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Abstract
Objectives Combined assessment of cardiovascular disease (CVD), COPD and lung cancer may improve
the effectiveness of lung cancer screening in smokers. The aims were to derive and assess risk models for
predicting lung cancer incidence, CVD mortality and COPD mortality by combining quantitative computed
tomography (CT) measures from each disease, and to quantify the added predictive benefit of self-reported
patient characteristics given the availability of a CT scan.
Methods A survey model (patient characteristics only), CT model (CT information only) and final model
(all variables) were derived for each outcome using parsimonious Cox regression on a sample from the
National Lung Screening Trial (n=15000). Validation was performed using Multicentric Italian Lung
Detection data (n=2287). Time-dependent measures of model discrimination and calibration are reported.
Results Age, mean lung density, emphysema score, bronchial wall thickness and aorta calcium volume are
variables that contributed to all final models. Nodule features were crucial for lung cancer incidence
predictions but did not contribute to CVD and COPD mortality prediction. In the derivation cohort, the
lung cancer incidence CT model had a 5-year area under the receiver operating characteristic curve of
82.5% (95% CI 80.9–84.0%), significantly inferior to that of the final model (84.0%, 82.6–85.5%).
However, the addition of patient characteristics did not improve the lung cancer incidence model
performance in the validation cohort (CT model 80.1%, 74.2–86.0%; final model 79.9%, 73.9–85.8%).
Similarly, the final CVD mortality model outperformed the other two models in the derivation cohort
(survey model 74.9%, 72.7–77.1%; CT model 76.3%, 74.1–78.5%; final model 79.1%, 77.0–81.2%), but
not the validation cohort (survey model 74.8%, 62.2–87.5%; CT model 72.1%, 61.1–83.2%; final model
72.2%, 60.4–84.0%). Combining patient characteristics and CT measures provided the largest increase in
accuracy for the COPD mortality final model (92.3%, 90.1–94.5%) compared to either other model
individually (survey model 87.5%, 84.3–90.6%; CT model 87.9%, 84.8–91.0%), but no external validation
was performed due to a very low event frequency.
Conclusions CT measures of CVD and COPD provides small but reproducible improvements to nodule-
based lung cancer risk prediction accuracy from 3 years onwards. Self-reported patient characteristics may
not be of added predictive value when CT information is available.
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Introduction
The three major smoking-related causes of death are cardiovascular disease (CVD), COPD and lung cancer
[1, 2]. Validated quantitative computed tomography (QCT) measures of these disease have been described
and validated for disease-specific risk prediction [3–7]. Besides external risk factors, lung cancer, CVD
and COPD share underlying pathophysiological mechanisms and tend to coexist within similar risk groups
[1]. Therefore, a high risk of one of the three diseases may indicate susceptibility to the others.

Lung cancer CT screening reduces the number of lung cancer deaths in high-risk populations where CVD
and COPD are important competing causes of death [8–12]. In the National Lung Screening Trial (NLST),
24.1% of all deaths were caused by neoplasms of bronchus and lung, 24.8% by CVD and 10.4% by
respiratory illnesses [9]. When a chest CT is performed for detecting and characterising lung nodules, the
same scan can be used to extract additional information on QCTs of CVD and COPD.

Pre-scan risk models have been described for predicting lung cancer and competing mortality [13, 14];
their purpose is to select eligible screening participants from the general population. With access to
baseline CT findings, post-scan risk stratification can be used to refine previous risk predictions [15].
Several studies have hereby derived lung cancer incidence risk models using baseline CT findings to
encourage personalised follow-up interventions [16–21]. To date, no available models have attempted to
combine QCTs of lung cancer, CVD and COPD to predict outcomes related to each individual disease. We
hypothesised that this additional information would further improve disease-specific risk stratification.

We hereby derived risk models for predicting these outcomes using QCTs of all three diseases. Multiple
models for predicting lung cancer incidence, CVD death and/or COPD death were derived to quantify the
added value of (post-scan) CT information in addition to (pre-scan) self-reported patient characteristics. A
secondary objective was to demonstrate the best performing models’ abilities to stratify lung cancer
screening participants into groups most and least likely to benefit from disease-specific early interventions.

Methods
Scans and data
NLST data were used to form the derivation cohort (ClinicalTrials.gov NCT00047385) [9]. The NLST was
the first randomised controlled trial showing a significant reduction of lung cancer deaths and overall
deaths by annual chest CT scans (n=26722) compared to annual chest radiography (n=26732) in a
high-risk population. There were three annual screening rounds and a subsequent follow-up period of
5 years between August 2002 and December 2009; the median follow-up time was 6.5 years. The use of
NLST data for this project was approved for up to 15000 participants by the National Cancer Institute
Cancer Data Access System under project ID NLST-437.

The Multicentric Italian Lung Detection (MILD) trial data were used to externally validate the models
(ClinicalTrials.gov NCT02837809) [11, 22–24]. MILD was a randomised controlled trial which followed
4099 participants in Milan. MILD was the first trial to report a significant reduction in lung cancer and
overall mortality beyond the fifth year of screening [11]; participants were followed between December
2005 and June 2018. Two intervention groups underwent annual (n=1723) or biennial CT screening
(n=1186). The median active screening by volumetric low-dose CT was 6 years; 93.5% of the participants
were followed for 9 years.

Model variables
Models were derived to predict three patient outcomes: lung cancer incidence, CVD mortality and COPD
mortality. The underlying, immediate or antecedent causes of death were provided, meaning that each
participant’s death may have been attributed to multiple causes. In MILD, the absolute frequency of COPD
deaths was considered insufficient for external validation purposes (n=2 at 5 years’ follow-up).
Additionally, models for predicting lung cancer mortality were derived and are described in supplementary
tables S1–S3, S12–S15.

Variables for model derivation were selected based on the literature and what was available in the datasets
[13, 14, 16–21]. These were summarised into four groups: patient characteristics, nodule features, QCTs of
CVD and QCTs of COPD (table 1). Patient characteristics and nodule features were obtained from the
NLST and MILD datasets; symptoms were not available. If more than one nodule was recorded, the
features of the nodule with the longest diameter were used; subjects without a nodule were given a null
value for all features. Note that the NLST only reported noncalcified nodules of ⩾4 mm in longest
diameter, while MILD reported the diameters and volume for baseline noncalcified nodules of ⩾20 mm3

by semi-automatic segmentation [22].
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TABLE 1 Distribution of variables in the derivation and validation cohorts

Derivation cohort (NLST) Validation cohort (MILD) Intercohort
statistics

Deceased Non-deceased Deceased Non-deceased p-value Effect size#

Patients 1598 21498 154 2133
Patient characteristics
Age years 63.6±5.5 61.2±4.9 62.0±6.6 57.2±5.7 <0.001 0.036
Female sex 473 (29.7) 9036 (42.0) 37 (24.0) 688 (32.3) <0.001 0.055
Race or ethnicity <0.001 0.100

White 1430 (89.8) 19247 (89.5) 154 (100) 2129 (99.8)
Black 89 (5.6) 962 (4.5) 0 (0) 0 (0)
Asian 20 (1.3) 528 (2.5) 0 (0) 2 (0.1)
Hispanic 11 (0.7) 331 (1.5) 0 (0) 1 (0.0)
Mixed or other 42 (2.6) 436 (2.0) 0 (0) 1 (0.0)

Educational level 0–5¶ 2.5±1.6 2.7±1.5 1.2±1.4¶¶ 1.4±1.4¶¶ <0.001 0.067
BMI kg·m−2 27.0 (24.0–30.7) 27.3 (24.4–30.5) 25.9 (23.1–28.4) 25.7 (23.5–28.4) <0.001 0.015
Current smoker 934 (58.7) 10085 (46.9) 115 (74.7) 1451 (68.0) <0.001 0.119
Smoking intensity pack-years 56 (44–80) 48 (39–66) 46 (37–66) 39 (31–50) <0.001 0.024
Smoking duration years 43.5±7.4 39.5±7.3 43.1±7.0 37.9±6.6 <0.001 0.004
Smoking quit time years 7 (3–11) 6 (2–11) 5 (3–7) 5 (3–8) <0.001 0.034
Lung cancer in family§ 0.059 <0.001

1 292 (18.3) 3937 (18.3) 32 (20.8) 517 (24.2)
⩾2 71 (4.5) 671 (3.1) NA NA

Work asbestos 119 (7.5) 956 (4.4) 11 (7.1) 181 (8.5) <0.001 0.049
COPD diagnosisƒ 433 (27.2) 3732 (17.4) 41 (26.6) 248 (11.6) <0.001 0.040
Asthma diagnosis 174 (10.9) 2086 (9.7) 16 (10.4) 138 (6.5) <0.001 0.033
Diabetes diagnosis 256 (16.1) 1951 (9.1) 20 (13.0) 111 (5.2) <0.001 0.038
Heart disease diagnosis 342 (21.5) 3560 (16.6) 36 (23.4) 244 (11.4) <0.001 0.003
Hypertension diagnosis 675 (42.4) 7353 (34.2) 60 (39.0) 565 (26.5) <0.001 0.045
Stroke diagnosis 98 (6.2) 525 (2.4) 8 (5.2) 14 (0.7) <0.001 0.032

Nodule CT features
Nodule attenuation <0.001 0.186

No nodule 1106 (69.2) 15790 (73.4) 65 (42.2) 933 (43.7)
Solid 394 (24.6) 4394 (20.4) 65 (42.2) 950 (44.5)
Part-solid 30 (1.9) 343 (1.6) 5 (3.2) 56 (2.6)
Non-solid 68 (4.1) 971 (4.5) 19 (12.3) 194 (9.1)

Longest diameter mm+ 8 (6–13) 6 (5–9) 6.7 (3.9–11.1) 4.9 (3.1–7.4) <0.001 0.006
Perpendicular diameter mm+ 6 (4–10) 5 (4–7) 5.0 (2.8–7.7) 3.9 (2.8–5.6) <0.001 0.007
Nodule in upper lobe+ 233 (44.7) 3351 (38.7) 49 (61.3) 474 (39.5) <0.001 0.105
Nodule spiculation+ 111 (21.3) 708 (11.7) NA NA NA NA
Nodule count+ 1 (1–2) 1 (1–2) 1 (1–2) 1 (1–2) <0.001 0.006

Quantitative CT measures of CVD
Coronary calcium volume mm3 184 (30–681) 45 (0–259) 109 (8–505) 22 (0–141) <0.001 0.004
Coronary mean calcium density HU 213 (226–266) 206 (0–250) 279 (205–340) 254 (0–309) <0.001 0.006
Transthoracic aorta calcium volume mm3 1089 (305–3002) 389 (85–1238) 900 (182–2646) 190 (43–642) <0.001 0.004
Transthoracic aorta mean calcium density HU 324 (274–376) 311 (250–378) 436 (388–508) 434 (361–523) <0.001 0.035
Mitral valve calcium volume mm3 0 (0–11) 0 (0–0) 0 (0–2) 0 (0–0) <0.001 0.004
Mitral valve mean calcium density HU 0 (0–190) 0 (0–0) 0 (0–216) 0 (0–0) <0.001 0.001
Aortic valve calcium volume mm3 0 (0–15) 0 (0–0) 0 (0–14) 0 (0–0) <0.001 <0.001
Aortic valve mean calcium density HU 0 (0–177) 0 (0–0) 0 (0–233) 0 (0–0) 0.014 <0.001

Quantitative CT measures of COPD
Total lung volume L 5.68 (4.69–6.77) 5.38 (4.52–6.40) 5.98 (5.18–6.84) 5.92 (5.08–6.83) <0.001 0.011
Mean lung density## HU −836 (−858–−810) −839 (−858–−815) −846 (−862–−825) −846 (−861–−828) <0.001 0.007
Emphysema score 0.5 (0.1–2.9) 0.2 (0.1–1.1) 0.1 (0.0–0.5) 0.0 (0.0–0.2) <0.001 0.047
Pi10 3.0 (2.5–3.5) 2.7 (2.3–3.3) 2.5 (2.3–2.9) 2.4 (2.1–2.6) <0.001 0.056

Data are presented as n, mean±SD, n (%) or median (interquartile range), unless otherwise stated. NLST: National Lung Screening Trial; MILD:
Multicentric Italian Lung Detection; BMI: body mass index; CT: computed tomography; CVD: cardiovascular disease; Pi10: measure of bronchial wall
thickness; NA: not applicable. #: t-test and coefficient of determination (r2) for continuous variables with a normal distribution; Mann–Whitney
U-test and r2 for continuous variables with a non-normal distribution; Pearson’s Chi-squared test and Cramér’s V for categorical variables; ¶: a
categorical variable applied as a continuous variable, where 0=did not complete high school, 1=high school graduate, 2=post-high school training
but no college, 3=some college, 4=bachelor’s degree and 5=graduate school or higher; +: of those applicable; regarding nodule features, applies to
only the nodule with the longest diameter; §: number of first-degree family members diagnosed with lung cancer (a value of “2” was given when
two or more family members were diagnosed); ƒ: includes prior diagnosis of COPD, emphysema and/or chronic bronchitis; ##: centred at −1000 HU;
¶¶: on a scale of 0–4.
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QCTs of CVD and COPD were extracted from the CT images automatically using previously described
methods [3, 25, 26] (table 1). Calcium volume and mean density were obtained for the coronary arteries
(combined), mitral valve, aortic valve and transthoracic aorta [26]. Emphysema score was defined as the
percentage of lung voxels below −950 HU after resampling the CT images to 3 mm slice thickness,
normalisation and bullae analysis [25]. Airway wall thickness at an internal perimeter of 10 mm (Pi10) was
computed as a measure of bronchial wall thickness, as follows: the square root of the airway wall area for
a theoretical 10 mm lumen perimeter airway derived using the linear regression of the square root of
segmented wall areas against the lumen perimeter extracted from the complete segmented airway tree [3].

Dataset formation
The NLST subject inclusion criterion was the availability of a baseline CT image of slice thickness
⩽2.5 mm. Participants with missing data on lung cancer incidence, vital status, time of event, QCTs of
CVD or QCTs of COPD were excluded from the study (supplementary figure S1). Cases with unrealistic
QCT values were assumed to be algorithm failures and therefore excluded, i.e. mean lung density
>−300 HU (n=8), mean lung density <−1000 HU (n=3), Pi10 <0.8 (n=190) and Pi10 >6.5 (n=137) [3, 27,
28]. Five-fold multiple imputations were performed to deal with other missing data.

Of those still eligible, all participants who were diagnosed with lung cancer, all who died within the study
period and a random sample of all other participants from the CT screening arm up to the maximum
number allowed for a single study (15000 unique subjects) were included in the NLST cohort. The
participants sampled at random (alive and lung cancer free) were sampled without replacement and added
to the 15000 unique subjects to simulate the full NLST cohort with a baseline scan (n=23096). This was
to maintain the original probabilities of events which occurred in the NLST, in turn preventing the models
from overestimating the risk. All 2287 eligible participants from MILD were used for validation; 2271
(99.3%) out of the 2287 scans had 1 mm slice thickness. Unlike with the derivation cohort, missing or
outlier QCTs were replaced with the median values from the validation cohort; other missing data were
imputed.

Statistical analysis
Statistical analysis was performed in R (version 3.4.3). Cox proportional hazards regression was performed
to derive the models. As each participant could have multiple causes of death, competing risks were not
considered in our analysis. The level of significance for including variables in the model was set at
α1=0.20; first-degree fractional polynomials were considered for continuous variables (α2=0.05) [29].
Three parsimonious models were derived for each outcome: a “survey model” (self-reported patient
characteristics only); a “CT model” (nodule features, QCTs of CVD and COPD, age and sex); and a “final
model” (all variables). An additional “nodule model” was derived for predicting lung cancer incidence
(patient characteristics and nodule features). The proportional hazards assumption for each model was
tested by correlating Schoenfeld residuals with time [30]. A graphical diagnostic assessment was
performed in cases where there were indications for dependence between residuals and time (p<0.05).

β-Coefficients, hazard ratios, estimated baseline hazard functions and calibrated equations to estimate
survival probabilities are reported in the supplementary material (“Risk model equations” section). For the
purpose of testing accuracy, Kaplan–Meier curves were plotted for each model; each was divided into
low-risk (quantiles <0.5), medium-risk (quantiles 0.5–0.9) and high-risk (quantiles >0.9) groups.
Sensitivity, specificity, positive predictive value and negative predictive value were calculated at the 0, 0.1,
0.25, 0.5, 0.75 and 0.9 quantile cut-off points at 1, 2, 3 and 5 years’ follow-up time (supplementary tables
S1 and S2). The time-dependent area under the receiver operating characteristics curve (AUC) and
pointwise 95% confidence intervals were calculated; statistical comparison of AUCs were performed using
the bootstrap test for paired samples (500 times). Calibration was tested using calibration plots, where the
estimated survival probabilities were plotted against the actual survival probabilities. Survival time decision
curve analyses are included in the supplementary material (figures S7 and S8) [31].

Comparisons of the variables’ distributions between the derivation and validation cohorts was performed
using the t-test (normally distributed continuous variables), Mann–Whitney U-test (non-normally
distributed continuous variables) or Pearson’s Chi-squared test (categorical variables). Effect sizes (ES)
were reported in the form of the adjusted coefficient of determination (r2) for continuous variables (small
0.01<ES<0.09; medium 0.09<ES<0.25; large ES>0.25) and Cramér’s V (wc) for categorical variables
(small 0.1<ES<0.3; medium 0.3<ES<0.5; large ES>0.5) [32, 33]. Nodule spiculation (yes versus no) was
not available in the validation cohort and was given a value of 0; the number of first-degree family
members with lung cancer was binarised (0 versus ⩾1).
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The same tests used to assess accuracy and calibration in the derivation cohort were used in the validation
cohort. The mean and 90th quantile of absolute errors were measured as additional measures of calibration.
Internal validation in the form of AUC bootstrap was performed for the CVD and COPD mortality models
to assess optimism. Linear regression was performed to assess trends between risk scores.

The discriminatory performance of our lung cancer incidence and CVD mortality models were compared
to the Brock nodule risk model [34] and the CVD event risk model by METS et al. [35], respectively. Due
to a lack of clinical and spirometry data, existing tools for predicting COPD mortality could not be
calculated for comparison. Comparisons between two models were considered statistically significant when
a p-value <0.05 was calculated.

More details on the methods can be found in the supplementary material.

Results
Cohort demographics
We formed a derivation cohort of 23096 resampled participants (supplementary figure S1), where 923
(4.0%) were diagnosed with lung cancer, 392 (1.7%) were lung cancer deaths, 635 (2.7%) CVD deaths,
177 (0.8%) COPD deaths, and 518 (2.2%) deaths from other causes. 10.9% of the participants who died
(118 out of 1080) had multiple causes of death (lung cancer, CVD and/or COPD). The validation cohort
consisted of 2287 participants, where 108 (4.7%) were diagnosed and 48 (2.1%) died of lung cancer, 54
(2.4%) died of CVD, and 13 (0.6%) died of COPD. Descriptive statistics within and between cohorts are
summarised in table 1. The distribution of all but one variable (97.3%; 36 out of 37) between the
derivation and validation cohorts were significantly different (p<0.05) due to different selection criteria,
but the effect sizes were small (<0.09) in 92% (34 out of 37) of the variables [32]. This indicates that the
observed effect may be due to a large sample size and should not be overvalued.

Table 2 reports the models’ time-dependent AUCs; supplementary table S7 summarises the variables
included in each model; and more model details can be found in supplementary tables S8–S21. Other
measures of accuracy are reported in supplementary tables S1 (derivation cohort) and S2 (validation
cohort). Models were abbreviated based on disease (lung cancer, CVD or COPD), event type (incidence (i)
or mortality (m)) and variables considered (survey, CT or final). Statistical testing suggested that nodule
features violated the proportional hazards assumption, but graphical assessment only demonstrated a weak
pattern with time and was not considered to be an issue (supplementary figure S2).

Lung cancer incidence
Information extracted from CT scans significantly outperformed self-reported characteristics for the
stratification of lung cancer incidence (LCi) in the derivation cohort, but the difference in discriminative
performance decreased with time (table 2 and figure 1, supplementary tables S1 and S2 and figure S4):
The AUC (95% CI) of LCiCT dropped from 93.1% (91.4–94.9%) to 82.5% (80.9–84.0%) between 1 and
5 years’ follow-up, whereas that of LCisurvey remained stable at 69.6% (66.4–72.8%) and 70.6% (68.8–
72.4%), respectively. The AUC of LCifinal was significantly greater than that of LCiCT from 3 years’
follow-up onwards. LCinodule performed equivalently to LCiCT at all time points. The full Brock model
with spiculation (calibrated to the NLST by WINTER et al. [32]) was significantly inferior to LCinodule and
LCifinal at all time points [33].

External validation of the LCi models did not result in a significant difference between LCifinal and LCiCT,
although LCinodule was inferior to both at 3 and 5 years’ follow-up (table 2, supplementary figure S3). The
full Brock model without spiculation was significantly inferior to LCinodule, LCiCT and LCifinal at all time
points [33]. External calibration of NLST-calibrated LCi models in the MILD cohort revealed that the
mean absolute error across the models was no greater than 0.004 (0.9 quantile=0.004–0.008)
(supplementary table S5). NLST- and MILD-calibrated calibration plots are displayed in supplementary
figures S9 and S10, respectively.

Participants with a higher LCifinal risk very often also had a higher LCmfinal risk (NLST cohort r2=0.90,
95% CI 0.90–0.91); MILD cohort r2=0.88, 0.86–0.89) (supplementary table S6). Similar discriminative
performance trends were seen between the models for predicting lung cancer mortality (supplementary
table S3 and figures S3 and S6).

CVD and COPD mortality
CT models for CVD and COPD mortality risk prediction had an equivalent discriminative performance to
the survey models in the derivation cohort (table 2 and figures 2 and 3, supplementary table S1): at 1-year
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follow-up, CVDmCT (73.6%, 95% CI 67.9–79.3%) and COPDmCT (83.6%, 73.2–94.1%) had (not
significantly) lower AUCs than CVDmsurvey (74.4%, 68.5–80.3%) and COPDmsurvey (86.6%, 72.0–100%),
respectively. For both outcomes, the final models were significantly superior to the survey and CT models
in the third and fifth years of follow-up. 3 years after the baseline scan, the model for 3-year risk of CVD
event by METS et al. [35] was statistically inferior to both CVDmCT and CVDmfinal.

At 3 years’ follow-up in the validation cohort, the CVDmCT AUC was significantly higher than that of
CVDmsurvey, CVDmfinal, and the model by METS et al. [35]. In addition, CVDmCT had the lowest mean
absolute error for externally predicted probabilities (0.001; 0.9 quantile=0.002) (supplementary table S5).

To compensate for a lack of external validation, internal validation of the COPD mortality models showed
an optimism of no greater than 0.001 at 1-year follow-up and 0.006 at 5 years’ follow-up; this indicates a
lack of overfitting (supplementary table S4).

Event probability estimates
Among half of the participants in the derivation cohort with the lowest LCifinal, CVDmfinal and
COPDmfinal risks, the average 5-year probabilities of each outcome occurring were 0.6% (61 out of
11 181), 0.5% (54 out of 11 272) and 0.02% (two out of 11 166), respectively (supplementary table S1).
Among the 10% with the highest risks, the probabilities were 18.4% (393 out of 2136), 8.2% (172 out of
2102) and 4.0% (82 out of 2033), respectively.

In the validation cohort, half of the validation cohort with the lowest LCifinal risk had a 5-year LCi of 0.8%
(nine out of 1130); for the half with the lowest CVDmfinal risk, the CVD mortality probability was 0.4%
(four out of 1139). The respective event probabilities among the 10% of the participants with the highest

TABLE 2 Models’ accuracy in the National Lung Screening Trial (NLST) and Multicentric Italian Lung Detection
(MILD) cohorts

1-year AUC % p-value 3-year AUC % p-value 5-year AUC % p-value

NLST cohort (derivation)
LCisurvey 69.6 (66.4–72.8) <0.001 69.8 (67.7–71.9) <0.001 70.6 (68.8–72.4) <0.001
LCiCT 93.1 (91.4–94.9) 0.170 84.8 (83.1–86.5) 0.031 82.5 (80.9–84.0) <0.001
LCifinal 93.7 (92.0–95.4) Ref. 85.9 (84.3–87.5) Ref. 84.0 (82.6–85.5) Ref.
LCinodule 93.3 (91.4–95.1) 0.276 84.5 (82.7–86.3) <0.001 82.1 (80.4–83.7) <0.001
Brock 2b [34]#,¶ 92.1 (89.9–94.4) 0.069 80.3 (78.1–82.5) <0.001 77.0 (75.0–78.9) <0.001
CVDmsurvey 74.4 (68.5–80.3) 0.366 74.5 (71.6–77.4) <0.001 74.9 (72.7–77.1) <0.001
CVDmCT 73.6 (67.9–79.3) 0.034 77.1 (74.1–80.1) 0.002 76.3 (74.1–78.5) <0.001
CVDmfinal 76.4 (70.9–82.0) Ref. 79.5 (76.6–82.3) Ref. 79.1 (77.0–81.2) Ref.
METS et al. [35] 69.7 (63.4–75.9) 0.005 72.9 (69.6–76.1) <0.001 72.6 (70.1–75.0) <0.001
COPDmsurvey 86.6 (72.0–101.2) 0.410 88.3 (84.0–92.6) 0.028 87.5 (84.3–90.6) <0.001
COPDmCT 83.6 (73.2–94.1) 0.049 87.1 (82.7–91.5) 0.002 87.9 (84.8–91.0) <0.001
COPDmfinal 89.6 (80.5–98.6) Ref. 91.3 (87.9–94.7) Ref. 92.3 (90.1–94.5) Ref.

MILD cohort (validation)
LCisurvey 75.2 (61.3–89.0) 0.008 75.8 (68.0–83.5) 0.167 74.7 (68.0–81.4) 0.103
LCiCT 89.7 (81.5–97.9) 0.621 79.9 (72.5–87.2) 0.575 80.1 (74.2–86.0) 0.909
LCifinal 90.2 (81.0–99.5) Ref. 80.8 (73.7–87.9) Ref. 79.9 (73.9–85.8) Ref.
LCinodule 89.2 (80.1–98.4) 0.200 79.1 (71.6–86.5) 0.014 77.5 (71.3–83.8) 0.005
Brock 1b [34]+ 81.5 (70.4–92.5) 0.022 68.1 (58.9–77.2) <0.001 67.6 (60.2–75.0) <0.001
CVDmsurvey NA NA 76.1 (60.2–92.1) 0.902 74.8 (62.2–87.5) 0.619
CVDmCT NA NA 83.8 (68.3–99.4) 0.034 72.1 (61.1–83.2) 0.992
CVDmfinal NA NA 76.8 (56.9–96.7) Ref. 72.2 (60.4–84.0) Ref.
METS et al. [35]§ NA NA 65.9 (34.7–97.2) 0.078 63.7 (49.1–78.4) 0.163

Data are presented as receiver operating characteristic area under the curve (AUC), unless otherwise stated.
Pointwise 95% AUC confidence intervals are reported in brackets; p-values were obtained from the bootstrap
test for paired samples compared to the final model’s AUC for the same outcome and time point. LCisurvey:
lung cancer incidence survey model; LCiCT: lung cancer incidence computed tomography (CT) model; LCifinal:
final lung cancer incidence model; LCinodule: lung cancer incidence nodule model; CVDmsurvey: CVD mortality
survey model; CVDmCT: CVD mortality CT model; CVDmfinal: final CVD mortality model; COPDmsurvey: COPD
mortality survey model; COPDmCT: COPD mortality CT model; COPDmfinal: final COPD mortality model; ref.:
reference value; NA: not applicable. #: full lung cancer incidence model with spiculation [34]; ¶: calibrated by
WINTER et al. [32]; +: full lung cancer incidence model without spiculation [34]; §: 3-year CVD risk model [35].
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model risk probabilities were 12.9% and 3.2% (supplementary table S2). Figure 4 visualises the event
probability estimates (calibrated to the relevant cohort) across percentiles.

Discussion
Overall performance of models
We developed and validated risk models for predicting LCi, CVD mortality and COPD mortality. These
models are the first to combine objective QCTs of lung cancer, CVD and COPD, namely a consistent
backbone of parameters beyond variability of self-reporting [13–16, 18, 19, 36]. The added value of the
CT predictors to self-reported patient characteristics was quantified by comparing performances of models
without one or the other group of variables (table 2, figure 1). The discriminative ability of each model at
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FIGURE 1 Lung cancer disease-free survival Kaplan–Meier curves in the derivation cohort (National Lung Screening Trial). Graph and risk table
showing the performance of the lung cancer incidence models. The risk from each model is stratified into three risk quantiles divided at the 50th
and 90th percentiles. LCisurvey: lung cancer incidence survey model; LCiCT: lung cancer incidence computed tomography model; LCifinal: final lung
cancer incidence model.

https://doi.org/10.1183/13993003.03386-2020 7

EUROPEAN RESPIRATORY JOURNAL ORIGINAL RESEARCH ARTICLE | A. SCHREUDER ET AL.

http://erj.ersjournals.com/lookup/doi/10.1183/13993003.03386-2020.figures-only#fig-data-supplementary-materials


various cut-off points and time points was reported to aid in the selection of thresholds (figures 1–3,
supplementary tables S1 and S2 and figure S13).

For predicting events beyond 1 year of follow-up, LCifinal was significantly superior to all other LCi
models in the derivation cohort (table 2). In the validation cohort, LCiCT performed equivalently to
LCifinal; both models performed better than LCinodule from 3 years’ follow-up onwards. This suggests that,
depending on the cohort, patient characteristics may not improve LCi model discrimination or only
contribute to long-term predictions.

For CVD and COPD mortality prediction, the value of combining patient characteristics with CT
information in the derivation cohort significantly improved performance compared to either alone at 3 and
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FIGURE 2 Cardiovascular disease (CVD) death survival Kaplan–Meier curves in the derivation cohort (National Lung Screening Trial). Graph and risk
table showing the performance of the CVD mortality models. The risk from each model is stratified into three risk quantiles divided at the 50th and
90th percentiles. CVDmsurvey: CVD mortality survey model; CVDmCT: CVD mortality computed tomography model; CVDmfinal: final CVD mortality
model.
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5 years’ follow-up (table 2). In the validation cohort, CVDmCT performed best at year 3 of follow-up, but
there was no significant differences between the CVD mortality risk models at year 5. Although the
combination of patient characteristics and QCTs appeared more beneficial for COPD mortality prediction
(supplementary table S4), the lack of external validation is a limitation preventing claims on
reproducibility.

External models
We compared our LCi models to the Brock model [34] and our CVD mortality models to the model by
METS et al. [35]; our CT and final models consistently outperformed the relevant external models.
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Although these external models were deemed to be the most suitable for comparison, we acknowledge that
the comparisons were not completely fair: the Brock model provides malignancy risk scores for individual
nodules (and is therefore not suited for nodule-free participants) [34], and the model by METS et al. [35]
provides 3-year risk probabilities for CVD events (including nonfatal diseases).

Assessment of model predictors
QCTs of lung cancer, CVD and COPD were predictive of LCi, but nodule features did not improve the
performance of CVD and COPD mortality outcomes. For LCi risk prediction, nodule features (especially
nodule diameter) is the most important group of predictors for the short term (⩽2 years); QCTs of CVD
and COPD were significant predictors, but only increased the accuracy by a small amount (5-year
difference in AUC LCifinal and LCinodule 0.019) (table 2, figure 1 and supplementary tables S10 and S11).
Similar findings were described in the Manchester Lung Health Check pilot [37]. All three final models
included age, mean lung density, emphysema score, Pi10 and transthoracic aorta calcium volume as
predictors, suggesting that the contribution of inflammatory lung and vascular damage might be linked to a
phenotypical pattern which facilitates one of the selected outcomes.

Another finding in our study is that the β-coefficients of aorta calcium mean density and coronary calcium
mean density were negative in all applicable models (supplementary tables S9, S10, S17, S18, S20 and
S21). This is noteworthy because the Agatston score (coronary calcium volume multiplied by the density
factor) is the standard for measuring calcium scores [38]. Two studies found that calcified atherosclerotic
plaques with a higher density are an indication of stability and were therefore negatively correlated with
the CVD event risk [39, 40]. To the best of our knowledge, our study is the first to support this claim in
nongated CT images. Note that the calcium mean density of the aortic and mitral valves had positive
β-coefficients, which indicates that these biomarkers play a different role in CVD.

An important aspect of this study is that the QCTs of CVD and COPD were obtained fully automatically.
Being the only externally calibrated model that did not require human input, the CVDmCT model happened
to have the lowest mean absolute error (supplementary table S5). This indicates that the QCTs of CVD and
COPD were the most objective and reliable predictors, independent of cohort. We used nodule features
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FIGURE 4 Line plots of the calibrated 5-year event probability estimates for all final models. The highest event
probabilities were as follows. Final lung cancer incidence model (LCifinal) (National Lung Screening Trial (NLST))
60.2%, final lung cancer mortality model (LCmfinal) (NLST) 58.6%, final cardiovascular disease mortality model
(CVDmfinal) (NLST) 56.0%, final COPD mortality model (COPDmfinal) (NLST) 26.0%, LCifinal (Multicentric Italian
Lung Detection (MILD)) 54.7%, LCmfinal (MILD) 24.9% and CVDmfinal (MILD) 9.6%. Models were derived in the
NLST cohort and validated in the MILD cohort. Models were calibrated to 5 years’ follow-up in their respective
cohorts.
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reported by radiologists for this study, but algorithms have already been developed that characterise
nodules automatically [41, 42]. The presented models could be useful to select participants with a very
high risk for a specific disease and prompt referral to the appropriate specialist.

Clinical relevance
Pulmonary nodule management guidelines recommend additional scans or more invasive tests for detected
nodules with a higher malignancy potential [43–45]. Assuming the standard screening interval of 1 year,
the added value of our LCi models is not to refine nodule management guidelines, but to downgrade lung
cancer risk among screening participants (supplementary figure S13). In practice, participants with a lower
lung cancer risk may be recommended a longer interval before their next screening round.

Supplementary figure S13 visualises the costs and benefits if half of the NLST CT cohort with the lowest
LCifinal risk had been instructed to return for their second screening round two instead of 1 year after
baseline [19]. To take it a step further, instructing one-fourth of both the NLST and MILD cohorts with
the lowest LCifinal risk to return after 5 years would have delayed the lung cancer diagnosis in <4% (25 out
of 756 and two out of 59, respectively) of the cases (supplementary tables S1 and S2). Fewer true-negative
and false-positive screening tests without significantly reducing the number of screen-detected LCs would
improve the overall efficiency of screening.

Besides focusing on lung cancer, the idea of expanding screening to include CVD and COPD is not new
[46, 47]. There are secondary prevention drug and lifestyle options with long-term benefits for both CVD
and COPD, but studies have demonstrated no added value of screening for early signs of disease [38, 48].
This may be associated with the selection process, where most of the intervention group do not have a
sufficiently high a priori risk to benefit from the intervention. Our CVD mortality and COPD mortality
risk models can be used to refine such a selection procedure, perhaps prompting referral to a specialist.
Apart from lifestyle recommendations, the current COPD treatments are symptom dependent [48]. Drugs
are generally recommended for patients with a 10-year CVD death risk >5% [38]; the Dutch–Belgian
screening (NELSON) trial found that 43–64% of participants with an intermediate-to-high risk of CVD
events did not receive antihypertensive drugs or statins [49]. The selection of participants for secondary
preventative interventions against CVD and COPD should remain relatively specific (e.g. top 10% risk
quantile) to avoid overtreatment. If lung cancer is diagnosed, CVD and COPD mortality risk can also be
considered when evaluating treatment options such as chemotherapy (cardiotoxicity) and surgery
(cardiopulmonary fitness).

Future directions
The present analysis is based on the baseline CT only. From the subsequent screening round onwards,
repeat scans enable the quantification of the longitudinal evolution of chest abnormalities. Future models
should consider the rate of change between two scans to further improve prediction accuracy. If performed
in parallel, outcomes from other screening modalities should also be considered.

Building upon the notion that not all participants will benefit from lung cancer screening, a future study
should attempt to identify such a subgroup for re-evaluating their screening eligibility. We performed a
shallow analysis where a composite model consisting of LCifinal, CVDmfinal and COPDmfinal probabilities
was used to identify participants with a high risk of lung cancer-free death (supplementary material:
“Combining disease-specific risk probabilities: an assessment of supplementary figures S11 and S12”).
This group may be identifiable based on a relatively low lung cancer risk and high risk of competing
deaths.

Limitations
The main limitation of this study is the low (<100) frequency of each event of interest in the validation
cohort. However, besides the NLST, the MILD dataset is larger than other publicly available CT screening
cohorts. Furthermore, it is difficult to estimate model performance in a prospective setting because there
are many other variables that influenced the outcomes, e.g. inclusion criteria, follow-up protocols and all
additional tests and interventions performed outside of the screening setting. It is likely that participants’
CVD and COPD risk were (externally) assessed at some point during the trial period, which may have
affected diagnostic follow-up decisions for some; the contribution of QCTs of CVD and COPD in our
lung cancer risk models may therefore be underestimated. The presented risk models have been calibrated
to NLST and MILD data, but will probably require retraining or recalibration for other screening
programmes.
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Although not prone to reader variability, the accuracy of the extracted QCTs is unclear. This especially
applies to scans with slice thickness >1 mm. The fact that the CT scans were not ECG-gated reduces the
reliability of calcium scores.

Another limitation is that only nodule features from the nodule with the longest diameter were considered.
Including the features of multiple nodules may improve predictions, but would increase the number of
variables to consider, possibly leading to overfitting. In addition, modelling features which were available
in any nodule was attempted, as done in another study [19], but this did not improve the model accuracy.
Finally, presence of nodule spiculation was not recorded by the MILD cohort and could therefore not be
used to validate the relevant models.

Conclusion
In conclusion, we developed time-dependent risk models for predicting LCi, CVD mortality and COPD
mortality using combinations of self-reported patient characteristics and QCTs of lung cancer, CVD and
COPD among pre-selected lung cancer screening participants. The added value of using QCTs of CVD
and COPD to improve LCi predictions were statistically significant, but may not be clinically relevant
within 3 years’ follow-up. In turn, the accuracy of the CVD and COPD mortality models were not
influenced by nodule features. When CT information is already available for predicting events within the
next 2 years, it may not be worthwhile to collect patient characteristics for risk stratification purposes in
certain screening populations.

The LCi models offer the possibility to personalise screening with longer intervals up to 5 years among
low-risk participants. The CVD mortality and COPD mortality models can be used to refer a select,
high-risk group for clinical work-up or to consider treatment contraindications. With the possibility to
automate the extraction of imaging features, the human workload can be decreased while optimising
personalised recommendations. As expected in a screening setting, most participants should be given high
assurance of safety and a relatively small target selection should be watched closely.
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