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ABSTRACT Chronic mucus hypersecretion (CMH) is a common feature in chronic obstructive
pulmonary disease (COPD) and is associated with worse prognosis and quality of life. This study aimed to
identify microRNA (miRNA)–mRNA regulatory networks underlying CMH.

The expression profiles of miRNA and mRNA in bronchial biopsies from 63 COPD patients were
associated with CMH using linear regression. Potential mRNA targets of each CMH-associated miRNA
were identified using Pearson correlations. Gene set enrichment analysis (GSEA) and STRING (search tool
for the retrieval of interacting genes/proteins) analysis were used to identify key genes and pathways.

20 miRNAs and 539 mRNAs were differentially expressed with CMH in COPD. The expression of 10
miRNAs was significantly correlated with the expression of one or more mRNAs. Of these, miR-134-5p,
miR-146a-5p and the let-7 family had the highest representation of CMH-associated mRNAs among their
negatively correlated predicted targets. KRAS and EDN1 were identified as key regulators of CMH and
were negatively correlated predicted targets of miR-134-5p and let-7a-5p, let-7d-5p, and let-7f-5p,
respectively. GSEA suggested involvement of MUC5AC-related genes and several other relevant gene sets
in CMH. The lower expression of miR-134-5p was confirmed in primary airway fibroblasts from COPD
patients with CMH.

We identified miR-134-5p, miR-146a-5p and let-7 family, along with their potential target genes
including KRAS and EDN1, as potential key miRNA–mRNA networks regulating CMH in COPD.
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Introduction
Chronic obstructive pulmonary disease (COPD) is a frequently occurring lung disease, associated with an
abnormal inflammatory response to inhaled noxious particles and gases, including cigarette smoke. A
substantial proportion of patients experience chronic cough with sputum production [1, 2] termed chronic
bronchitis or chronic mucus hypersecretion (CMH) [3]. CMH in COPD is associated with lower quality of
life, accelerated lung function decline, increased risk of exacerbations and higher mortality [1, 2, 4].
Therefore, there is an urgent need for improved treatment of CMH in COPD patients. Unfortunately, our
current understanding of the regulatory mechanisms that drive CMH is still limited.

Goblet cells within the airway epithelial layer together with mucous glands in the airway submucosa are
responsible for the secretion of mucins, the principal components of mucus [3]. The most abundant
gel-forming mucins found in human airways are MUC5AC and MUC5B [5], which are both increased in
COPD [6]. Interestingly, recent in vitro studies suggest that fibroblasts play a role in the regulation of
airway epithelial mucociliary differentiation and mucus production [7, 8].

microRNAs (miRNAs) are small non-coding RNA molecules that target messenger RNA (mRNA),
causing mRNA degradation or inhibition of protein translation [9]. Thus far, no studies have reported
on differential miRNA expression in CMH, although several miRNAs have been implicated in the
response to smoking and COPD [10], including miR-146a-5p [11]. The aim of this study was to identify
key miRNA–mRNA interactions underlying CMH in bronchial biopsies from a well-defined COPD
cohort.

Methods
Patient characteristics
Baseline miRNA and mRNA expression was studied in bronchial biopsies from 63 COPD patients who
participated in the Groningen and Leiden Universities Corticosteroids in Obstructive Lung Disease
(GLUCOLD) study (registered at ClinicalTrials.gov with identifier number NCT00158847). Details of the
study including patient characteristics were previously described [12, 13]. Briefly, all patients had
irreversible airflow limitation (post-bronchodilator forced expiratory volume in 1 s (FEV1) and FEV1/
inspiratory vital capacity (IVC) less than 90% CI of the predicted value) and chronic respiratory
symptoms. All patients were stable, were either current or ex-smokers and were not on corticosteroid
therapy. The local medical ethics committee approved the study and all patients gave their written
informed consent.

Definitions of chronic mucus hypersecretion
In our dataset, clinical questionnaires were used providing information comparable to the most commonly
used definition of CMH: symptoms of cough and phlegm on most days for more than 3 months during at
least two consecutive years [4]. Thus, CMH was defined based on patient responses to the question “How
often did you cough up sputum during the last 3 months?” (question A). Since a patient’s response may
vary over time, we decided to include another question “How often did you cough up sputum during the
last week?” (question B), to cover both the longer time frame (3 months) and the shorter, more recent
time frame (1 week). Henceforth, these were referred to as definitions A and B, respectively. A full
description of the response options to these questions is presented in the supplementary material. For each
question, patients were divided into three groups: no CMH, mild CMH and moderate/severe CMH.

microRNAs and mRNA expression profiling
The methods for mRNA and miRNA extraction from bronchial biopsies, for gene expression profiling
using Affymetrix arrays (ThermoFisher Scientific, Santa Clara, CA, USA) and for the RNA-sequencing are
described in the supplementary material.

Statistical analysis
mRNA and miRNA analyses on bronchial biopsies were performed using R software version 3.2.5 (The R
Project for Statistical Computing; www.r-project.org/). A linear regression model was used to identify
miRNAs and mRNAs that were differentially expressed in patients with mild or moderate/severe CMH
compared to those with no CMH. The model was corrected for age, gender, smoking history and RNA
integrity number (RIN). Multiple testing correction was performed using Benjamini and Hochberg’s
method. Definition A was applied to acquire the primary lists of candidate miRNAs and mRNAs that were
associated with CMH using a false discovery rate (FDR) adjusted p-value cut-off of less than 0.25.
Definition B was then applied to further strengthen the primary findings using a nominal p-value cut-off
of less than 0.05. Subsequently, the final lists consisted of candidate miRNAs and mRNAs that were
associated with CMH according to both definitions. Other statistical tests were performed using GraphPad
Prism version 6 (GraphPad Software, San Diego, USA). Differences in patient characteristics were
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compared using ANOVA. The correlation of the two CMH definitions was assessed using Spearman’s
rank correlation coefficient. The Mann–Whitney U-test was performed to determine significant differences
in immunohistochemistry markers between CMH status and miRNA expression in vitro. The methods for
miRNA–mRNA co-expression network analysis, gene set enrichment analysis (GSEA) and interaction
network analysis using STRING, are described in the supplementary material.

microRNA expression in human primary airway epithelial cells and fibroblasts
The expression of candidate miRNAs was evaluated in air–liquid interface (ALI) differentiated primary
airway epithelial cells (PAECs) and primary airway fibroblasts (PAFs) obtained during lung transplantation
procedures. PAECs were obtained from six Stage IV COPD explanted lungs (supplementary table S1) and
six non-COPD donor lungs as described previously [14], of which the majority did not have CMH. PAFs
were isolated from Stage IV COPD patients (supplementary table S2) as described previously [15], of
which eight had clinical CMH symptoms and eight had no clinical CMH symptoms. Cell culture
procedures and reverse transcriptase quantitative PCR (RT-qPCR) details are described in the
supplementary material.

Results
Patient characteristics
Microarray data of sufficient quality was obtained from 63 patients for miRNA expression profiles and
from 57 patients for mRNA expression profiles. Patient characteristics are shown in table 1. CMH
definitions A and B were significantly correlated (r=0.651, p<0.0001; supplementary figure S1). There was
no significant difference in smoking status, smoking intensity (in pack-years), age, BMI, or lung function
among the three CMH groups (see table 1). The study approach and flow diagram of the main findings
are shown in figure 1.

CMH associated miRNAs
To identify miRNAs associated with CMH we compared expression profiles of 230 miRNAs in patients
with 1) mild and no CMH and 2) moderate/severe and no CMH. According to definition A, three
miRNAs (miR-34b-3p, miR-92b-3p and miR-449b-5p) were higher expressed with mild CMH, while
miR-664a-5p was lower expressed. With moderate/severe CMH, we found 39 differentially expressed
miRNAs, including the four that were associated with mild CMH (FDR <0.25; figures 2a and 2b).
According to definition B, 20 out of the 39 miRNAs were also associated with moderate/severe CMH and
in the same direction (p<0.05). Among these, miR-708-5p had the highest increase (2.06) and miR-134-5p
had the strongest decrease (−2.15) (supplementary table S3). No miRNA was differentially expressed in
mild CMH according to definition B.

CMH associated mRNAs
To identify mRNAs associated with CMH we compared expression profiles of 19793 mRNAs in patients
with 1) mild and no CMH and 2) moderate/severe and no CMH. According to CMH definition A, no
differences in mRNA expression were found with mild CMH. The expression of 942 mRNAs differed with
moderate/severe CMH (FDR <0.25; figures 2c and 2d). Furthermore, according to definition B, 539 out of

TABLE 1 Patient characteristics in relation to the definitions of chronic mucus hypersecretion (CMH)

Characteristics CMH definition A CMH definition B

No CMH (n=8) Mild (n=22) Moderate/
severe (n=33)

No CMH (n=8) Mild (n=25) Moderate/
severe (n=30)

Male gender 8 (100.0) 18 (81.8) 28 (84.8) 8 (100.0) 22 (88.0) 24 (80.0)
Current smokers 4 (50.0) 14 (63.6) 23 (69.7) 4 (50.0) 17 (68.0) 20 (67.0)
Smoking intensity pack-years 41.7 (23.6–50.3) 44.1 (31.9–54.4) 41.5 (35.9–53.5) 40.9 (24.4–51.2) 45.0 (31.2–55.8) 41.5 (36.5–53.5)
Age years 64 (57–69) 59 (53–64) 60 (57–66) 56 (50–60) 59 (55–63) 62 (57–69)
BMI kg·m−2 25.8 (23.2–27.8) 24.2 (22.8–27.2) 24.0 (22.0–28.0) 25.1 (23.8–27.1) 24.4 (22.3–29.4) 24.4 (21.6–28.0)
FEV1 % predicted 69.9 (48.5–71.8) 63.3 (58.5–67.4) 64.8 (58.2–69.8) 66.6 (61.4–70.5) 65.6 (58.5–71.9) 63.9 (56.3–67.2)
FEV1/FVC 0.54 (0.42–0.60) 0.49 (0.44–0.54) 0.50 (0.44–0.56) 0.56 (0.49–0.63) 0.50 (0.44–0.56) 0.49 (0.42–0.54)
RIN 2.6 (2.5–3.2) 2.7 (2.3–4.7) 2.6 (2.4–3.7) 2.7 (2.5–4.4) 2.7 (2.4–4.0) 2.6 (2.4–3.4)

Data are presented as n (%) or median (interquartile range). BMI: body mass index; FEV1: forced expiratory volume in 1 s; FVC: forced vital
capacity; RIN: RNA integrity number.
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942 mRNAs were also associated with CMH in the same direction (p<0.05). Among these, 264 mRNAs
were higher expressed and 275 mRNAs were lower expressed with moderate/severe CMH (supplementary
table S4). The top 20 significant mRNAs are shown in table 2.

To validate the findings from the microarray dataset, RNA-sequencing was performed on bronchial
biopsies from a subset of the patients in the GLUCOLD cohort with moderate/severe CMH (n=21) and
without CMH (n=5). GSEA was performed to assess if the CMH-associated genes in our microarray
dataset were enriched among the CMH-associated genes in our RNA-sequencing dataset. Indeed, we
found a significant enrichment (supplementary figure S2 and supplementary table S7).

To ensure that the observed differences in miRNA and mRNA expression were not due to changes in
cellular composition, we analysed available immunohistochemical data on the numbers of neutrophils,
macrophages, eosinophils, CD3+/CD4+/CD8+ lymphocytes, mast cells and epithelial cells in the bronchial
biopsies previously described [13]. We observed that only CD8+ lymphocytes differed with CMH. When
accounting for the CD8+ cell number in our linear regression model, all 20 CMH-associated miRNAs and
539 CMH-associated mRNAs remained significant.

Gene set enrichment analysis of CMH-associated mRNAs
GSEA was performed to identify pathways, biological processes and molecular functions in which the
CMH-associated mRNAs may be involved. The top 20 significant gene sets enriched among mRNAs
differentially expressed with CMH according to both definitions are shown in table 3. Among these were
gene sets related to cilium development and function, neurohormonal signalling, ion channel activities and
extracellular matrix (ECM) structure. The complete list of significant gene sets (FDR <0.01) is reported in
supplementary table S5. Furthermore, we investigated whether our CMH-associated mRNAs are involved
in the mechanisms relevant to MUC5AC expression. Since MUC5AC was not expressed above background
levels in our microarrays, we built further on the findings of WANG et al. [16] who previously identified 73
MUC5AC-associated core genes which were higher expressed in small airway epithelium from individuals
with high MUC5AC gene expression versus those with low MUC5AC gene expression. Using this list, we
found a strong enrichment of MUC5AC-associated genes among the genes higher expressed with CMH
according to both definition A (enrichment score (ES)=0.40, p<0.001) and definition B (ES=0.44, p<0.001)
(supplementary figure S3).

Identification of miRNA–mRNA co-expression networks contributing to CMH in COPD
To identify mRNAs that are regulated by the CMH-associated miRNAs, we assessed positive and negative
correlations between the expression of each miRNA and the mRNA expression profile in the matched

CMH-associated

miRNAs

39 miRNAs

definition A

definition B

20 miRNAs
miRNA–mRNA

co-expression networks

Expression of candidate miRNAs

in epithelial cells and fibroblasts

miRNA-correlated mRNAs

10 miRNAs

inversely correlated 
and predicted targets

CMH-associated

mRNAs

942 mRNAs

539 mRNAs

GSEA/STRING

analysis definition A

definition B

FIGURE 1 Flow diagram of the study approach. A linear regression model was used to identify chronic mucus
hypersecretion (CMH) associated microRNAs (miRNAs) and CMH-associated mRNAs based on two CMH
definitions. Pearson correlation was used to identify miRNA-correlated mRNAs. Gene set enrichment analysis
(GSEA) was performed using gene sets of interest and ranked lists of miRNA-correlated and CMH-associated
mRNAs. Interaction network analysis using STRING (search tool for the retrieval of interacting genes/
proteins) was performed on the list of CMH-associated mRNAs correlated with at least one CMH-associated
miRNA. The list of CMH-associated mRNAs and the lists of negatively correlated predicted targets of the
candidate miRNAs were used to create miRNA–mRNA co-expression networks. Finally, the expression of
candidate miRNAs was assessed in primary airway epithelial cells and primary airway fibroblasts.
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biopsies (same patient). The expression levels of 10 out of 20 miRNAs (i.e. let-7a-5p, let-7d-5p, let-7f-5p,
miR-31-5p, miR-708-5p, miR-134-5p, miR-146a-5p, miR-193-5p, miR-500a-3p and miR-1207-5p) were
significantly correlated with at least one mRNA (FDR <0.25; supplementary table S6).
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FIGURE 2 MicroRNAs (miRNAs) and mRNAs differentially expressed with chronic mucus hypersecretion (CMH). Patients were classified into three
groups depending on their CMH status, as defined by two definitions, with miRNA profiles of patients with moderate/severe CMH being compared
to those of patients with no CMH. Heat map (a) shows expression changes of 39 miRNAs in the patients with moderate/severe CMH (n=33)
compared to those with no CMH (n=8) according to definition A. Bold labels indicate the 20 miRNAs whose expression was significant based on
both definition A and definition B. Volcano plot (b) shows expression changes of 230 miRNAs in the patients with moderate/severe CMH compared
to those with no CMH according to definition A. Heat map (c) shows expression changes of 942 mRNAs in the patients with severe CMH (n=30)
compared to those with no CMH (n=8) according to definition A. Volcano plot (d) shows expression changes of 19793 mRNAs in the patients with
severe CMH compared to those with no CMH according to definition A. Blue indicates significant miRNAs/mRNAs lower expressed with CMH
while red represents significant miRNAs/mRNAs higher expressed with CMH. Triangles represent miRNAs/mRNAs of which differential
expression was significant based on both definitions. A false-discovery rate (FDR) <0.25 was a cut-off for definition A and a nominal p-value <0.05
was a cut-off for definition B.
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To identify potential direct targets, the lists of mRNAs negatively correlated with miRNAs were compared
to the list of the miRNAs’ predicted targets. The mRNAs that overlapped in both lists were used to generate
miRNA–mRNA co-expression networks (figure 3a). Thus, let-7a-5p, let-7d-5p, let-7f-5p, miR-31-5p and
miR-708-5p, which were higher expressed with CMH, shared several potential targets and, as expected, the
members of let-7 family clustered together through their shared target genes. Similarly, miR-134-5p,
miR-146a-5p, miR-500a-3p and miR-1207-5p, which were lower expressed with CMH, shared several
potential targets (figure 3a). In these networks, the interactions between miRNAs and negatively correlated
predicted targets that were also associated with CMH (indicated in figure 3a) are of special interest as these
are the potential key drivers of CMH. Among the higher expressed miRNAs, the let-7 cluster represents a
key cluster with negative correlation with 16 CMH-associated potential targets. Among the lower expressed
miRNAs, miR-134-5p and miR-146a-5p are key miRNAs negatively correlating with eight and 10
CMH-associated potential targets, respectively. The percentage of CMH-associated potential targets among
the negatively correlated predicted targets was highest for miR-134-5p (figure 3a).

To identify potential interactions among CMH-associated mRNAs, interaction network analysis was
performed using STRING (figure 3b). The networks point towards KRAS, EDN1, PRKAR2A, GSK3B and
POLR2H as hub genes and potential regulators of CMH in our biopsies, as they possessed the most
interactions with other genes. Interestingly, KRAS and EDN1 are potential targets of miR-134-5p and
let-7a-5p/let-7d-5p/let-7f-5p, respectively. There was also clear clustering of several collagen and other
ECM-related genes.

Enrichment of CMH- and MUC5AC-associated genes among the miRNA-correlated genes
GSEA revealed that genes higher expressed with CMH were enriched among the genes positively
correlated with miRNAs higher expressed with CMH and among the genes negatively correlated with
miRNAs lower expressed with CMH, and vice versa for the genes that were lower expressed with CMH
(figures 4a, 4b and supplementary figure S4).

We found that the MUC5AC-associated gene set [16] was significantly enriched among the genes
positively correlated with miRNAs that were higher expressed with CMH and among the genes negatively
correlated with miRNAs that were lower expressed with CMH, except for miR-193a-5p (figure 4c and
supplementary figure S5).

TABLE 2 The top 20 significant mRNAs differently expressed with chronic mucus
hypersecretion (CMH) and their statistics

Gene Moderate/severe CMH versus no CMH
(definition A)

Moderate/severe CMH versus no
CMH (definition B)

t-value FC p-value FDR t-value FC p-value

AIG1 4.667 1.355 2.32E−05 0.225 2.548 1.213 1.40E−02
LRRC8B 4.498 1.487 4.10E−05 0.225 3.117 1.359 3.03E−03
ROD1 4.410 1.538 5.49E−05 0.225 3.515 1.462 9.43E−04
OSBPL3 4.402 1.671 5.64E−05 0.225 3.130 1.522 2.91E−03
RC3H1 4.345 1.238 6.82E−05 0.225 2.760 1.173 8.07E−03
RQCD1 4.082 1.264 1.61E−04 0.231 4.512 1.316 3.91E−05
LIAS 4.030 1.194 1.90E−04 0.231 2.254 1.124 2.86E−02
USP46 3.884 1.271 3.02E−04 0.231 2.608 1.194 1.20E−02
MTF1 3.873 1.289 3.13E−04 0.231 2.842 1.227 6.47E−03
LOC100133388 −4.265 −1.306 8.86E−05 0.225 −2.072 −1.173 4.34E−02
NKD1 −4.249 −1.312 9.36E−05 0.225 −2.552 −1.198 1.38E−02
FAM115A −4.223 −1.386 1.02E−04 0.225 −2.518 −1.266 1.50E−02
C1QTNF1 −4.222 −1.328 1.02E−04 0.225 −3.233 −1.270 2.17E−03
RPL23AP64 −4.075 −1.183 1.65E−04 0.231 −2.915 −1.142 5.30E−03
WTIP −4.039 −1.266 1.84E−04 0.231 −2.435 −1.167 1.85E−02
LIMS2 −4.010 −1.326 2.02E−04 0.231 −4.282 −1.342 8.38E−05
BTN2A3 −3.961 −1.355 2.37E−04 0.231 −2.889 −1.296 5.70E−03
PDGFB −3.929 −1.321 2.62E−04 0.231 −3.030 −1.262 3.87E−03
C15orf60 −3.916 −1.223 2.73E−04 0.231 −2.902 −1.180 5.50E−03
EDN1 −3.884 −1.357 3.02E−04 0.231 −2.098 −1.207 4.10E−02

t-value: a statistic reflecting the size difference relative to its standard error; FC: fold change; FDR: false
discovery rate.
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TABLE 3 The top 20 significant gene sets enriched among chronic mucus hypersecretion (CMH) associated mRNAs

Gene sets# NES¶ FDR¶ Core-enriched
genes

Total
genes

CMH-associated genes

Cilium/microtubule development and function
GO cilium organisation 3.801 0.0 117 171 SPAG1, TTLL5
GO cilium morphogenesis 3.716 0.0 123 187 IFT52, SPAG1, TTLL5
GO cilium movement 3.235 0.0 30 33
GO axoneme assembly 3.116 0.0 35 41 SPAG1, TTLL5
GO protein transport along microtubule 2.922 0.0 20 24
GO intraciliary transport 2.903 0.0 20 24
GO axonemal dynein complex assembly 2.903 0.0 19 19 SPAG1
GO microtubule bundle formation 2.863 0.0 44 63 CLIP1, SPAG1, TTLL5
GO nonmotile primary cilium assembly 2.708 7.944E−05 16 22
GO microtubule based movement 2.631 6.455E−05 85 195 SOD1

Cellular component assembly
GO cellular component assembly involved in

morphogenesis
3.163 0.0 122 229 NEBL, TMOD3, SPAG1, TTLL5

GO cell projection assembly 2.965 0.0 114 246 EZR, SPAG1, TTLL5
GO organelle assembly 2.922 0.0 175 452 RC3H1, NEBL, WDR45L, CNOT7, MIS12, STAM2, ATXN2, EZR,

VTA1, RAB11A, CHMP5, TMOD3, CHMP2B, SPAG1, TTLL5,
DDX3X, PDCD6IP

GO protein modification by small protein
removal

2.903 0.0 69 112 USP46, USP42, USP10, USP9Y, USP38, OTUD4

Proteolysis
KEGG proteasome 2.761 0.0 26 43
BIOCARTA proteasome pathway 2.863 0.0 22 28
GO ubiquitin-like protein specific protease

activity
2.761 0.0 64 97 USP46, USP42, USP10, USP9Y, USP38, OTUD4

GO protein polyubiquitination 2.620 6.075E−05 117 240 CBFB, CBLB, RNF6, SKP2
Central dogma

GO ribonucleoprotein complex biogenesis 2.694 7.377E−05 176 385 RC3H1, CNOT7, CDH7, RPP40, ATXN2, DDX3X
GO RNA splicing via transesterification

reactions
2.642 6.885E−05 103 231 HNRNPF, POLR2H, DHX32, PAPOLA

Neuronal and cell signalling
GO olfactory receptor activity −2.843 0.0 257 347 OR2B11
GO hormone activity −2.819 0.0 81 113 EDN1, CRH, NPPB
GO neuropeptide signalling pathway −2.523 0.0 73 97 OPRK1, NPFFR1
GO adenylate cyclase modulating G-protein

coupled receptor signalling pathway
−2.507 0.0 84 142 ADRA1A, ADCY1, GNAO1, ADRA2C, OPRK1

KEGG neuroactive ligand receptor interaction −2.476 0.0 183 269 F2RL3, ADRA1A, ADRA2C, OPRK1, NPFFR1, LPAR4, PTGER1
GO G-protein coupled receptor signalling

pathway coupled to cyclic nucleotide
second messenger

−2.452 0.0 103 169 ADRA1A, ADCY1, GNAO1, ADRA2C, OPRK1

GO regulation of sensory perception of pain −2.370 8.000E−05 16 35 EDN1, ADRA2C, OPRK1
GO neuropeptide hormone activity −2.358 1.300E−04 25 29 CRH
GO adenylate cyclase inhibiting G-protein

coupled receptor signalling pathway
−2.364 1.400E−04 45 66 ADCY1, OPRK1

GO growth factor activity −2.327 2.500E−04 95 154 PDGFB, REG1A, IL34, GDF11, CLEC11A, NENF, PGF, GDNF,
NRTN

GO peptide receptor activity −2.234 8.400E−04 84 129 F2RL3, RAMP1, OPRK1, NPFFR1
Metabolic processes

GO cyclic nucleotide biosynthetic process −2.534 0.0 23 33 ADCY1, NPPB
GO cyclic nucleotide metabolic process −2.305 2.200E−04 34 55 PDE9A, ADCY1, NPPB
GO multicellular organismal macromolecule

metabolic process
−2.259 5.700E−04 45 78 COL5A1, COL6A2, COL8A2, LEPRE1, COL4A2, COL4A1,

ENPEP, MRC2, COL6A1
Ion channel

GO cation channel activity −2.364 1.500E−04 158 293 TRPV2, JPH2, TMEM38A
GO extracellular ligand gated ion

channel activity
−2.322 2.200E−04 59 74 SLC17A7

GO potassium channel activity −2.298 2.600E−04 65 118 TMEM38A
GO gated channel activity −2.253 6.300E−04 171 316 JPH2, SLC17A7

Others
GO extracellular matrix structural constituent −2.318 2.600E−04 46 75 COL5A1, COL8A2, COL4A2, COL4A1, EFEMP2
GO metanephric nephron development −2.312 2.300E−04 22 32 PDGFB, GDNF

NES: normalised enrichment score; FDR: false discovery rate; GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes. #: gene
sets enriched among genes higher expressed with CMH; ¶: statistics based on mRNAs associated with CMH definition A.
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FIGURE 3 Potential networks underlying chronic mucus hypersecretion (CMH) in chronic obstructive pulmonary disease (COPD). MicroRNA
(miRNA)–mRNA co-expression networks are shown in part (a). Red diamonds represent miRNAs higher expressed with CMH while blue diamonds
represent miRNAs lower expressed with CMH. Green circles represent predicted target genes negatively correlated with a particular miRNA while
black circles represent negatively correlated predicted targets of the miRNAs whose expression was also associated with CMH. Line width
correlates to degree of significance of the miRNA–mRNA correlation. The percentage of CMH-associated genes among the negatively correlated
predicted targets of each miRNA is illustrated in the table. Predicted interactions among CMH-associated targets of CMH-associated miRNAs are
shown in part (b). The networks were created using the STRING (search tool for the retrieval of interacting genes/proteins) database. All mRNAs
that were predicted to interact with each other are depicted in the interaction networks while mRNAs that were not predicted to interact with any
other mRNA were excluded. Red text represents negatively correlated predicted targets of miRNAs. Large and bold text represents the top five
genes with the most interactions to other genes. Line width correlates to interaction scores. The interactions were predicted based on the
combined score of all active interaction sources with the minimum required interaction score of 0.700. Only connected nodes are shown.
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Expression of candidate miRNAs and mRNAs in human primary airway epithelial cells and
fibroblasts
As bronchial biopsy specimens contain various cell types, including mucus producing epithelial cells, we
investigated whether the CMH-associated miRNAs identified in biopsies were expressed in PAECs in vitro.
ALI-differentiated PAECs expressed let-7a-5p (representative of the let-7 family), miR-31-5p, miR-708-5p,
miR-146a-5p and miR-193-5p (figure 5a), but not miR-134-5p, miR-500a-3p and miR-1207-5p

miR-1207-5p
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FIGURE 4 Overrepresentation of chronic mucus hypersecretion (CMH) associated genes and MUC5AC-associated genes among microRNA (miRNA)
correlated genes. Enrichment of genes higher expressed with CMH among the genes correlated with CMH-associated miRNAs is shown in part
(a). Enrichment of genes lower expressed with CMH among the genes correlated with CMH-associated miRNAs is shown in part (b). Enrichment
of MUC5AC-associated genes among the genes correlated with CMH-associated miRNAs is shown in part (c). The enrichment plots of miR-134-5p
are shown as an example. Asterisks represent significant enrichment. **: p<0.01; ***: p<0.001.
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(cycle threshold (Ct) >35). We did not find any differences in miRNA expression between COPD and
healthy control-derived PAECs (figure 5a), neither did we observe a significant difference in MUC5AC
expression between these two groups (supplementary figure S6).

As our previous report suggests involvement of fibroblasts in mucus production via crosstalk with
epithelial cells [8], we additionally investigated candidate miRNA expression in PAFs derived from COPD
patients with or without clinical CMH symptoms. All PAFs expressed let-7a-5p, miR-31-5p, miR-708-5p,
miR-134-5p, miR-146a-5p and miR-193a-5p (figure 5b), but not miR-500a-3p and miR-1207-5p. Of
interest, the expression of miR-134-5p (figure 5c), but not the other miRNAs, was significantly lower in
PAFs derived from the patients with CMH, in line with the findings in our biopsies.

We used publicly available gene expression profiles [17] to assess whether the top 20 CMH-associated
genes were expressed in ALI-differentiated PAECs and found that the majority of them were
(supplementary figure S7). It should be noted, however, that LOC100133388, RPL23AP64 and C15orf60
were not available in this dataset. Furthermore, using publicly available gene expression profiles of primary
human lung fibroblasts [18], we found that the majority of these genes were also expressed in fibroblasts,
with the exception of NKD1 and PDGFB (supplementary figure S8). Again, LOC100133388 was not
available in this dataset.

Discussion
We identified 20 miRNAs and 539 mRNAs associated with CMH in bronchial biopsies from COPD
patients. Our data suggest that miR-134-5p, miR-146a-5p and the let-7 family may regulate CMH via their
potential CMH-associated targets (e.g. KRAS and EDN1). The relevance of our CMH signatures was
supported by the enrichment of MUC5AC-associated genes [16] among our CMH-associated mRNAs and
mRNAs that correlated with the CMH-associated miRNAs. Furthermore, our in vitro studies demonstrated
that miR-134-5p was lower expressed in PAFs from COPD patients with CMH compared to those without
CMH, which is in line with the findings in bronchial biopsies and supports a key role for miR-134-5p in
regulating CMH in COPD.

Since we had both miRNA and mRNA data available from the same bronchial biopsies, we were able to
create miRNA–mRNA co-expression networks. This analysis identified the let-7 family, miR-134-5p and
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FIGURE 5 Expression of candidate microRNAs (miRNAs) in primary human airway structural cells. miRNAs expressed in primary airway epithelial
cells (PAECs) are shown in part (a). PAECs were derived from chronic obstructive pulmonary disease (COPD) patients (n=6) and healthy controls
(n=6) and grown at an air–liquid interface for 14 days. Cells were hormonally deprived overnight and RNA was isolated. miRNAs expressed in
primary airway fibroblasts (PAFs) from COPD patients (n=16) are shown in part (b). The differential expression of miR-134-5p in PAFs from COPD
patients with chronic mucus hypersecretion (CMH) compared to those with no CMH is shown in part (c). PAFs were derived from COPD patients
with CMH (n=8) and without CMH (n=8) and grown until confluent. Cells were then serum deprived for 24 h and RNA was isolated. Expression of
all miRNAs was normalised to RNU48. Relative expression levels (2-ΔCt, where ΔCt equals the cycle threshold (Ct) of the miRNA of interest minus
the Ct of RNU48) are shown as median±interquartile range. *: p<0.05 between the indicated values (as assessed by the Mann–Whitney U-test).
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miR-146a-5p with their CMH-associated targets to be the key regulators of CMH. Notably, miR-134-5p
had the highest percentage of CMH-associated genes among its potential targets, of which KRAS was
identified as a hub and potential regulatory gene for CMH. KRAS was previously found to be one of the
MUC5AC-associated core genes [16]. Interestingly, the expression of miR-134-5p was lower in fibroblasts
from COPD patients with CMH than those without, in line with the finding in biopsies. It was not
expressed in epithelial cells, suggesting an indirect regulation of CMH via fibroblasts. There are various
explanations why the differential expression of miR-134-5p in fibroblasts can affect MUC5AC-associated
genes identified in airway epithelium. First, miRNAs can be secreted into exosomes [19] and thus
transported from one cell type (e.g. fibroblasts) to another (e.g. epithelium). Secondly, MUC5AC-associated
genes are not only expressed by epithelial cells, but also by fibroblasts. We found that approximately 70%
of the MUC5AC-associated genes identified in airway epithelium [16] are also expressed in the lung
fibroblasts [18]. Finally, the MUC5AC-associated genes may be secondary targets of miR-134-5p. Our
recent studies have shown that CXCL8 produced by lung fibroblasts promotes epithelial mucus production
[8] and that CXCL8 release is increased upon co-culture of fibroblasts and epithelial cells [20]. In line with
that report, we observed in this study that CXCL8 expression is negatively correlated with miR-134-5p
(supplementary table S6).

Another key miRNA identified in our miRNA–mRNA networks was miR-146a-5p, which was lower
expressed with CMH. Notably, miR-146a-5p was previously reported to be involved in airway
inflammation associated with smoking and COPD [10] and to inhibit MUC5AC production in vitro [21].
We recently found miR-146a-5p to be higher expressed in non-COPD lung fibroblasts upon co-culture
with bronchial epithelial cells, while there was significantly less increase in COPD fibroblasts, suggesting a
role for miR-146a-5p in disturbed epithelial–fibroblast crosstalk in COPD [22]. Our present findings
suggest that miR-146a-5p may also be involved in mucus hypersecretion via epithelial–fibroblast crosstalk;
however, it is not yet clear via which target gene nor in which cell type it has its main effect on CMH.
Further mechanistic studies using co-culture or lung organoid models could help in elucidating the
CMH-related function of miR-146-5p.

The last key miRNA–mRNA cluster identified was the let-7 family, which was higher expressed in
association with CMH. The members of the let-7 family shared several potential targets associated with
CMH, of which EDN1, NKD1, PDGFB, COL4A1 and COL4A2 are of particular interest. EDN1 is localised
in submucosal glands and stimulates mucus secretion from serous and mucus cells in mucosal explant
culture [23]. NKD1 is an antagonist of the WNT/β-catenin signalling pathway [24], which plays an
important role in respiratory epithelial differentiation [25] and, of which, specific components (e.g. LEF1)
have been reported to regulate MUC5AC production [8, 26]. PDGFB is involved in airway remodelling
[27] and epithelial–fibroblast crosstalk [28]. In addition, COL4A1 and COL4A2 were also identified in a
larger cluster of collagen genes in the CMH interaction networks and are essential components of
basement membranes [29]. Basement membrane thickness is associated with an increase of submucosal
glands and central airway remodelling in asthma [30], but its role in linking airway remodelling with
CMH in COPD remains to be investigated. Of note, various CMH-associated targets of let-7a-5p/
let-7d-5p/let-7f-5p (EDA, LIX1L, MAPK11 and NME4) have been validated with next-generation
sequencing [31], supporting our findings.

Furthermore, the CMH-associated genes we identified may be involved in several other biological
processes, including cilium development and function, neurohormonal activities, cyclic nucleotide
metabolism and signalling, and ion transport. Cilia function and movement is important for mucus
clearance [32] and impaired cilia function has been observed in COPD airways [33, 34]. The movement of
cilia is dependent, at least partially, on cyclic nucleotides and in particular on cAMPs [35]. In addition,
active ion transport, such as that of Ca2+, Na+ and Cl−, plays an important role in regulating mucus
viscosity and mucociliary clearance [36, 37], and both Ca2+ and Na+ can be transported through cyclic
nucleotide-gated channels [38]. Notably, previous studies have suggested that neurohormonal signalling
regulates cyclic guanosine monophosphate (cGMP) induced mucin secretion [39] and the expression of
GDNF, the gene encoding for a neurotrophic factor involved in lung development, is associated with CMH
in COPD [40]. We also generated gene-interaction networks for CMH and identified KRAS, EDN1,
PRKAR2A, GSK3B and POLR2H as hub genes and potential regulators of CMH. Next to KRAS and EDN1,
GSK3B is also of interest as it is a pleiotropic signalling molecule that regulates WNT/β-catenin signalling
(the pathway that has been shown to induce mucus cell metaplasia in a mouse model) [25].

One of the limitations of this study is the relatively small dataset that we used to explore the miRNA and
mRNA changes associated with CMH and the consequent use of a lenient FDR cut-off. To support our
initial findings, several approaches were used. First, we used GSEA to demonstrate the enrichment of
MUC5AC-associated genes [16] among the genes higher expressed with CMH. This confirmed the
relationship between our CMH definitions and MUC5AC expression. In addition, we demonstrated
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significant enrichment of the CMH-associated genes identified in the microarray dataset among the
CMH-associated genes identified in the RNA-sequencing dataset. The replication of our findings in a
different patient cohort would be informative; however, to the best of our knowledge, there are no other
datasets in which both miRNA/mRNA profiles and CMH definitions are available, reflecting an urgent
need for more studies on this topic.

For the in vitro studies, we decided to determine the expression of our candidate miRNAs in PAECs and
PAFs, as they are present in airway wall biopsies and important cells in the pathogenesis of COPD. As our
findings were derived from biopsies, miRNA changes in other cell types (e.g. inflammatory cells or smooth
muscle cells) may have contributed to our findings. In fact, this could explain the lack of expression of
miR-500a-3p and miR-1207-5p in PAECs and PAFs, and validation in other cell types and co-culture
studies is warranted in future work. Furthermore, it will be of interest for future investigations to compare
PAECs from patients with CMH and those without CMH, which was not possible in the current study. In
addition, we focused on the 10 miRNAs that were significantly correlated with mRNA expression in the
same subjects in this study. This does not imply that the other 10 miRNAs were not relevant to CMH,
since miRNAs not only regulate gene translation by degradation but also by inhibiting translation [9].

Collectively, we identified three key miRNA–mRNA clusters for CMH: miR-134-5p, miR-146a-5p and the
let-7 family, as well as their associated potential target genes. The let-7 and miR-134-5p clusters are
connected to the CMH gene expression networks via the potential key regulatory genes KRAS and EDN1.
Furthermore, we identified pathways and biological processes, including MUC5AC-associated genes, in
which these key miRNA–mRNA clusters are likely to be involved. Future studies involving co-cultures of
epithelial cells with fibroblast and other cell types are required to further unravel the functional role of these
key genes and miRNAs, and to establish whether they represent potential therapeutic targets for CMH.
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