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TB patients express high IL-4 levels and exhibit a compartment-specific skewed Th2/Th1 response.
In vitro, IL-4 subverts mycobacterial containment in M. tuberculosis-infected human macrophages
indicating its potential utility as an immunotherapeutic target. bit.ly/2HclAOH
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ABSTRACT Protective immunity against Mycobacterium tuberculosis is poorly understood. The role of
interleukin (IL)-4, the archetypal T-helper type 2 (Th2) cytokine, in the immunopathogenesis of human
tuberculosis remains unclear.

Blood and/or bronchoalveolar lavage fluid (BAL) were obtained from participants with pulmonary
tuberculosis (TB) (n=23) and presumed latent TB infection (LTBI) (n=22). Messenger RNA expression
levels of interferon (IFN)-γ, IL-4 and its splice variant IL-4δ2 were determined by real-time PCR. The
effect of human recombinant (hr)IL-4 on mycobacterial survival/containment (CFU·mL−1) was evaluated
in M. tuberculosis-infected macrophages co-cultured with mycobacterial antigen-primed effector T-cells.
Regulatory T-cell (Treg) and Th1 cytokine levels were evaluated using flow cytometry.

In blood, but not BAL, IL-4 mRNA levels (p=0.02) and the IL-4/IFN-γ ratio (p=0.01) was higher in TB
versus LTBI. hrIL-4 reduced mycobacterial containment in infected macrophages (p<0.008) in a dose-
dependent manner and was associated with an increase in Tregs (p<0.001), but decreased CD4+Th1
cytokine levels (CD4+IFN-γ+ p<0.001; CD4+TNFα+ p=0.01). Blocking IL-4 significantly neutralised
mycobacterial containment (p=0.03), CD4+IFNγ+ levels (p=0.03) and Treg expression (p=0.03).

IL-4 can subvert mycobacterial containment in human macrophages, probably via perturbations in Treg
and Th1-linked pathways. These data may have implications for the design of effective TB vaccines and
host-directed therapies.
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Introduction
Tuberculosis (TB) has killed more than 1 billion people over the past two centuries and remains a major
global public health threat today. Vaccination is the best hope for worldwide elimination of TB, but most
vaccine candidates are only partially effective or ineffective [1]. More recently, there has been a profound
interest in host-directed therapies as an adjunct to TB chemotherapy, either for shortening conventional
treatment regimens, or to manage cases of programmatically incurable or difficult-to-treat drug-resistant
TB [2]. However, novel strategies for the design of new vaccine candidates or immunotherapies will
require a deeper understanding of the immune mechanisms underpinning susceptibility and disease
progression, as these are currently not well understood.

It has become central dogma that a surrogate of protective immunity against Mycobacterium tuberculosis is a
robust T-helper type 1 (Th1) response. Although interferon (IFN)-γ-related gene defects lead to increased
susceptibility to TB [3, 4], patients with active TB have robust IFN-γ responses at the site of disease [5–7].
Furthermore, current vaccine candidates, including bacille Calmette–Guérin (BCG) and MVA85A, prioritised
based on their Th1-inducing ability, offer limited protection against TB in adults [8, 9].

If a Th1 response alone cannot provide sufficient protection, then what other factors, either alone or in
tandem, underpin M. tuberculosis-specific protective host immunity? Several innate and adaptive immune
mechanisms have been postulated (reviewed in [10]). One possibility, supported by circumstantial
evidence, is that M. tuberculosis induces a small but significant subversive Th2 response within a dominant
Th1 environment, leading to bacterial proliferation and disease progression [11]. Indeed, murine [12] and
cellular human data support this hypothesis; TB patients exhibit elevated interleukin (IL)-4 levels [6, 13,
14] correlating with immunopathology [6, 15], and IL-4 predicts progression to active disease in exposed
healthcare workers [16] and household contacts [17]. Furthermore, the IL-4 receptor (IL-4R) has been
implicated in the development of TB-associated tissue pathology in both murine [18] and human TB [19].
Despite these findings, the role of IL-4 in TB remains controversial due to discordant data and the
technical challenges of measuring human IL-4 that is active at sub-ELISA concentrations (reviewed in
[20]). The existence of IL-4δ2, an alternatively spliced variant and natural antagonist of IL-4 which is
associated with protection in TB, further complicates the picture [6, 21, 22], and may explain why some
studies failed to detect differences in IL-4 between TB patients and controls [23, 24]. Finally, whether IL-4
can subvert mycobacterial stasis/killing in human cells has not been investigated.

Thus, it is still unknown whether a Th2-like response is causally related to attenuated immunity, or merely
a consequence of excessive inflammation. To address these questions, we interrogated Th2 responses in the
peripheral blood and human lung, and further evaluated the effect of human recombinant (hr)IL-4 on
mycobacterial survival in M. tuberculosis-infected human macrophages.

Methods
Participant recruitment
Newly diagnosed (<2 weeks of anti-TB therapy), drug-sensitive pulmonary TB patients were recruited
from four primary care clinics in Cape Town. TB diagnosis was microbiologically confirmed by
mycobacteria growth indicator tube (MGIT) liquid culture. Presumed latently TB-infected (LTBI) controls
were asymptomatic with no clinical or radiological evidence of previous or current disease and were
exposed persons (close contacts of TB index cases or healthcare workers) with a positive tuberculin skin
test and IFN-γ release assay (Quantiferon Gold-in-tube) result. Those with HIV co-infection or other
chronic immunosuppressive diseases, and any known Th2-associated conditions were excluded. Ethical
approval was obtained from the University of Cape Town research ethics committee.

Peripheral blood and bronchoalveolar lavage sample processing
After informed consent, 45–50 mL of peripheral blood was collected by venipuncture into PAXgene RNA
tubes (2.5 mL; Qiagen, Venlo, the Netherlands) for RNA preservation and sodium heparin tubes (∼42.5–
47.5 mL) for peripheral blood mononuclear cell (PBMC) isolation. PBMCs were isolated by density
centrifugation for use in downstream functional immunoassays. Bronchoalveolar lavage (BAL) was
performed as previously described [25]. Isolated BAL cells were stored in RNA stabilisation buffer to fix
the RNA profile.

RNA extraction, reverse transcription and quantitative real-time PCR
RNA was extracted from whole blood and BAL cells using the PAXgene blood RNA kit (PreAnalytiX,
Hombrechtikon, Switzerland) and RNeasy Plus kit (Qiagen), respectively. Following RNA quality assessment
and reverse transcription, transcribed cDNA was amplified using quantitative (q)PCR using primers and
probes specific to IFN-γ, IL-4 and IL-4δ2 (supplementary table E1) from published literature [6]. Values
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were normalised to a validated reference gene, human acidic ribosomal protein (HuPO) [6]. Full
methodological details are provided in the supplementary material.

Expression, purification and bioactivity assessment of hrIL-4
hrIL-4 protein was produced in a baculovirus-expression system and subsequently used in the
mycobacterial containment assay. Full methods are provided in the supplementary material.

Mycobacterial containment assay
A mycobacterial (M. tuberculosis) containment assay was used to determine the effect of hrIL-4 on the
ability of effector cells and macrophages to control the intracellular containment of M. tuberculosis within
autologous monocyte-derived macrophages (MDMs) using peripheral blood from active TB patients.
MDMs were generated from PBMCs for 5 days, as previously described [26], followed by infection with
H37Rv for 18 h at a multiplicity of infection (MOI) of 3 [27]. Non-ingested bacteria were removed by
washing. Frozen aliquots of H37Rv were randomly cultured to confirm the infecting bacterial dose. MDM
viability was determined by trypan blue exclusion staining.

Concurrent to MDM generation, PBMCs were also stimulated for 6 days with purified protein derivative
(PPD; 12 μg·mL−1) with or without hrIL-4 to generate pre-primed effector T-cells (Teff cells). After 6 days,
H37Rv-infected MDMs and Teff cells were co-cultured for 48 h. Appropriate controls performed in duplicate
included a reference control containing H37Rv-infected MDMs only and a positive M. tuberculosis
containment control containing H37Rv-infected MDMs co-cultured with PPD pre-primed Teff cells. The
effect of IL-4 was assessed by adding various concentrations (5, 20, 100 ng·mL−1) of hrIL-4 (day 1) together
with PPD to PBMCs for 6 days to generate PPD+IL-4 Teff cells prior to co-culture with infected MDMs.
After co-culturing for 48 h, intracellular H37Rv was released by lysis of infected MDMs and plated on
Middlebrook 7H10 agar. Colonies were counted and expressed as CFU·mL−1. In order to normalise the data
to account for interpatient variability, the percentage M. tuberculosis containment was also reported, defined
as the change in M. tuberculosis survival compared to the reference control (H37Rv-infected MDMs only;
see supplementary table E3 for experimental details):

100�
"
Experimental Condition ðCFU �mL�1Þ

Reference control ðCFU �mL�1Þ � 100

#
¼ %M:tuberculosis containment

Cellular mechanisms associated with IL-4-mediated effect on M. tuberculosis containment
Adherent (MDMs) and non-adherent (Teff cells) cellular fractions in the mycobacterial containment assay
were analysed by flow cytometry to determine the mechanisms contributing to the IL-4 modulation of
M. tuberculosis containment. Adherent cells were lifted by treatment with cold 0.5% EDTA and gentle
scraping. Cells were stained using fluorescent-labelled antibodies against CD3, CD4, CD8, CD14, CD16,
CD25, dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN; a marker
of alternative macrophage activation), Foxp3, IFN-γ, tumour necrosis factor (TNF)-α and IL-10 (BD
Biosciences, Franklin Lakes, NJ, USA; BioLegend, San Diego, CA, USA; and eBiosciences, Waltham, MA,
USA). Cells were acquired on an LSRII flow cytometer and analysed using FACSDiva software (BD
Biosciences).

Neutralisation of hrIL-4
The effect of neutralising IL-4 was assessed by adding anti-IL-4 antibody (20 μg·mL−1; Abcam, Cambridge,
UK) to hrIL-4-containing interventions (day 1) in the mycobacterial containment assay. The effects on
M. tuberculosis containment and associated cellular mechanisms were determined by colony counting
(CFU·mL−1) and flow cytometry, respectively (supplementary tables E3 and E4). We also performed
similar preliminary experiments to determine the effect of blocking IL-4R using anti-IL-4 receptor
antibodies (10 μg·mL−1; Abcam).

Statistical analysis
The Mann–Whitney U-test was used to assess differences between participant groups and biological
compartments. Wilcoxon-matched pairs signed rank test was used to assess differences pre- and
post-interventions. A p-value of <0.05 was considered significant. Statistical analyses were performed using
GraphPad Prism version 6.0 (GraphPad, San Diego, CA, USA).

https://doi.org/10.1183/13993003.02242-2018 3

BASIC SCIENCE AND TUBERCULOSIS | A. POORAN ET AL.

http://erj.ersjournals.com/lookup/doi/10.1183/13993003.02242-2018.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.02242-2018.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.02242-2018.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.02242-2018.figures-only#fig-data-supplementary-materials


Results
Th1 and Th2 expression levels in the lungs and blood of TB patients and presumed LTBI controls
mRNA levels were assessed using a validated qPCR assay (supplementary material) in whole blood and
BAL cells of TB patients (n=23 and n=8, respectively) and presumed LTBI controls (n=22 and n=7,
respectively). IFN-γ expression levels (median, interquartile range (IQR) per 106 copies of HuPO) in BAL
was approximately six-fold higher compared to whole blood in both TB (6783 (2452–24918) per 106

copies versus 1721 (692–3161) per 106 copies, respectively; p=0.005) and LTBI (6281 (2570–10438) per
106 copies versus 1871 (1131–3521) per 106 copies, respectively; p=0.02; figure 1a). IL-4 mRNA levels were
higher in TB patients versus LTBI controls in whole blood (126 (45–232) per 106 copies versus 42 (16–98)
per 106 copies, respectively; p=0.02), but not in BAL cells (figure 1b). Expression levels of IL-4δ2 were
generally low, and expression in some samples, particularly from BAL, were below the detection limit of
the assay (figure 1c). In addition, the IL-4/IFN-γ expression ratio, thought to represent the Th2/Th1
balance, was higher in whole blood of TB patients compared to LTBI controls (0.046 (0.021–0.155) per 106

copies versus 0.019 (0.010–0.036) per 106 copies; p=0.01), but not in BAL cells. The IL-4/IFN-γ ratio was
much lower in BAL compared to whole blood in both groups (p<0.0001; figure 1d). There were no
inter-group or inter-compartment differences in the IL-4\IL-4δ2 ratio (figure 1e). A similar
compartment-specific pattern of IFN-γ and IL-4 expression was observed in matched BAL and blood
samples in TB (n=5) and LTBI (n=4; supplementary figure E4) Additionally, no differences in IL-4 mRNA
levels or the IL-4/IFN-γ ratio were observed when stratified by smear grade, used as a proxy of disease
extent, in the TB group (supplementary figure E5).

Soluble IL-4 protein, as measured by ELISA in TB antigen-driven cell culture supernatants levels were
mostly below the detection limit of the assay in both BAL and blood (supplementary figure E6). IL-13
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FIGURE 1 mRNA expression levels of a) interferon (IFN)-γ, b) interleukin (IL)-4 and c) IL-4δ2, and cytokine expression ratios of d) IL-4/IFN-γ and
e) IL-4/IL-4δ2 in cells of bronchoalveolar lavage (BAL) and peripheral whole blood from patients with pulmonary tuberculosis (TB; BAL n=8; blood
n=23) and presumed latently TB-infected controls (LTBI; BAL=7; blood n=22) measured using a validated quantitative real-time PCR assay. Data is
shown on a log10 scale and copy numbers are expressed per million copies of human acidic ribosomal protein (HuPO) (validated reference gene).
Statistical analyses between groups were performed using the Mann–Whitney test and p<0.05 was deemed significant. *: p<0.05; **: p<0.01;
***: p<0.001; ****: p<0.0001.
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protein levels were detectable, but also low, and there were no differences in expression levels between TB
patients and LTBI controls (supplementary figure E7).

IL-4-primed effector cells can subvert mycobacterial containment
In TB patients (n=8), the addition of PPD Teff cells to infected MDMs reduced the median M. tuberculosis
from 30.7×103 CFU·mL−1 to 15.7×103 CFU·mL−1 compared to infected MDMs only (p=0.008; figure 2a),
equivalent to a 48% increase in M. tuberculosis containment (p=0.008; figure 2b).

In the PPD+IL-4 Teff interventions, there was a significant increase in median CFU·mL−1 at 5–
100 ng·mL−1 hrIL-4 (29.1×103 to 43.8×103, p=0.008; figure 2a) compared to the PPD Teff control in TB
patients (n=8). This equated to a decrease in percentage M. tuberculosis containment at each of the hrIL-4
concentrations (1%, −73% and −33%, respectively versus 48%, p=0.008; figure 2b). The percentage
M. tuberculosis containment was significantly lower at 100 ng·mL−1 compared to 5 ng·mL−1 hrIL-4
(p=0.008), indicating that the observed hrIL-4 effect was concentration-dependent.

A similar trend was observed in LTBI participants (n=5) where the median CFU·mL−1 increased in the
PPD+IL-4 Teff interventions at 5–100 ng·mL−1 hrIL-4 (45.6×103 to 108.3×103) compared to the PPD Teff
control (28.0×103; supplementary figure E10A). This resulted in decreased percentage M. tuberculosis
containment at each hrIL-4 concentration compared to the control (64%, 18% and −6%, respectively
versus 72%; supplementary figure E10B). However, the differences between the PPD+IL-4 Teff
interventions and PPD Teff control were not statistically significant (p=0.06). Furthermore, there were no
significant differences when equivalent wells were compared between the TB and LTBI groups
(supplementary table E5).

IL-4 modulates the expression of regulatory T-cells, Th1 cytokines and pattern recognition
receptors (DC-SIGN)
In order to determine the effect of hrIL-4 on cellular biomarker expression, cells (MDMs and Teff cells)
were harvested from the mycobacterial containment assay and analysed using flow cytometry.

Regulatory T-cells
The gating strategy for identification of regulatory T cells (Tregs) (CD3+CD4+CD25+FoxP3+) is shown in
figure 3a. The median percentage Treg expression (IQR) was significantly increased in the PPD+IL-4 Teff
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FIGURE 2 The effect of human recombinant interleukin (hrIL)-4 on mycobacterial containment in infected monocyte-derived macrophages (MDMs)
from pulmonary tuberculosis patients (TB; n=8). A mycobacterial containment assay was performed where H37Rv-infected MDMs were cultured
by themselves or co-cultured with peripheral blood mononuclear cells pre-primed with purified protein derivation alone (PPD Teff ), or PPD and
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intervention (100 ng·mL−1 hrIL-4; n=16) compared to the PPD Teff control (4.2 (1.2–10.5)% versus 2.1
(1.1–4.2)%, p=0.0006; figure 3b).

Th1 cytokine and DC-SIGN expression
The gating strategy for Th1 cytokine (IFN-γ and TNF-α) and DC-SIGN expression in lymphocytes
(CD3+CD4+ and CD3+CD8+) and macrophages (CD14+CD16+) is shown in figure 4a. Median
CD4+IFN-γ+ expression at both 20 (n=8; 1.8 (0.4–4.1)%) and 100 ng·mL−1 hrIL-4 (n=16; 1.2 (0.7–3.8)%),
compared to the PPD Teff control (4.0 (1.2–7.4)%), was significantly reduced (p=0.01 and p=0.0005,
respectively; figure 4b). Although IFN-γ expression was higher in the CD8+ lymphocyte population, no
significant differences were observed between the control and interventions.

The effect of IL-4 on TNF-α expression was less pronounced than CD4+IFN-γ expression. Lower median
CD4+TNF-α+ expression was observed in the PPD+IL-4 Teff intervention at 100 ng·mL−1 hrIL-4 compared
to the PPD Teff control (1.4 (0.5–3.1)% versus 1.9 (0.9–6.7)%, respectively, p=0.02; figure 4c). These
differences were not observed in the CD8+ population.

Macrophage (CD14+CD16+) DC-SIGN expression, a marker of alternative macrophage activation, was
significantly reduced in the PPD Teff control compared to the infected MDMs-only well (12.3 (4.6–21.2)%
versus 23.8 (5.8–45.5)%, respectively, p=0.02). However, DC-SIGN expression increased in the PPD+IL-4
Teff intervention at 100 ng·mL−1 hrIL-4 (16.8 (5.8–21.5)%, p=0.02; figure 4d).

Neutralisation of IL-4
The effect of neutralising rIL-4 was determined in TB patients (n=6). Addition of anti-IL-4 antibody
(20 μg·mL−1) to the PPD+IL-4 Teff intervention at 20 ng·mL−1 reduced the CFU·mL−1 to levels similar to
the PPD Teff control (76.5×103 to 32.4×103 CFU·mL−1, p=0.03; figure 5a). Consequently, the percentage
M. tuberculosis containment increased following the addition of anti-IL-4 antibodies (−20.0% to 60.0%,
p=0.03; figure 5b).

In terms of biomarker expression, anti-IL-4 (n=6; 20 μg·mL−1) antibody was tested in the PPD+IL-4 Teff
intervention at 100 ng·mL−1 hrIL-4 only (limitations in sample amount prevented testing of 20 ng·mL−1

hrIL-4). Following the addition of antibody, Treg frequency (0.8 (0.8–1.8)% to 0.2 (0.2–0.8)%, p=0.03;
figure 5c) and CD4+IFN-γ+ expression (2.0 (1.4–2.5)% to 2.9 (2.1–5.2)%, p=0.03; figure 5d) reverted to
levels similar to that of the PPD Teff control. No significant effect on TNF-α and DC-SIGN expression
were observed (data not shown).

The addition of anti-IL-4R antibody produced a similar pattern on mycobacterial containment (n=2), Treg
frequency (n=4) and CD4+IFN-γ+ expression (n=4), but no significant differences were observed when
compared to wells with no anti-IL-4R antibody added (supplementary figure E12).

Discussion
The key findings of this study are as follows. 1) In blood, but not BAL, TB patients exhibited higher IL-4
mRNA expression and a higher IL-4/IFN-γ ratio compared to LTBI controls; 2) overall, IL-4δ2 expression
levels were very low; 3) responses were compartmentalised (higher IFN-γ, lower IL-4 and a lower IL-4/
IFN-γ ratio in the lungs versus blood) in both TB patients and LTBI controls; 4) hrIL-4 can subvert
M. tuberculosis containment in human macrophages, and these effects were concentration-dependent;
5) IL-4-driven mycobacterial containment was associated with an increased Treg frequency, reduced
CD4+Th1 cytokine expression and increased macrophage DC-SIGN expression; and 6) these effects were
reversed upon neutralisation of IL-4 using anti-IL-4 antibody.

This is the first study to demonstrate that IL-4 can directly impact mycobacterial containment in
M. tuberculosis-infected human macrophages. What could be driving a Th2 response leading to disease
progression? Evidence suggests that both the pathogen and environmental factors may be involved [28].
For example, certain bacterial components, such as ManLAM, can stimulate IL-4 production [29] and
exposure to environmental mycobacteria or helminths can also drive/facilitate a mixed Th2/Th1 response
[11, 30]. The latter, which is common in developing countries, is thought to contribute to the failure of
BCG in these areas [11].

What are the implications of these findings? Our data suggest that vaccines, whether prophylactic or
therapeutic, should be designed to include antigens that not only induce Th1 immunity, but also
downregulate Th2 or immunoregulatory responses (for example, M. vaccae [31] and hps65 DNA [32] both
induce strong Th1 and cytotoxic T-cell responses, but simultaneously downregulate a Th2 response, and
have shown some therapeutic efficacy in preclinical studies [33] and are now being evaluated in a phase 3
trial [34]). In addition, host-directed therapies exhibit tremendous potential, either to shorten treatment
regimens or expand the limited treatment options available for those with highly drug-resistant TB [2, 35].
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Interestingly, dupilumab, a monoclonal antibody against the IL-4-receptor-α chain, which has been
approved for use in atopic dermatitis [36], is currently being evaluated for the treatment of persistent
asthma [37]. It is intriguing to speculate that such an agent might have utility as an immunotherapeutic
agent in TB; further in vitro studies are warranted.

Our findings of increased IL-4 in the peripheral blood of TB patients are consistent with other reports [6,
14, 22, 38]. Conversely, some studies failed to show differences in IL-4 levels [23, 24]. Measuring IL-4 can
be challenging (reviewed in [20]) and many studies failed to distinguish between IL-4 and IL-4δ2, which
can have significant effects on study conclusions [22]). This is the first study to investigate IL-4δ2 levels in
both the lung and peripheral blood compartments in a TB-endemic setting. Observations on the protective
effect of IL-4δ2, in relation to IL-4, in TB have been discussed elsewhere [11]. Previous studies focused on
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peripheral blood [14, 22, 38] and only one UK-based study measured compartmental differences in IL-4δ2
expression [6]. These studies found either increased levels [6] or no difference in expression between
patients and controls [14, 38]. Our results are consistent with the latter. Low IL-4δ2 expression observed
in this and other studies is not surprising, given the decreased stability of IL-4δ2 mRNA [39] and that
splice variant expression can be as little as 15% of the parent cytokine [40]. Evidence suggests that IL-4δ2
protein is antagonistic to IL-4 and acts like a Th1 cytokine in in vitro culture [41], but further mechanistic
studies are required to elucidate its exact role during TB infection.

Measurement of TB antigen-specific Th2 protein (IL-4 and IL-13) levels in cell culture supernatants
revealed no differences in expression between the different compartments or study groups (supplementary
figures E6 and E7). IL-4 protein levels were mostly below the detection limit of the assay, which highlights
the difficulties in measuring this low-expressing cytokine. Like IL-4, IL-13 has been implicated in the
development of TB-associated lung pathology in both mice and humans [18, 19]. Although IL-13 and IL-4
share common receptors and signalling pathways, they can have distinct expression profiles and functions
in Th2-driven conditions [42], but whether this is true in TB requires further investigation. This lack of
concordance between IL-4 mRNA and IL-13 protein levels observed in our study could be due to these
intrinsic differences in expression [42], differences in the abundance and profile of mRNA transcript
expression compared to protein secretion [43], and/or recall responses to TB-antigen stimulation
compared to direct ex vivo measurement.

The use of IL-4 and/or IL-4δ2 as a biomarker of TB progression or treatment response may have some
diagnostic utility, but will require large validation studies. However, several technical challenges related to
the biological properties of IL-4 and IL-4δ2 are likely to hinder the development of an antibody-based
diagnostic assay. These include sub-ELISA expression levels ([44, 45] and supplementary figure E6), rapid
degradation [46] and reduced bioavailability [47, 48] of IL-4 protein and lack of commercial antibodies
that can distinguish between the two isoforms. Furthermore, detection of the IL-4δ2 protein has only been
described in asthma [49], but its mechanism of action and precise function remain unclear.

The differential expression of IFN-γ and IL-4 in the lungs compared to peripheral blood suggests a
compartment-specific pattern of cytokine expression and cellular trafficking, which may reflect the active
recruitment and clonal expansion of IFN-γ-producing T-cells at the site of disease [50], subsequently
allowing for a greater expansion of IL-4-producing Th2 cells in the peripheral blood.

In TB patients, a ∼50% reduction in M. tuberculosis survival in infected MDMs by PPD pre-primed
effectors (PPD Teff control) is similar to the magnitude of containment previously described in the context
of Treg effects [25]. Addition of IL-4 lead to a reduction in M. tuberculosis containment by 50–120%. The
addition of IL-4 to unprimed T-cells before commitment to a specific T-cell lineage creates a
Th2-polarising microenvironment where IFN-γ expression and Th1 differentiation pathways are inhibited
[51]. The IL-4-concentration-dependent effect observed in this intervention suggests that there is some
level of competition between PPD-driven Th1 and IL-4-driven Th2 polarisation.

A similar reduction in mycobacterial containment was observed in LTBI participants, but this failed to
reach statistical significance (p=0.06), probably because there were fewer sample numbers in this group.
Furthermore, no differences were observed when TB and LTBI groups were compared directly
(supplementary table E5). This suggests that the effect of IL-4 in our model was not restricted to any
specific clinical phenotype and similar cellular mechanisms were induced by IL-4 in both groups, leading
to the observed reduction in containment.

Our data indicate simultaneous expansion of the Treg population and subsequent downregulation of a
Th1 response. While IL-4 has been implicated in the development [52] and maintenance of Tregs [53],
the data are conflicting and this relationship has never been demonstrated in the context of human TB.
There is substantial evidence on the detrimental role of Tregs in drug-sensitive TB [25, 54–56],
drug-resistant TB [26, 57] and TB/HIV co-infection [58], including attenuation of mycobacterial
containment in vitro [25, 26] and downregulating Th1 responses [25, 56]. The Treg-mediated effect on
Th1 responses in our model seem to be restricted to the CD4 T-cell population (the most important
IFN-γ-producing cells involved in controlling M. tuberculosis replication [59]). Although producing very
little IL-10 (supplementary table E6), these Tregs may exert their regulatory effects by other cellular
mechanisms (reviewed in [60]). Further investigation is required to elucidate these mechanisms.

DC-SIGN expression on macrophages was increased in the PPD+IL-4 Teff intervention. DC-SIGN
facilitates entry of M. tuberculosis into phagocytic cells and is a hallmark of alternatively activated M2
macrophages. A number of M. tuberculosis components that act via DC-SIGN can drive host
immunoregulatory mechanisms [61]. In our model, M2 polarisation probably occurs as both IL-4 [11] and
FoxP3+ Tregs [62] can drive alternative macrophage activation. M2 macrophages also have
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anti-mycobactercidal properties [11] and may be contributing to the observed reduction in M. tuberculosis
containment.

Preliminary experiments indicate that blocking of the IL-4 receptor resulted in a similar effect to
neutralisation of IL-4 on mycobacterial containment, Treg frequency and IFN-γ expression, although no
significant differences were observed, probably due to the limited sample numbers. Previous evidence
indicates that IL-4Rα-mediated signalling is associated with tissue pathology in TB-infected mice [18] and
the development of necrotising granulomas in human TB [19]. However, further investigations are needed
to determine the precise downstream mechanisms that may be driving this effect.

There are a number of limitations to our study. First, the hrIL-4 concentrations used in the M. tuberculosis
containment assays may, in some cases, have been higher than that encountered physiologically in human
tissue (as low as picogram levels). However, there are a number of factors overestimating the concentration
of active recombinant IL-4 protein in experimental conditions, for example 1) recombinant proteins tend
to be less stable and active compared to their naturally produced counterparts [63]; 2) mechanisms such as
chaperone proteins [64] and soluble IL-4 receptors [65] can prolong stability and increase IL-4 bioactivity,
but are normally absent in an in vitro system; 3) proteins expressed in insect cell systems may undergo
inappropriate N-glycosylation patterns, which can affect protein function and stability [64]; and
4) quantification methods, including the Bradford assay, fail to distinguish between functional and
nonfunctional recombinant protein. Moreover, the rIL-4 concentrations used in our M. tuberculosis
containment assays were derived from those used in the 3H-thymidine T-cell proliferation assay
(supplementary figure E9C) which produced a significant effect, and other in vitro stimulation
experiments have used similar IL-4 concentrations [66]. Second, we did not use alveolar macrophages in
the stasis/containment experiments. It was difficult to obtain sufficient BAL cell numbers to perform all
the required experiments given the safety and logistical limitations of the bronchoscopy procedure
(∼200 mL of instilled saline), and similar outcomes were obtained either using MDMs or alveolar
macrophages in another M. tuberculosis containment assay [25]. Third, we only performed preliminary
functional experiments to determine the effect of IL-4R on M. tuberculosis containment and selected
cellular mechanisms and did not specifically target mechanisms within the signalling pathway. The aim of
the study was to determine the ultimate effect of IL-4 on mechanisms known to be associated with TB,
including Tregs, the Th1 response and alternative macrophage activation (discussed in [11]). Future
studies are required to probe the effects of blocking specific molecules within the IL-4 signalling pathway
such as STAT-6, IRS-1 and GATA-3 to determine their effects on M. tuberculosis containment. Fourth, we
were only able to measure mRNA expression levels in a limited number of matched BAL and blood
samples from TB patients (n=5) and LTBI controls (n=4), either because blood was not collected prior to
the bronchoscopy procedure, or samples were excluded due to poor RNA quality or low yield. However,
the matched samples (supplementary figure E4) also showed a compartment-specific effect similar to the
complete dataset outlined in figure 1 (characterised by elevated IFN-γ levels in the lungs, whereas IL-4
levels were increased in the peripheral blood).

In conclusion, IL-4 subverted anti-mycobactericidal mechanisms and undermined M. tuberculosis
containment in infected MDMs. These data inform the development of vaccines and immunotherapeutic
interventions against M. tuberculosis.
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