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ABSTRACT  Antibiotic treatment of tuberculosis takes >6 months, putting a major burden on patients
and health systems in large parts of the world. Treatment beyond 2 months is needed to prevent
tuberculosis relapse by clearing remaining, drug-tolerant Mycobacterium tuberculosis bacilli. However, the
majority of patients treated for only 2-3 months will cure without relapse and do not need prolonged
treatment. Assays that can identify these patients at an early stage of treatment may significantly help
reduce the treatment burden, while a test to identify those patients who will fail treatment may help target
host-directed therapies.

In this review we summarise the state of the art with regard to discovery of biomarkers that predict
relapse-free cure for pulmonary tuberculosis. Positron emission tomography/computed tomography
scanning to measure pulmonary inflammation enhances our understanding of “cure”. Several
microbiological and immunological markers seem promising; however, they still need a formal validation.
In parallel, new research strategies are needed to generate reliable tests.
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Introduction

Tuberculosis (TB) tops the rankings of major global infectious diseases [1]. Antibiotic treatment of TB
takes >6 months, or longer if there is resistance to rifampicin and isoniazid (multidrug-resistant
(MDR)-TB) [2]. In drug-susceptible TB, treatment beyond 2 months is needed to clear remaining
drug-tolerant Mycobacterium tuberculosis bacilli [3]. Shortening this continuation phase to <4 months has led
to relapse in up to 40% of patients, depending on the drug combination [4]. Long treatment is a considerable
burden on patients and health services and elevates risk of nonadherence and noncompletion [5].

Shortening TB treatment is a major research goal [6] and several approaches are being pursued,
including increased doses of existing drugs, use of repurposed drugs, development of new drugs and
adjunctive host-directed therapies [5]. Trials done in the 1970s showed that a course of streptomycin,
rifampicin, isoniazid and pyrazinamide even as short as 2-3 months resulted in relapse rates of <22%
during the first 18 months after treatment completion [4]. This implies that the majority of patients in
which the standard 6-month protocol is effective could be cured with a much shorter treatment.
Therefore, there is a major need for biomarkers that predict relapse-free cure to identify patients needing
full-course treatment from those who can interrupt it earlier. Such biomarkers would also help to
accelerate clinical development by simplifying evaluation of candidate drugs and regimens in phase II
trials [6-8]. Similarly, biomarkers that predict progression from latency to active TB can be used in
reverse to evaluate the efficacy of a treatment and to identify patients who may relapse, as shown in
figure 1 for microbiological assays.

This review summarises the state of the art regarding the discovery of biomarkers that predict relapse-free
cure for pulmonary TB.

Cure versus relapse

Efficacy end-points in clinical trials of TB treatment are generally defined as favourable outcome after
>12 months of scheduled therapy [4]. However, treatment outcomes in routine clinical practice are based
on distinction between cure and relapse. Cure is interpreted as “free of disease” at completion of
treatment, while its bacteriological basis is not strictly defined. Often, outlined as negative bacteriological
sputum testing at end of treatment, cure could mean either two or more negative cultures or two or more
negative microscopic smear examinations (table 1) [9]. Notably, compared to culture, smear examination
has lower sensitivity and specificity, as it detects nonviable bacilli and nontuberculous mycobacteria;
additionally, culture methods differ in their detection limits [10].

Relapse is defined as a recurrent episode of TB disease in a patient declared cured. For many years, relapse
was thought to reflect endogenous reactivation of persisting infection with the strain of M. tuberculosis that
caused the preceding disease episode [11]. However, genotyping studies have shown that TB recurrence can be
due to re-infection with a different strain [12] or even with the same strain, the latter more likely in endemic
communities, with re-infection becoming more probable with time since cure (figure 1 and table 1) [13].
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TABLE 1 Definitions of cured tuberculosis (TB), recurrent TB, re-infection and relapse

Cured TB

Recurrent TB disease

Re-infection

Relapse

Smear- or culture-negative sputum specimens in the last month of treatment and on at least one previous
occasion, according to WHO guidelines.

Refers to a repeat occurrence of TB disease in a patient that occurs as a result of either relapse or re-infection.
Recurrent TB occurs after the previous/initial episode has been classified as clinically cured according to WHO
guidelines.

Recurrent TB disease may occur as a result of re-infection, whereby a patient is exogenously infected with a
Mycobacterium tuberculosis strain that is either the same or distinct from the organism that caused the original
infection.

Defined as a second (or third) episode of active TB disease due to re-emergence of the original infection, as
determined by genotypic analysis of the prevailing tubercle bacilli.

WHO: World Health Organization.

Therefore, for the assessment of treatment effects and for the purpose of this review, relapse is interpreted as
recurrence with the M. tuberculosis strain that was present before treatment.

The relationship between cure and relapse is poorly understood. Different concepts have been applied,
often implicitly. One is that cure implies complete removal, through antibiotic killing, of all replicating
M. tuberculosis, but in some cases with persistence of nonreplicating bacilli that can result in a state of
latent TB infection (LTBI) [14]. Relapse then reflects endogenous reactivation of this latent state. Although
not proven, this “persistence concept” underlies many mathematical models of TB transmission [15]. An
alternative concept is that cure is defined by the threshold of detection by sputum smear examination or
culture, and that in some cases M. tuberculosis replication remains below that threshold. In this “threshold
concept” relapse reflects resurgence of continued M. tuberculosis replication and inflammation that was
already present at the end of treatment in subclinical or incipient state. The distinction between the two
concepts is relevant for how relapse-free cure can be accurately predicted at the end of treatment. In the
persistence concept there is a state of latency characterised by nonreplicating bacteria, while in the
threshold concept it is highlighted by the presence of an ongoing M. tuberculosis replication without
the clinical symptoms of active disease. The threshold concept probably best reflects reality, as suggested
by recent observations that reported the presence of inflammation in patients defined as “cured”. Using
combined positron emission tomography (PET) and computed tomography (CT) scanning, which
measures pulmonary inflammation through cellular uptake of '®F-labelled fluorodeoxyglucose (FDG), a
tracer that reflects glucose metabolism, which is increased in inflammatory areas [16], MALHERBE et al. [17]
found that a significant proportion (34%) of TB patients clinically cured at the end of therapy showed
signs of ongoing inflammation. Moreover, the majority of them had detectable M. tuberculosis messenger
RNA in sputum or bronchoalveolar lavage samples despite negative sputum cultures, thus suggesting that
these “cured” patients may not have eradicated all bacilli. In addition, monitoring the activity of
tuberculosis treatments in live mice using pulmonary single-photon emission CT, OrpoNez et al. [18]
found decreased signs of inflammation, measured as tumour necrosis factor (TNF)-a and interferon
(IEN)-y levels, associated to the efficacy of anti-TB treatments. Similar conclusions have been drawn using
a cynomolgus macaque model [19]. Notably, it is possible to have ongoing M. tuberculosis replication in
asymptomatic patients. It has been reported that in high-incidence settings asymptomatic shedding of
viable bacilli is frequent [20] and that in HIV-infected patients, positive sputum cultures may be present
for up to 12 months before symptomatic, clinically recognisable TB disease occurs [21, 22]. Similar
observations have been made in nonhuman primates following low-dose M. tuberculosis infection that
leads to clinical states ranging from latency to clinical disease. A subset of cynomolgus macaques that were
clinically normal, occasionally had positive M. tuberculosis cultures from bronchoalveolar lavage or gastric
aspirates samples, from several months up to 1 year after infection. Interestingly, some of these cases of
subclinical infection showed more gross pathology upon necropsy than persistently culture-negative cases
[23]. Importantly, the same authors showed that, upon low-dose M. tuberculosis infection, the animals
with latent infection reactivated TB when the action of TNF-o was neutralised, confirming the crucial role
of the immune system in controlling infection outcome [24]. Similarly, in the guinea pig model, the use of
cortisone induced M. tuberculosis reactivation [25].

Furthermore, a re-analysis of 15 TB treatment trials with 16-24 months post-treatment follow-up showed
that 78% of relapses occurred within 6 months, and 91% within 12 months after treatment completion
[26]. Finally, in a meta-regression of clinical trial data the rate of recurrence was accurately predicted by
2-month sputum culture status and treatment duration, suggesting that the absolute decline in replicating
bacilli during the continuation phase of treatment is decisive for relapse-free cure.
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The main argument in favour of the persistence concept comes from long-term follow-up studies showing
that relapses may occur after several years [13, 27, 28]. However, these observations have used mainly
molecular methods, such as IS6110-RFLP (restriction fragment length polymorphism) or MIRU-VNTR
(mycobacterial interspersed repetitive unit-variable-number tandem repeat) methods, which have limited
sensitivity for distinguishing closely related but different strains, meaning that re-infection cannot always be
absolutely excluded. Conversely, studies using high-resolution methods, such as whole-genome sequencing,
found that relapse is very rare beyond 2 years [13]. In addition, re-infection with an identical strain cannot
be ruled out. Therefore, these findings strongly question the validity of the persistence concept.

Hereafter, we report the status of the different microbiological, immunological and radiological tests used
to evaluate TB cure (table 2).

Microbiological tests to predict relapse-free cure

Infection with a mycobacterial strain fully sensitive to the standard first-line treatment is one of the
strongest predictors of relapse-free cure. Therefore, an accurate bacteriological diagnosis that includes
screening for antimicrobial drug resistance remains critical to guide effective TB treatment. Drug resistance
is beyond the scope of this review, and hereafter we will assume that the infecting M. tuberculosis strain is
fully sensitive.

Sputum smear microscopy

Sputum smear microscopy has long been used to monitor therapy and early conversion from acid-fast
bacilli (AFB) positivity to an AFB-negative status, which is suggestive of successful therapy [29, 30].
Today, smear microscopy is still used to monitor treatment response and remains useful to predict failing
therapy and to guide diagnostic and therapeutic interventions, such as extension of the intensive phase
after 4 months for patients treated with the “short MDR regimen” [31]. However, in a systematic review,
microscopy at 2 months had only low sensitivity and modest specificity for predicting treatment failure or
relapse [32]. As standard AFB microscopy detects both viable and nonviable mycobacterial cells, it has
been proposed to use selective dyes to detect only metabolically active and potentially replicating bacilli
[33, 34]. However, a proportion of fluorescein diacetate-negative bacteria may still be viable and able to
transmit the infection [35].

Mycobacterial culture

Culture conversion, defined as two independent negative cultures in a patient with positive pretreatment
culture, has been proposed as a strong predictor of favourable treatment outcome. Using culture as a
predictive marker has several general limitations including poor availability, contamination and
turnaround times of weeks to months. Despite these challenges, sputum culture conversion at different

TABLE 2 Available tests to evaluate tuberculosis (TB) cure

Test Application

Microbiology
Microscopy AFB conversion from positive to negative S
Culture Negative cultures after 2 and 6 months during TB therapy S
Early bactericidal activity (BACTEC-MGIT 960) S
Molecular test DNA detection (PCR; GeneXpert MTB/RIF test) R
RNA detection (isocitrate lyase mRNA; M. tuberculosis rRNA; sets of mMRNA signatures) R

Immunology
Immune cell counts Monocyte/lymphocyte ratio R
Immune cell profiles CD27 expression of T-cells R
CD38/HLA-DR/Ki67 expression of M. tuberculosis-specific T-cells R
M-MDSC R
Levels of inflammatory molecules (IP-10; CRP; B,-microglobulin; a seven-molecule signature) R
T-cell response IGRA (megapools of peptides; HBHA; ESAT-6; CFP-10) R

Radiology

Radiography S
CT scan S
PET/CT scan R

CT: computed tomography; PET: positron emission tomography; AFB: acid-fast bacilli; S: standard; R: research; M-MDSC: monocytic
myeloid-derived suppressor cells; IP: interferon-y induced protein; CRP: C-reactive protein; IGRA: interferon-y release assay; HBHA:
heparin-binding haemagglutinin; ESAT: early-secreted antigenic target; CFP: culture filtrate protein.
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time points is typically used as a microbiological end-point in clinical trials assuming that results from
cultures inoculated at 8 weeks from treatment initiation predict treatment outcome. WAaLLIS et al. [36]
showed that across studies, month 2 culture status predicted relapse-free cure and predicted recurrence
rates (correlation coefficient R*=0.86; R*=1 reflecting perfect prediction). Culture positivity at 2 months
has been interpreted as a risk factor for relapse. Others have cautioned that the appropriate culture time
could be linked to the drugs in use [37]. However, a high variability in the performance of either 2 or
3 months culture conversion on solid media have been reported. Month 2 culture conversion performed as
a reliable surrogate for poor outcome in trials conducted in Hong Kong (R*=0.86), but performed poorly
in East Africa (R?=0.19); interestingly, cultures at 3 months showed opposite results (R*=0.62 and 0.81,
respectively) [38]. Kursatova et al. [39] showed an association between the median time to culture
conversion and outcome in MDR-TB patients (HIV-uninfected or unknown) that was stronger at
6 months with a 14-fold increased probability of successful outcome. These findings have been confirmed
by a study on MDR-TB patients in China: sputum culture conversion at 2 months was not statistically
associated with treatment success, whereas patients with sputum culture conversion at 3, 6 and 24 months
had a significantly higher likelihood of success [40].

In this view, rapid measurement of drug-sensitive M. tuberculosis growth could be important to predict the
effectiveness of the treatments in active TB patients. To this end, the most widely available rapid, fully
automated, high capacity, nonradiometric and noninvasive quantitative liquid-based culture method is the
BACTEC MGIT (mycobacteria growth indicator tube) 960 system [41]. Although this system is mainly
successfully applied for antibiotic susceptibility testing of MDR M. tuberculosis strains, it could be also
useful in shortening the time of diagnosis of culture conversion, and hence used to predict therapeutic
efficacy.

While multiple negative cultures at the end of treatment are widely used to define treatment success,
attempts to use month 2 culture conversion to predict cure and to select patients requiring shorter
treatment have resulted in unacceptable relapse rates. In a trial among patients with negative cultures
at 2 months of standard first-line treatment that randomised these patients after 4 months to either
stop or continue treatment until 6 months, 13 patients in the 4-month arm relapsed compared with
three subjects in the 6-month arm (7.0 versus 1.6%); the trial was interrupted by the safety monitoring
committee [42].

The early bactericidal activity (EBA) of drugs has been monitored in detail by repeated quantitative cultures
during treatment [43]. Although too labour-intensive to be used in routine practice, EBA studies have played
an important role in the development of new treatment regimens [44, 45]. Results from these studies have
demonstrated that an initial rapid killing rate is generally associated with a successful outcome [46]. After
this initial rapid drop in bacterial numbers, a much slower rate of killing by EBA is observed in later stages
of treatment. This biphasic killing has been modelled and it is consistent with two populations of bacteria:
one which is fully sensitive to most antimicrobials, and one which is more drug tolerant [47, 48]. Targeting
both populations of bacteria appears to be critical to ensure cure. An analysis of serial culture data available
from multiple trials concluded that the trend of culture positivity over time is likely to be a better predictive
marker of outcome than culture conversion at a single time point [38].

Molecular assays

Current commercial molecular assays based on mycobacterial DNA detection do not distinguish dead
from culturable bacteria and cannot be used for early monitoring of treatment outcome [49]. MioTrTo and
co-workers adapted assays aiming to overcome this limitation. Pretreatment of samples with compounds
that fragment free DNA prior to the PCR step has improved early monitoring of TB treatment [50, 51].

Measuring bacterial RNA rather than DNA allows viable M. tuberculosis cells to be targeted. The detection
of isocitrate lyase mRNA correlated highly with colony-forming units in sputum prior to therapy and to
time to positivity in liquid culture [52]. An alternative assay targeting more stable ribosomal RNA has
been proposed for monitoring bacterial load [53] and reported to be as sensitive as solid culture for
monitoring the early bactericidal effect of treatment [54].

Cycle threshold (Ct) values from the GeneXpert MTB/RIF (Xpert) test, a highly standardised PCR assay,
have been studied as a possible predictor of cure. Among HIV-negative pulmonary TB patients tested at
baseline and at different time points during treatment, the measure of cycle thresholds and relative
changes in Ct values (ACt) correlated with culture conversion, predicted treatment failure with 75%
sensitivity and 89% specificity [55]. In a multicentre trial of rifapentine-based treatment of smear-positive
TB, modelling of longitudinal Xpert Ct values (measured at weeks 0, 2, 4, 6, 8 and 12) in relation to drug
exposure showed higher ACt in subjects receiving rifapentine than in subjects receiving standard-dose
rifampin, indicating the potential of Xpert ACts as a dynamic measure of response to therapy [56].
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In contrast to the methods based on M. tuberculosis culture, one of the main advantages of molecular
assays is the possibility to obtain results on the same day of testing. However, although most patients will
become negative for standard diagnostic assays in the final phase of their treatment, a low positive score
may still be detected in some sensitive molecular tests and may be related to the initial bacillary load. The
use of highly sensitive assay such as the new Xpert ULTRA may further increase the number of patients
with detection of “trace” (or very low) amounts of M. tuberculosis DNA at the end of treatment [57].
RNA-based assays are promising; however, their implementation under programmatic conditions is
challenging. Similarly, the use of ACts from baseline seems promising, but more data are needed to assess
if they have any real value in predicting outcome.

Immunological tools to predict relapse-free cure

Since the immune responses that regulate protection or pathogenesis of M. tuberculosis are not fully
elucidated, the understanding of those mechanisms is essential for the identification of diagnostic and/or
prognostic markers for successful treatment. To this aim, phenotypic and functional characterisation of
T-cells has been undertaken.

T-cell markers

Markers of T-cell activation and/or differentiation can discriminate between distinct clinical presentations
of TB infection/disease. T-lymphocytes pass through several stages of antigen-driven differentiation (early,
late and terminally differentiated effector cells) that are characterised by a set of cell surface markers,
which may serve as indicators of M. tuberculosis replication or antigen load.

T-cell expression of CD27 has been suggested as a good biomarker for the identification of TB infection
state. CD27, a member of the TNF receptor superfamily, is constitutively expressed by naive and early
effector T-cells, but is downregulated during later stages of effector T-cell differentiation. Therefore,
late effector T-cells exhibit low to no CD27 expression [58, 59]. Several studies have demonstrated that
significantly higher proportions of M. tuberculosis-specific IFN-y-producing CD4" T-cells do not express
CD27 (CD27~ IEN-y" CD4") in persons with active TB disease when compared with healthy controls or
cured TB patients [60-66]. In addition, it has been shown that frequencies of CD27~ IFN-y" CD4" cells
strongly correlate with the degree of lung pathology and matrix destruction [67, 68], providing a good
biomarker of TB treatment success [63, 69]. The accuracy of assays based on the modulation of CD27 may
be increased by combining several tests based on CD27 or cytokine expression [70]; however, further
studies are needed to confirm better accuracy compared to IFN-y release assays (IGRAs).

T-cell activation markers such as CD38, human leukocyte antigen (HLA)-DR and Ki67 also appear to be
promising biomarkers of TB. Human CD38, a transmembrane glycoprotein with ectoenzyme properties, is
expressed by several immune cell types [71, 72]. HLA-DR is the cell-surface receptor that mediates
presentation of antigens via the major histocompatibility complex (MHC) class II pathway to CD4 T-cells
[73]. Both are early immune markers, expression of which is upregulated upon T-cell activation in
response to microbial infection or vaccination. Ki-67 is a nuclear protein widely used as an intracellular
proliferation marker for its selective expression in cycling cells [74]. High levels of CD38, HLA-DR and
intracellular Ki67 expression by M. tuberculosis-specific CD4 T-cells were recently shown to be promising
biomarkers of active TB disease in HIV-uninfected [66, 75, 76] and HIV-infected persons [76]. Decreased
expression of these three markers by M. tuberculosis-specific CD4 T-cells was associated with
responsiveness to anti-TB treatment and clinical resolution [66, 75]. A limitation of TB biomarkers
expressed by M. tuberculosis-specific T-cells, such CD38, HLA-DR and Kié67, is that they can only be
measured in those with detectable M. tuberculosis-specific T-cell responses. Thus, while the works that
report these biomarkers have demonstrated high statistical accuracy [75, 76], it must be considered that
some individuals cannot be included in these analyses because of undetectable T-cell responses [66, 75, 76].

T-cell responses
The complex mechanisms of antigen presentation and epitope recognition by T-cells make it difficult to

design T-cell-based diagnostic tests that are universally applicable to all individuals in a given population
(table 3).

Most of the studies that evaluate mycobacterial immune response during TB treatment are based on
IGRAs. Using commercial assays (i.e. QuantiFERON TB Gold in-tube (QFT-GIT) and the T-SPOT.TB),
variable results of anti-TB therapy effects on M. tuberculosis-specific immune responses have been
reported. The majority of the studies showed no significant differences in IFN-y levels between the time of
TB diagnosis and after clinical cure [77-79]. However, other studies, which used either IGRAs or other
immunological tests, have shown decreased or absent responses after cure, while yet others reported
increased or persistent responses during and after treatment (up to 12 months post-diagnosis) [80-85]. An
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interesting alternative approach has been proposed for the T-SPOT.TB assay, which measures the ratio
between M. tuberculosis-specific antigens (TBAg) (i.e. early secreted antigenic target (ESAT)-6 or culture
filtrate protein (CFP)-10) and phytohaemagglutinin (PHA) spot-forming cells. The authors found that the
TBAg/PHA ratios were significantly higher either in active TB patients than in LTBI individuals in
pulmonary TB [86] or in patients with extrapulmonary TB with respect to pulmonary TB patients [87].
Interestingly, they also found that the TBAg/PHA ratios decrease during anti-TB treatment, thus
suggesting that this method could be tested also for monitoring therapeutic efficacy [87].

Several studies have shown that the T-cell response to antigens may differ depending on the antigen (or
mycobacterial) load [75, 80, 88-91] and on the availability of antigen at the time of infection [92].

QFT-GIT and T-SPOT.TB assays use peptides of ESAT-6, CFP-10 and TB7.7 for QFT-GIT, to stimulate
IFN-y-producing T-cells. It has been reported that in M. tuberculosis-infected mice ESAT-6 is produced at
high levels during active M. tuberculosis growth and the immune response to ESAT-6 is stable throughout
the stages of infection [92-95]. Furthermore, responses to multi-epitopic peptides of ESAT-6 and CFP-10
associate with active M. tuberculosis replication in humans [80, 96-99]. These responses are mediated by
CD4 T-cells with an effector memory phenotype [77]. Importantly, such responses decrease or are lost
after antibiotic treatment of either active TB or LTBI [80]. However, persisting memory responses to these
antigens can be detected by long-term in vitro stimulation that allows expansion of the central memory
cells [77].

Other antigens have been used for measuring the anti-TB response, such as the heparin-binding
haemagglutinin (HBHA), which is expressed at the surface of a variety of mycobacterial species promoting
binding to host epithelial cells, pathogenicity and extrapulmonary dissemination of the bacteria [100].
LTBI and cured TB patients are characterised by high IFN-y responses to HBHA compared to individuals
with active disease suggesting, therefore, a protective role for the HBHA-specific responses [101-104].

Interestingly, it has been proposed that LTBI patients, which may include subjects with spontaneous
sterilisation, quiescent or persistent asymptomatic infection [105-107], could be stratified based on their
IFN-y responses to two different mycobacterial antigens; HBHA, associated to latency and ESAT-6,
associated to active replication [108].

The choice of the M. tuberculosis antigen could be fundamental for obtaining an accurate measurement of
T-cell responses and, therefore, a reliable diagnostic/prognostic value of a specific assay. Beside
M. tuberculosis, nontuberculous mycobacteria (NTMs) often found in soil and water reservoirs [109-113]
can be, in particular situations, opportunistic pathogens of humans and animal species [114-116]. In fact,
some M. tuberculosis-derived epitopes have been shown to be hyperconserved among the genomes of the
M. tuberculosis complex [117] and, additionally, a large proportion of epitopes are conserved across other
species of the Mycobacteria [118]. Environmental exposure to NTMs and cross-reactive immune responses
can influence resistance to M. tuberculosis, interfere with or enhance protective responses to vaccination and
may contribute to the variation in efficacy observed with bacille Calmette-Guerin vaccination [119-121].

A possible approach to overcome the challenges of promiscuity, ethnic diversity and a highly
heterogeneous M. tuberculosis-specific response [122] is the use of peptide “megapools” that comprise
dozens to hundreds of peptides that collectively trigger T-cell responses in virtually every individual [123].
TB treatment may preferentially affect immune responses to some M. tuberculosis antigens, and not others,
as well as affecting the microbiome composition in an immunologically relevant manner [105, 124, 125].
Moreover, even if the frequency of T-cells recognising each individual epitope may be below the limit of
detection, a large number of epitopes might allow detection of sufficient responding T-cells to pass this
limitation, which could be relevant, for instance, in the evaluation of T-cell phenotypic markers, as briefly
discussed earlier [66, 75, 76].

In addition, efforts have been made to study CD8 T-cells in TB-infected humans. M. tuberculosis-specific
CD8 T-cell responses are more frequently detected in active TB compared to LTBI [88, 90, 126, 127].
Moreover, M. tuberculosis-specific CD8 T-cells have been associated with recent exposure to TB [128] and
decline upon anti-TB treatment [88]. Furthermore, it has been shown that the patients with pulmonary
TB that will subsequently relapse exhibit, at the time of diagnosis, excessively robust cytolytic responses to
live M. tuberculosis, in vitro, compared with that of patients who will achieve durable cure [129]. An
updated version of the QFT-GIT assay termed QuantiFERON TB Plus (QFT-P) [130, 131], includes an
additional antigen tube (TB2), which contains peptides stimulating M. tuberculosis-specific CD8 T-cells, in
addition to the CD4 T-cell response detected with QFT-GIT [78, 132]. IFN-y responses measured by the
TB2 tube have been observed in active TB patients [78, 132], and significantly decrease after cure when
compared to baseline [133]. Although promising, further research is needed to establish the efficacy of this
new assay as marker for treatment monitoring and/or outcome.
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Description of the Biomarker Method of evaluation of TB cure Time of TB cure
test evaluated if different
from end of therapy
Clinical Microbiological Chest Not During
outcome tools radiography indicated treatment
Immune markers Commercial tests QFT-Plus [133] [78, 86, 87, 133] [133]
for LTBI diagnosis QFT-GIT, T-SPOT.TB
Cell activation Decreased IFN-y-expressing [75] [75] [75]
markers CD38-specific T-cells
Blood cell counts Decreased monocyte/ [141]
lymphocyte ratio
Cell differentiation Upmodulation of CD27 in [63, 65] [62] [65] [66]
markers CD4 T-cells
Serum/plasma Markers of inflammation [158] [166, 195, 196] [158] [172,173, 1162, 175]
chemokines and  (IP-10, CRP, IL-6, IL-12, IL-4, 197]
cytokines IL-10, TNF-o, IFN-y)
Markers of lung tissue [195, 196] [172,173]1 [175, 198]
repair (platelet activity VEGF,
TGF-B, MMPs)
Responses to RD1 IFN-y response to TB [1011] [88]
or latency antigens
antigens
Molecular tests Decreased expression [184] [129, 177,
signatures of IFN response 1991
and T-cell genes or cytolytic
response
Decreased expression [185] [185]
signatures of inflammation, (PET/CT)
myeloid and glucose
metabolism genes
Radiology Images Combined PET/CT scanning [17]
to measure pulmonary
inflammation
Microbiology Staining Smear at month 2 [31, 33, 35] [34]
tests post-culture
Culture Culture at month 2 [37, 39, 40, 42] [50]
post-culture
Molecular tests Targeting DNA [49, 51, 53, 55, [56]
(M. tuberculosis) 57]
Targeting RNA [17] [52, 54,
(M. tuberculosis) 200]
TB antigens [136]

LTBI: latent TB infection; IFN: interferon; IP: IFN-y-induced protein; CRP: C-reactive protein; IL: interleukin; TNF: tumour necrosis factor;
VEGF: vascular endothelial growth factor; TGF: transforming growth factor; MMP: matrix metalloproteinase; RD: region of deletion; PET:
positron emission tomography; CT: computed tomography; M. tuberculosis: Mycobacterium tuberculosis.
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Direct TB antigen detection

Lipoarabinomannan (LAM), a cell wall component of M. tuberculosis, is the target antigen detected in
urine samples by the commercialised Determine LAM assay, a rapid, inexpensive and noninvasive lateral
flow test that does not require a laboratory or technical equipment. The LAM assay has been demonstrated
to have good accuracy mainly in people living with HIV with low CD4 T-cell counts [134]. Efforts are
ongoing to evaluate LAM as a sputum marker for treatment monitoring. Although it is not yet
commercially available, an ELISA for use in drug trials obtained promising results [135].

Another promising method to rapidly quantify TB antigens in the blood is the identification of
M. tuberculosis-specific peptide fragments using energy-focusing porous discoidal silicon nanoparticles
(nanodisks) coupled to mass spectrometry. This high-sensitivity quantification technique uses
antibody-conjugated nanodisks to enrich two M. tuberculosis-specific peptides, of CFP-10 and ESAT-6,
from trypsin-digested serum samples, which are then quantified by matrix-assisted laser desorption/
ionisation time-of-flight mass spectrometry using isotope-labelled internal standard peptides. Liv et al
[136] found that the serum levels of M. tuberculosis peptides associate to active TB and decrease after
specific therapy. Therefore, the detection of the M. tuberculosis-specific antigens can be a marker to
monitor TB therapy efficacy.

Modulation of monocytic and lymphocytic cell populations

In the 1920s it was shown in a rabbit model that a higher ratio between peripheral blood monocytes and
lymphocytes, known as the monocyte/lymphocyte (M/L) ratio, was associated with progressive active TB
[137, 138]. This finding was confirmed in humans [139, 140] and, recently, it was shown that the M/L
ratio returned to levels found in healthy donors upon TB cure [141]. This finding may be related to
decreased inflammation during effective TB treatment, leading to decreased myelopoiesis in the bone
marrow, which is known to be driven by IFN-y produced during the antimycobacterial response [139,
142]. Since lymphopoiesis is not activated in a similar manner and peripheral lymphoid cells are probably
recruited to the site of M. tuberculosis replication during disease [105], TB treatment may lead to an
increase in peripheral blood lymphoid cells. Therefore, the higher M/L ratio observed in TB disease is
probably a product of the polar effects of inflammation on myeloid and lymphoid cells, which are reversed
to normal levels after effective treatment [141].

Other immunological markers

M. tuberculosis induces the expression of the indoleamine 2,3-dioxygenase (IDO), an enzyme that
catabolises tryptophan, which affects host immunity, dramatically suppressed by tryptophan metabolites
[143]. Interestingly, in a Japanese study, pulmonary TB patients had significant increases in IDO activity
and significant decreases in tryptophan concentrations compared to control subjects [144]. Furthermore,
increased IDO activity was associated with progression to TB in HIV-infected patients, while its decrease
was significantly reported after efficacious therapy [145]. Recently, blockade of IDO activity in macaques
was demonstrated to reduce both clinical TB manifestations as well as microbial and pathological
characteristics, such as altered granuloma organisation, with more T-cells with proliferative signatures
translocated to the lesion core [146]. These results indicate that the available safe and approved anti-IDO
compounds could be tested for chemotherapy-adjunctive host-directed TB therapy.

Monocytic myeloid-derived suppressor cells (MDSCs) are bona fide phagocytes that internalise the
pathogens, and then persist suppressing the local immune responses [147]. These cells are present in
cancer and other pathological processes such as traumatic stress, sepsis, acute inflammation and bacterial,
viral and parasitic infections [148]. MDSC are defined in humans as CD11b*CD14 CD33"CD15" and
HLA-DRlow (granulocytic MDSCs) or CD11b*CD14"CD33" and HLA-DRlow (monocytic MDSCs). They
are characterised by their ability to suppress T-cell responses through diverse mechanisms. It has been
shown that MDSCs are increased in blood [149, 150] and in lungs of patients with pulmonary TB and
decrease after successful therapy [150].

Inflammation and acute phase response markers

A range of activation markers can serve as biomarkers for TB disease and treatment response. IFN-y
inducible protein (IP)-10 is a chemokine secreted by multiple cell types, including monocytes, endothelial
cells and fibroblasts, in response to IFN-y. IP-10 acts as a chemoattractant for monocytes/macrophages,
T-cells, natural killer cells and dendritic cells and promotes T-cell adhesion [151, 152]. Concentrations of
soluble IP-10 in patients with TB disease, either with or without HIV co-infection, are elevated in plasma
or serum, measured either after M. tuberculosis antigen exposure or direct ex vivo in unstimulated blood
[96, 153-155] or in urine [156-158]. High levels of plasma IP-10 were associated with active TB in both
HIV-uninfected [155, 159] and -infected subjects [160] and decreased after therapy [153]. Similar findings
were obtained in urine samples [158]. These results were reviewed recently [161].

https://doi.org/10.1183/13993003.01089-2018 9



TUBERCULOSIS | D. GOLETTI ET AL.

Circulating levels of C-reactive protein (CRP), an established biomarker of systemic inflammation, has
been described to reflect TB disease severity and radiographic improvement after 2 months of treatment
[162, 163]. In an African study, CRP decreased significantly after 2 months of treatment, whereas levels of
B,-microglobulin, a component of class I MHC found in a free state in various body fluids in different
disease pathologies [164], and neopterin, a clinical marker of immune activation during inflammation
[165] showed little change by 2 months, but a significant decrease after 6 months of treatment [166].
Interestingly, at recruitment, B,-microglobulin levels were significantly higher in subjects infected with
Mpycobacterium africanum compared with those infected with M. tuberculosis sensu stricto [166]. In
addition, while CRP and neopterin showed a highly significant decline post-treatment regardless of strain,
B,-microglobulin showed differential decline depending on M. tuberculosis strain, and levels were still
significantly higher at 6 months in M. africanum- compared to M. tuberculosis-infected subjects. Interestingly,
in accordance with B,-microglobulin, at the end of treatment the decline in serum pro-inflammatory
metabolites was more pronounced in M. tuberculosis-infected than in M. africanum-infected patients.
Since M. tuberculosis-infected patients showed greater improvement than M. africanum-infected patients
in all clinical parameters following a similar length of anti-TB therapy, these results might be indicative of
host factors as potential markers for differential efficacy of the standard anti-TB treatment on the two
lineages [167].

Results from the same laboratory supported this possibility; in fact, they showed that post-TB therapy in
unstimulated blood cells of M. africanum-infected patients had a higher production of
inflammation-associated cytokines and genes (interleukin (IL)-12p70, IL12A and Toll-like receptor (TLR)
9) while those of M. tuberculosis-infected individuals had higher level of disease resolution cytokines
(IFN-y, TNF-a, CCL4, IL1B and TLR4) when stimulated with ESAT-6/CFP-10 [168].

Interestingly, a diagnostic biosignature of TB based on the relative levels of seven soluble serum markers,
including inflammatory mediators such as IP-10, CRP, IFN-y, serum amyloid A, complement factor H,
apolipoprotein-Al and transthyretin, has been described [155]. This signature has high accuracy for TB,
regardless of HIV infection status or African country of sample origin [155]. Efforts are now ongoing to
incorporate this protein biomarker signature into a simple-to-use and field friendly lateral-flow test [169].
Of interest, these markers are mostly mediators of innate immunity and inflammation, therefore,
independently confirming the biological processes underlying TB disease that have also emerged from
transcriptomic (see later) and immune (and perhaps metabolomic) signatures.

A possible supportive strategy to shorten the treatment time is to estimate the inflammatory status of the
patients. Since it has been reported that culture conversion occurs earlier than lung tissue repair [17], it
would be very helpful to evaluate serum markers of tissue repair [170, 171] as relapse-free indicators of
treatment outcome, without assessing pulmonary pathology by chest radiography or PET/CT. Good
candidates are markers of platelet activity, since they are increased in plasma of patients with pulmonary
TB, when compared to healthy controls, and then normalise after antimycobacterial treatment [4].
Additional candidates are the evaluation of the proportions of M. tuberculosis-specific CD27low CD4"
T-cells, which decline in parallel to the reduction of lung tissue damage [65]. Other potential serum
markers are vascular endothelial growth factor, matrix metalloproteinase-9, transforming growth factor
(TGF)-B1 and aminoterminal propeptide of type III procollagen (PIIINP) [172-176].

Blood transcriptomic signatures

Elevated expression by whole-blood leukocytes of mRNA transcripts of type I/II IFN genes or
IFN-stimulated genes (ISGs) have been associated with active TB. Moreover, several transcriptomic
signatures have been developed mainly in M. tuberculosis-monoinfected patients [93, 177-181], but also in
cohorts containing both HIV-co-infected and HIV-uninfected individuals [182]. These signatures reflect
disease-associated inflammation, which decreases during TB treatment, and have also been suggested as
biomarkers for treatment monitoring [177, 183-186]. Blood gene expression signatures are used to
characterise disease severity and monitor treatment for several other diseases, including cancer and
autoimmune diseases [187-189]. Transcriptional profiling of whole blood from individuals with active TB,
LTBI and cured TB revealed upregulated ISGs (both type I and type II), myeloid and inflammatory genes
and downregulated transcripts of B- and T-cell genes during active disease [177]. In addition, the extent of
disease evaluated using chest radiography correlated with the magnitude of the type I/Il IFN
transcriptional signature, suggesting that inflammatory profiles in the blood mirror to some extent the
disease processes in the lung. A recent study showed that detection of changes in type I/II IFN and
complement pathways, myeloid inflammation and monocytes, neutrophils, B-cell and T-cell genes can be
used to map how individuals transition through the different phases of progression from M. tuberculosis
infection to TB disease [105]. It has been reported that soon after the initiation of anti-TB therapy, an
initial fast downregulation of inflammatory mediators coincided with rapid killing of actively dividing
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bacilli, whereas slower changes in other inflammatory mediators coincided with lung pathology resolution
[184, 186]. These findings suggest that monitoring of blood gene expression during TB treatment provide
insight into clearance of M. tuberculosis and resolution of disease-associated inflammation. A 16-gene type
I/IT IFN transcriptional signature, previously discovered and validated as a correlate of risk of TB [190],
could identify patients at risk of TB treatment failure as early as 1-4 weeks after start of treatment [185].
Additionally, this study discovered a novel, parsimonious five-gene transcriptional signature (RESPONSE5)
that allowed treatment response monitoring and prediction of treatment failure with high accuracy, further
supporting the case for blood-based biomarkers for TB [185]. Interestingly, the RESPONSE5 signature
correlated with total pulmonary inflammation measured by PET/CT [185]. These data suggest that a
whole-blood signature can capture aspects of the host immune response reflecting the extent of TB disease
and/or in determining treatment outcome, mainly in terms of resolution of inflammation.

Radiology

In patients with active TB, imaging is often requested to evaluate the degree of disease, while it is used
during and after TB treatment to assess response to therapy or detect residual infection, respectively.
Despite the advent of CT, PET/CT and magnetic resonance imaging, conventional radiography remains
the initial modality for TB screening purposes [191].

As mentioned above, the measure of pulmonary inflammation through cellular uptake of ‘*F-labelled FDG
by PET/CT scanning is considered as a possible surrogate of ongoing M. tuberculosis replication [17].
Moreover, it has been reported almost 30% of HIV-1-infected LTBI subjects had pulmonary abnormalities
compatible with subclinical active infection, which was confirmed by the finding that four out of 10
progressed to microbiologically proven TB disease within 6 months [22]. Although PET/CT scanning does
not qualify as a routine diagnostic test platform, the emerging new insights from this work further support
the concept that inflammation is a marker of treatment efficacy and subsequent risk of TB relapse.

Conclusions and implications

Currently, there is the need for better tests to guide treatment decisions in TB. Considering ideal product
profiles, two types of test, one for treatment monitoring and one for cure, would probably be preferred to
replace old, time-consuming and insensitive techniques. A test of cure would be able to accurately predict
treatment success at an early stage of treatment and inform timing of treatment termination. A treatment
monitoring test can be used to measure response to TB therapy to identify at an early stage those patients
who will fail treatment and may benefit from host-directed therapies, or who would benefit from longer
treatment regimens. Ideally, both tests should be easy to perform by nonlaboratory staff in order to be
implemented at peripheral treatment facilities with no attached laboratory. Simple, low cost, instrument
free and easy to interpret tests will be most likely to be adopted in high-burden countries. That said, a
centralised, more complex test could be considered as well, if it were affordable and the sample transport
and results reporting system were place. Simple tests, such as those based on a single antigen, e.g. LAM in
sputum, show a lot of promise and may soon be translated into a commercial assay, although further
validation studies are needed. Other single-marker approaches rely on nonspecific targets such as IP-10 or
CRP, which would probably be affected by the status of the patient’s immune system. In addition, efforts
have been made to develop highly parsimonious molecular signatures as diagnostic and/or prognostic for
TB. Recently, SWEENEY et al. [192] reviewed public datasets and generated a biosignature of only three
genes associated to active TB diagnosis, which expression declined upon specific therapy. Although other
molecular signatures have been recently developed for the diagnosis or progression to active TB such as a
four-gene signature [193] or 47 circulating microRNA [194], validation is necessary to investigate whether
they can be used as prognostic markers for TB treatment.

Quite complex detection systems will be necessary for T-cell activation markers, expression signatures, or
markers reliant on a stimulation and or incubation. These more complex assays may perform well and it
will be important to translate these into formats that can be used in limited resource settings.

The current data can be summarised to say that no novel test for cure or treatment monitoring is likely to
be immediately forthcoming. While a lot of work on different biomarkers is further enriching our
understanding of the pathogenesis of TB and particularly the continuum between latent M. tuberculosis
infection and active TB, a single biomarker that is indicative for treatment response remains elusive.
Moreover, once biomarkers for TB cure are identified, long follow-up studies to evaluate their capacity to
predict a relapse will be required. The work utilising PET/CT [17] is helping us to understand that even
the entity of “cure” might not be uniform.
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