputum signature IL-6, sIL-6, MIP-1β, IL-8 and IL-1β identifies a neutrophilic subset
of poorly controlled COPD patients
To further explore the role of the IL-6TS pathway in COPD, we investigated the existence of an
IL-6TS-associated phenotype in the BEAT-COPD cohort (n=74), a clinically well-characterised cohort
with sputum proteomic and microbiome data [19]. Stratification of patients based on the IL-6TS
five-protein sputum signature identified an IL-6TS-high subset of a similar size (n=24, 32.4%) to the one
in the Southampton cohort (figure 3a). There were no significant differences in age, sex, smoking status,
pack-year history, body mass index, frequency of exacerbations, corticosteroid dose or lung function
between the IL-6TS-high and -low BEAT-COPD subsets (table 1). However, the IL-6TS-high subset
exhibited an increase in total sputum cell counts (p=0.0001; figures 2 and 3b) with a significantly
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increased proportion of neutrophils (p=0.0004) and increased levels of pro-inflammatory mediators and
MMPs in sputum (table 1). Notably, the IL-6TS-high patient subset was associated with a lower quality of
life as assessed by Chronic Respiratory Questionnaire (CRQ; total score 13.64±0.98 compared to 16.72±0.63
in the IL-6TS-low subset; p=0.008), with significantly lower scores for mastery (p=0.021) and fatigue
(p=0.049; table 1). In contrast to the IL-6TS-low patients, most IL-6TS-high patients maintained the
distinctive neutrophilic phenotype (>60% sputum neutrophils) observed at baseline visit at exacerbation
and 6 weeks post-exacerbation (figure 3c and d).

The IL-6TS-high COPD subset is characterised by infection with Haemophilus
The sputum microbiome from patients in the BEAT-COPD cohort was assessed by 16S rRNA gene
sequencing at stable state and at exacerbations (n=39). Comparison of the microbiome profiles between
IL-6TS subsets showed a significantly decreased relative abundance of the phylum Firmicutes and
increased abundance of Proteobacteria, with Haemophilus as the most represented genus in the
IL-6TS-high subset at stable state (figure 4a and b). A significantly increased relative abundance of
Proteobacteria and Haemophilus (figure 4a and b) and an increased Proteobacteria:Firmicutes (P:F)
proportion ratio (figure 4c), were maintained at exacerbations in IL-6TS-high patients. The percentage of
patients maintaining high relative proportions (i.e. >0.4) of Proteobacteria and Haemophilus throughout
both visits was significantly increased in the IL-6TS-high subset (supplementary figure S2). Analysis of
bacterial growth from the sputum samples revealed that significantly more patients in the IL-6TS-high
subset (73.7% versus 22.5%; p=0.0002; figure 5a) were positive for pathogenic microorganisms
(H. influenzae, Moraxella catarrhalis, Streptococcus pneumoniae, Staphylococcus aureus and Pseudomonas
aeruginosa), in particular H. influenzae (42.1% versus 7.5%; p=0.001; figure 5b).

TABLE 1 Characteristics of interleukin (IL)-6 trans-signalling (IL-6TS)-high subjects with COPD (BEAT-COPD
(Biomarkers to Target Antibiotic and Systemic Corticosteroid Therapy in COPD Exacerbation) cohort)

IL-6TS-high IL-6TS-low p-value

Subjects n 24 50
Age years 69.0±1.8 67.8±1.4 0.60
Female 33.3 28.0 0.75#

BMI kg·m−2 25.70±0.96 25.04±0.63 0.32
Current and ex-smokers 95.83 96.00 0.97#

Pre-FEV1 L 1.27±0.12 1.14±0.07 0.26
Post-FEV1 L 1.29±0.12 1.19±0.08 0.46
Exacerbations in past year 3 (1.5–4.0) (n=19) 2 (2.0–3.0) (n=37) 0.61
Daily ICS dose μg·day−1 1000 (500–1000) (n=18) 1000 (800–1000) (n=35) 0.75
Maintenance prednisolone 10.53 (n=19) 10.81 (n=37) 0.97#

CRQ total score 13.64±0.98 16.72±0.63 0.008
CRQ mastery 4.07±0.29 4.87±0.21 0.021
CRQ fatigue 2.84±0.26 3.64±0.18 0.049
CRQ emotion 3.74±0.32 4.61±0.18 0.088
CRQ dyspnoea 2.64±0.29 3.06±0.19 0.26
Blood eosinophils ×1000·μL−1 0.24 (0.17–0.37) 0.22 (0.13–0.39) 0.32
Blood neutrophils ×1000·μL−1 5.35 (4.48–5.90) 4.74 (4.15–5.78) 0.24
Serum CRP mg·L–1 6.77±2.22 4.55±1.10 0.088
Serum IL-6 pg·mL–1 17.42±7.18 12.64±3.14 0.024
TCC ×106 cells·g−1 sputum 7.14 (4.2–15.6) 2.62 (1.4–4.6) (n=49) 0.0001
Sputum eosinophils % 1.00 (0.3–2.5) 1.75 (0.5–4.3) (n=48) 0.13
Sputum neutrophils % 87.13 (72.6–92.6) 66.25 (44.4–81.7) (n=48) 0.0004
Sputum macrophages % 10.11 (5.3–19.7) 25.00 (12.7–36.4) (n=48) 0.002
Sputum TNF-α pg·mL–1 46.02±56.36 2.11±3.11 <0.00001
Sputum MIP-1α pg·mL–1 153.80±52.27 44.63±0.37 <0.00001
Sputum RANTES pg·mL–1 7.41±2.34 2.28±0.58 <0.00001
Sputum MMP9 ng·mL–1 1008.79±279.40 201.32±49.47 <0.00001
Sputum MMP8 ng·mL–1 736.57±229.86 127.32±372.61 <0.00001
Sputum MMP2 ng·mL–1 3.11±0.54 0.00±0.40 0.005

Data are presented as geometric mean±SE, % or median (interquartile range), unless otherwise stated. Bold
type represents statistical significance (p⩽0.05). p-values by Kruskal–Wallis test. BMI: body mass index;
FEV1: forced expiratory volume in 1 s; ICS: inhaled corticosteroid; CRQ: Chronic Respiratory Questionnaire;
CRP: C-reactive protein; TCC: total sputum cell count; TNF: tumour necrosis factor; MIP: macrophage
inflammatory protein; MMP: matrix metalloproteinase. #: Chi-squared test.
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H. influenzae-induced NETosis leads to sIL-6R release from primary human neutrophils
NETosis is a process whereby neutrophils release chromatin filaments coated with citrullinated histones
and antibacterial proteins in order to trap and kill bacteria [25, 26]. Neutrophil extracellular traps (NETs)
have been observed in the airways of patients with COPD infected by Haemophilus species [27]. The
association of the IL-6TS-high COPD subset with persistent lung neutrophilia and colonisation with
H. influenzae suggested that NETosis induced by H. influenzae may be a driver of sIL-6R release from
primary human neutrophils. Citrullination of histones by the enzyme peptidyl arginine deiminase (PAD)4
is a requirement for NETosis [28, 29], and we have used a novel small molecule PAD4-inhibitor (PAD4i),
developed by AstraZeneca and described in the supplementary methods and supplementary figure S3) to
specifically block NETosis. H. influenzae efficiently induced NETosis of fresh human blood neutrophils,
as shown by increased accumulation of extracellular DNA and expression of H3cit, a characteristic marker
of PAD4-dependent NET formation [25, 26, 30], and these processes were efficiently inhibited by PAD4i
(figure 6a and b). Increased expression of extracellular H3cit and colocalisation with extracellular DNA
positive NETs were confirmed in H. influenzae-infected neutrophils (figure 6c). Ionomycin, a known and
widely used inducer of NETosis, was included as a positive control [25]. Induction of NETosis by
H. influenzae was consistently associated with increased sIL-6R release across different neutrophil donors
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FIGURE 4 Sputum bacterial profiling of the interleukin (IL)-6 trans-signalling (IL-6TS)-high patients in the BEAT-COPD (Biomarkers to Target
Antibiotic and Systemic Corticosteroid Therapy in COPD Exacerbation) cohort. Relative abundances of the most abundant sputum bacterial
a) phyla and b) genera in clinically stable disease and at exacerbation (IL-6TS-high n=11, IL-6TS-low n=28). c) Proteobacteria:Firmicutes (P:F)
proportions ratio at stable and exacerbation visit. Data are presented as Tukey’s boxplots. *: p<0.05 (Mann–Whitney).
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(n=9; figure 6d). Blocking NETosis by PAD4i significantly reduced the levels of sIL-6R (figure 6e).
A potential functional link between colonisation with H. influenzae and increased sIL-6R release in the
lungs was confirmed in fresh human lung tissue infected with H. influenzae (supplementary figure S4).
Infection with H. influenzae resulted in a significant increase of sIL-6R in the surrounding medium. The
bacterial concentrations inducing the highest levels of sIL-6R differed between the donors, and the levels
of sIL-6R were reduced after reaching a peak, potentially due to excessive proteolytic activity induced by
higher bacterial loads.

The levels of sIL-6R positively correlate with surrogate NETosis markers in BALF from COPD patients
The levels of surrogate NETosis markers, including cfDNA and MPO were increased in BALF from
COPD patients (n=29; infrequent exacerbators n=16 and frequent exacerbators n=13) compared to healthy
volunteers (n=35; healthy nonsmokers n=27 and healthy smokers n=8) from the Manchester cohort 2
(figure 7a), while sIL-6R was not significantly different between the groups (supplementary figure S5).
cfDNA and MPO were significantly increased in COPD patients with high levels of sIL-6R (upper
quartile; >165 pg·mL–1), compared to patients with low sIL-6R (lower quartile; <84 pg·mL–1) (figure 7b).
In addition, the levels of sIL-6R positively correlated with cfDNA (r=0.67; p<0.0001) and MPO (r=0.66;
p=0.0001) (figure 7c). A nearly perfect correlation was shown for cfDNA and MPO (r=0.99; p<0.0001),
suggesting we were detecting cfDNA–MPO complexes which are specific NET components. This
observation strengthens our hypothesis that sIL-6R release is a NETosis-driven process. The positive
correlations of sIL-6R with cfDNA and MPO was more prominent in COPD patients with frequent
exacerbations than in patients with infrequent exacerbations (supplementary figure S5).

Discussion
While there is an established link between IL-6TS and the pathophysiology of COPD [2–6], little is known
regarding the pathological drivers of IL-6TS in the airways and the phenotypic characteristics of COPD
patients with increased IL-6TS pathway activation. We show that increased expression of IL-6TS-related
biomarkers overlaps with persistent neutrophilic airway inflammation and infection with Proteobacteria
dominated by the genus Haemophilus in patients with COPD. Furthermore, we provide evidence for a
direct connection between infection of lung tissue with H. influenzae and increased release of sIL-6R.
Consistent with previous studies [17], we found that neutrophils represent a source of sIL-6R, and we
show that sIL-6R is released from neutrophils during H. influenzae-induced NETosis. Providing novel
insights into the heterogeneity of COPD, by identifying a new patient subset characterised by IL-6TS and
by elucidating the underlying pathological mechanisms, will empower future development of specific
treatments and precision medicine approaches.
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FIGURE 5 Sputum bacterial growth in the interleukin (IL)-6 trans-signalling (IL-6TS)-high patients in the BEAT-
COPD (Biomarkers to Target Antibiotic and Systemic Corticosteroid Therapy in COPD Exacerbation) cohort.
Percentages of patients (IL-6TS-high n=19, IL-6TS-low n=39) with significant growth of a) pathogenic
micro-organisms (Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pneumoniae, Staphylococcus
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Protection Agency standard operating procedures. Chi-squared test was used for p-values.
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In a recent study we identified an IL-6TS eight-gene epithelial signature (TNFAIP6, PDE4B, IL1R2,
S100A9, S100A8, S100A12, CHI3L1 and SPP1) in patients with asthma and proposed that it corresponds
to a set of IL-6TS-related sputum protein biomarkers, including IL-6, sIL-6R, MIP-1β, IL-8, IL-1β,
YKL-40 and MMP3 [2]. This led us to the identification of a novel IL-6TS-high subset in asthma,
characterised by lung epithelial IL-6TS pathway activation in notable absence of systemic IL-6
inflammation. In this study, we confirmed a positive correlation between the IL-6TS eight-gene and
five-protein (IL-6, sIL-6, MIP-1β, IL-8 and IL-1β) signatures within the same patients in a smaller COPD
cohort with paired epithelial and sputum samples (supplementary figure S1). This supports the potential of
the IL-6TS eight-gene epithelial and five-protein sputum signatures to identify comparable IL-6TS-high
subsets of COPD patients.
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FIGURE 6 Increased release of soluble interleukin-6 receptor (sIL-6R) from human neutrophils during Haemophilus influenzae-induced neutrophil
extracellular trap (NET) formation (NETosis). Fresh human blood neutrophils were infected with H. influenzae or stimulated with ionomycin/calcium
chloride (CaCl2) and analysed for the accumulation of extracellular DNA, expression of citrullinated H3 (H3cit), NET formation and the release of
sIL-6R. Peptidyl arginine deiminase inhibitor (PAD4i) was used to specifically block NETosis. a) The accumulation of extracellular DNA (six donors)
and b) the percentage of H3cit-positive cells (four donors) were analysed. **: p<0.01, ****: p<0.0001 (one-way ANOVA). c) Representative images of
H3cit and DNA-positive NETs in H. influenzae-infected cells (blue arrowheads) and intact neutrophils (white arrowheads). Scale bars=25 μm.
d) Release of sIL-6R into the surrounding medium following stimulation with ionomycin/CaCl2 and H. influenzae (1×108 CFU·mL–1), respectively (nine
donors). Paired t-test was used for p-values. e) sIL-6R release was significantly inhibited by PAD4i (four donors). *: p<0.05, **: p<0.01, ***: p<0.001
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The IL-6TS eight-gene epithelial signature was increased in a subset of COPD patients from the
Southampton lung epithelial brushing cohort. The IL-6TS-high COPD patients showed significantly higher
lung epithelium expression of TLR2 and TLR4, replicating the findings from the IL-6TS-high subset in
asthma, where high IL-6TS signature overlapped with augmented markers of TLR pathway activation [2].
Several lines of evidence suggest a positive interplay between IL-6TS and TLR pathways. IL-6TS has been
shown to enhance TLR4-dependent inflammatory responses via STAT3, and specific inhibition of IL-6TS
completely protected mice from lipopolysaccharide/TLR4-mediated septic shock [31]. Similarly,
hyperactivation of STAT3 upregulated TLR2 gene expression in gastric epithelial cells [32]. Furthermore,
IL-6TS significantly amplified TLR ligand induced production of inflammatory mediators (IL-1β, IL-8,
tumour necrosis factor (TNF)-α, monocyte chemoattractant protein-1) by stromal and innate immune cells
[6]. Conversely, activation of TLR2 in human monocytes induced IL-6TS by promoting the secretion of
IL-6 and the generation of sIL-6R [33], suggesting cross-talk between the IL-6TS/JAK/STAT and TLR
pathways as a broader mechanism that augments the severity of inflammatory responses in the IL-6TS-high
phenotype.

The IL-6TS five-protein sputum signature was upregulated in a subset of stable COPD patients in the
BEAT-COPD cohort correlating with increased total sputum cell counts and a higher percentage of sputum
neutrophils. Importantly, high levels of sputum IL-6 did not necessarily overlap with the IL-6TS-high
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subset. This implies that the IL-6TS subset identified in this study is distinct from a COPD subset that
would be identified by IL-6 alone. In contrast to IL-6TS-low patients, the majority of the IL-6TS-high
patients maintained a stable neutrophilic phenotype over time, including during exacerbation. Similar to the
IL-6TS-high subset in asthma, the IL-6TS signature was associated with increased levels of airway
remodelling biomarkers (MMP9, MMP8) and pro-inflammatory mediators (TNF-α, MIP-1α), suggesting a
similar molecular phenotype, characterised by increased innate inflammatory responses. Unlike the IL-6TS
phenotype in asthma, the IL-6TS-high COPD patients did not exhibit increased blood eosinophils and did
not have a tendency towards increased exacerbations, indicating there might be different clinical
manifestations of the IL-6TS-driven pathology in asthma and COPD. Instead, the IL-6TS-high COPD
subset was characterised by a significantly lower quality of life as assessed by the CRQ compared to the
rest of the patients.

The IL-6TS-high patients were characterised by an increased abundance of Proteobacteria, specifically the
genus Haemophilus, and reduced Firmicutes. This replicates a previous finding, where an increased
Proteobacteria:Firmicutes ratio was observed in a cluster of exacerbating COPD and asthma patients with
neutrophilic inflammation and increased pro-inflammatory mediators in sputum [34]. The lung microbiome
in our subset maintained a similar composition in the clinically stable state as at the onset of an
exacerbation, suggesting that the microbial profile in the IL-6TS-high subset is longitudinally stable and
possibly involved in maintaining chronicity of the host inflammatory responses, including IL-6TS. This
hypothesis is supported by studies of cultured human bronchial epithelial cells incubated in the presence of
purified endotoxin preparations from H. influenzae, which have demonstrated that these endotoxins lead to
significantly increased expression and release of IL-6 [35, 36]. In addition, H. influenzae strongly induced
IL-6 production by alveolar macrophages from COPD patients [37], and sputum IL-6 levels were found to
be higher in COPD patients with bacterial colonisation of the lower airways with H. influenzae as the most
frequently isolated pathogen compared with patients without bacterial colonisation or healthy controls [38].
To demonstrate a direct mechanistic link between the IL-6TS pathway and lung colonisation with
H. influenzae, human lung tissue explants were infected with H. influenzae, which led to increased release
of sIL-6R. A notable limitation of our experimental model was a high interdonor variability of the doses of
H. influenzae that triggered sIL-6R release, presumably due to different cellular composition of the tested
lung tissue (i.e. different levels of immune cells representing the main source of sIL-6R).

Human neutrophils express high levels of mIL-6R on their surface and are considered a major source of
sIL-6R, released in response to inflammatory [17] and apoptotic stimuli [39]. In the present study we show
that infection of neutrophils with H. influenzae induced NETosis coinciding with increased release of
sIL-6R. Here, we used a novel inhibitor that was able to specifically block NETosis by targeting the
known NETosis driver PAD4 [28, 29] to confirm the role of H. influenzae-induced NETosis in sIL-6R
release. NETosis is more common in the airways of patients with neutrophilic asthma and COPD [40, 41],
and it is associated with increased levels of Haemophilus species [27]. These findings, together with our
new data, suggest that Haemophilus may be a main driver of airway IL-6TS pathway activation by
triggering sIL-6R release from neutrophils during the process of NETosis. Importantly, we confirmed that
the levels of sIL-6R positively correlate with the levels of surrogate NETosis markers cfDNA and MPO in
BALF from patients with COPD. Even though the proteases responsible for NETosis-mediated mIL-6R
shedding are not revealed in this study, the major protease activity associated with NETs has been
attributed to neutrophil elastase, cathepsin G and proteinase 3 [42], implicating these serine proteases as
likely candidates. Of these, cathepsin G, but not neutrophil elastase or proteinase 3, has previously been
shown to release sIL-6R at sites of inflammation [43].

Our COPD patient phenotyping relies on patient cohorts with overlapping proteomic, transcriptomic and
microbiome data. However, the relatively small number of patients in the multi-omics COPD cohorts
available to us represents a main limitation of this study, especially for the purpose of linking a molecular
phenotype to clinical presentation. Additionally, we had limited information about comorbidities that could
impact the quality of life score assessed by CRQ. Larger studies are needed for deep clinical
characterisation of the COPD patient subset associated with increased IL-6TS, neutrophilic airway
inflammation and Haemophilus infection. Interestingly, consistent with our findings, a recent larger study
involving 253 COPD patients established an association between Proteobacteria (predominantly
Haemophilus) dominance and more frequent exacerbations, lower forced expiratory volume in 1 s and
increased mortality [44].

In conclusion, we show that chronic IL-6TS is a hallmark of COPD patients with persistent neutrophilic
inflammation, and it is potentially implicated in amplifying host inflammatory responses and airway
remodelling. Moreover, our data suggest that H. influenzae can drive IL-6TS in the lungs by triggering
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sIL-6R release from neutrophils during the process of NETosis (figure 8). This furthers our understanding
of the cross-talk between the microbiome and the airways, opening potential new avenues for the discovery
of new biomarkers and respiratory therapeutics.
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