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ABSTRACT Differential gene expression in the airway epithelium of patients with asthma versus controls
has been reported in several studies. However, there is no consensus on which genes are reproducibly
affected in asthma. We sought to identify a consensus list of differentially expressed genes (DEGs) using a
meta-analysis approach.

We identified eight studies with data that met defined inclusion criteria. These studies comprised 355
cases and 193 controls and involved sampling either bronchial or nasal epithelium. We conducted study-
level analyses, followed by a meta-analysis. Likewise, we applied a meta-analysis framework to the results
of study-level pathway enrichment.

We identified 1273 DEGs, 431 of which had not been identified in previous studies. 450 DEGs exhibited
large effect sizes and were robust to study population differences in age, sex, race/ethnicity, medication use,
smoking status and exacerbations. The magnitude of differential expression of these 450 genes was highly
similar in bronchial and nasal airway epithelia. Meta-analysis of pathway enrichment revealed a number of
consistently dysregulated biological pathways, including putative transcriptional and post-transcriptional
regulators.

In total, we identified a set of genes that is consistently dysregulated in asthma, that links to known and
novel biological pathways, and that will inform asthma subtype identification.
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Introduction
Multiple lines of evidence indicate that the airway epithelium plays an important role in the pathogenesis
of asthma. Pattern recognition receptors, cytokines and alarmins secreted by airway epithelia play critical
roles in the initiation of allergic inflammation [1]. Results from genome-wide association studies (GWAS)
also implicate genes expressed by the airway epithelium, e.g. IL33 and TSLP [2]. Protease-containing
allergens (e.g. house dust mite) disrupt epithelial barrier integrity, and there is evidence of decreased
barrier function in patients with asthma [3]. Lastly, the hallmark asthma phenotype of mucus
hyper-secretion is caused by changes in the function and activity of secretory cells in the airway and
submucosal glands [4].

Transcriptomic studies of airway epithelium have provided a snapshot of the state of this tissue after
disease onset. WOODRUFF et al. [5] first reported on the identification of 22 genes that were differentially
expressed between asthma cases and controls. This group later showed that the expression of just three
genes (POSTN, CLCA1 and SERPINB1) distinguished “T-helper cell 2 (Th2)-high” from “Th2-low”
subtypes of asthma and was associated with response to inhaled corticosteroids [6]. Other studies have
shown that changes in gene expression are mirrored by changes in the epithelial methylome [7, 8] and
that distinct gene sets are associated with asthma exacerbations [9, 10]. Thus, the airway epithelium not
only may be crucially involved in disease pathogenesis, but could also provide information about disease
status (i.e. exacerbations) and therapeutic response.

Since the initial studies of gene expression in epithelial cells in asthma, more have followed, including
studies with larger sample sizes and different demographics. While these more recent studies have
contributed to our understanding of epithelial responses in asthma, with few exceptions there is no
consensus on which genes and pathways are reproducibly affected in asthma. We therefore set out to
utilise existing gene expression datasets to identify which genes were consistently dysregulated in the
airway epithelium of asthma cases versus controls using a meta-analysis approach. In lieu of sampling
bronchial epithelium, some studies used nasal epithelia, allowing us to assess the concordance of results
between nasal and bronchial epithelia. We also used the asthma case–control gene expression data to
evaluate enrichment of biological pathways in a similar meta-analysis framework.

Methods
Additional information on methods is available in the supplementary material.

Study identification
Case–control studies were identified in PubMed, National Centre for Biotechnology Information’s Gene
Expression Omnibus (GEO) and the European Molecular Biology Laboratory-European Bioinformatics
Institute’s ArrayExpress using search terms including “asthma”, “airway epithelia”, “bronchial epithelia”
and “nasal epithelia” (or combinations thereof). In total, we identified 18 studies (supplementary table S1).
Some publications contained overlapping study populations; thus, we chose one study from each set to
avoid duplication (supplementary material for details).

Prior to reviewing the studies, we designated a set of study exclusion criteria. These were 1) lacking a case
definition; 2) sample size less than five in any study group (cases or controls), which would limit power; or
3) unavailability of gene expression or covariate (age, sex and smoking) data. Covariate data were obtained
either through the data repository or through contact with the study investigators. Application of the
aforementioned exclusion criteria resulted in the exclusion of six studies (listed in supplementary table S1).
After these exclusions (and removal of duplicates), our meta-analysis consisted of eight studies comprising
548 subjects (355 cases and 193 controls). All eight studies used brushes to sample airway epithelium: two
studies sampled nasal epithelia while the rest sampled bronchi. All studies but one utilised microarray
platforms. Descriptions of each study are provided in table 1.

Data processing, normalisation and annotation
The overall workflow for data acquisition, normalisation, study-level analysis and meta-analysis is shown in
supplementary figure S1. Data were obtained either from GEO or directly from the study investigator.
Affymetrix array data were normalised using robust multi-array averaging [11] and Agilent array data were
quantile normalised and then log2 transformed (supplementary table S2). Normalised read counts from the
single RNA-sequencing dataset (GSE85568) were also log2 transformed. In most cases, we used the array
probe-gene annotation provided in GEO corresponding to the array platform used (supplementary table S2).

Study-level analyses
To identify outlier samples within each study, we used Bolstad’s relative log expression method [12]. We
then conducted an analysis to identify differentially expressed genes (DEGs) using LIMMA [13], adjusting
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TABLE 1 Descriptive summary of studies included in gene expression meta-analysis

GEO ID PubMed
ID

Expression
measurement

platform

Epithelia
source

Asthma#, ¶ Controls#, + Total
sample
size§

Outliers# Mean age
(range)

Male
%

Female
%

Race/Ethnicity
(Caucasian/

African
American/
Hispanic/
Other)%

Covariates
used in
analysis

DEGs#

(up/down)

GSE19187 22005912 Affymetrix Human
Gene 1.0 ST Array

Nasal 13 11 24 0 11 (6–16) 53 47 100/0/0/0 Age, sex 116 (104/12)

GSE67472 25611785 Affymetrix Human
Genome U133 Plus

2.0 Array

Bronchial 62 43 105 1 35 (20–68) 49 51 51/15/19/14 Age, sex,
race, array

batch

6504 (4112/2392)

GSE63142 25338189 Agilent-014850
Whole Human

Genome
Microarray 4×44K

Bronchial 125 27 152 6 36 (14–63) 36 64 62/29/0/9 Age, sex,
race

1078 (662/416)

GSE65205 27745942 Agilent-028004
SurePrint G3

Human GE 8×60K
Microarray

Nasal 36 33 69 3 11 (9–12) 49 51 0/100/0/0 Age, sex,
study site

147 (59/88)

GSE104472 28294656 Agilent-028004
SurePrint G3

Human GE 8×60K
Microarray

Bronchial 12 12 24 1 36 (24–74) 42 58 100/0/0/0 Age, sex 20 (13/7)

GSE64913 28045928 Affymetrix HG
U133 plus 2.0

Bronchial 13 23 36 0 31 (19–63) 59 41 100/0/0/0 Age, sex,
array batch

9 (7/2)

GSE89809 28933920 Affymetrix HT
HG-U133+

Bronchial 38 16 54 3 38 (20–67) 57 43 100/0/0/0 Age, sex,
smoking

2 (2/0)

GSE85568 27942592 RNA-seq Bronchial 56 28 84 3 39 (19–62) 32 68 34/60/0/5 Age, sex,
race,

smoking

17 (9/8)

DEG: differentially expressed gene. #: at false discover rate q<0.1; ¶: n=355; +: n=193; §: n=548.
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at a minimum for age, sex and race, but in some cases also smoking status and array hybridisation batch
(table 1). For each study, p-values were adjusted using the false discovery rate (FDR) correction method [14],
and we recorded the t statistic, beta, p-value, log fold change, Cohen’s D and Hedges’ adjusted g for use in
the meta-analysis.

Meta-analysis
We estimated summary effect sizes for each gene using an inverse variance model as advocated by
RAMASAMY et al. [15]. Specifically, we calculated pooled effect sizes using Hedges’ adjusted g and included
the use of a random effects model to account for between-study heterogeneity. This analysis was carried
out using the R package meta [16]. We declared genes as differentially expressed (DE) if the meta-analysis
FDR-adjusted p-value (q-value) was <0.05 and the gene was evaluated in at least two of the eight studies.

Overlap of asthma DEGs with GWAS hits
To assess whether any of the DEGs we identified by meta-analysis were also implicated by GWAS, we
merged our meta-analysis results with data from the National Human Genome Research
Institute-European Bioinformatics Institute Catalog of published GWAS [17, 18]. To be inclusive, we
applied a GWAS p-value threshold of 1×10−7. We used the gene reported by the original study as the key
identifier, acknowledging that the gene implicated by GWAS is not necessarily the causal gene. If the same
gene was reported from multiple GWAS, we report the single most significant result.

Pathway enrichment meta-analysis
We evaluated pathway enrichment in each study using Gene Set Variation Analysis (GSVA) [19]. Briefly,
GSVA works by estimating a gene set score in an unsupervised way by calculating an enrichment statistic
for each gene set in each study (supplementary material). In this way, the gene by sample matrix is
transformed to a matrix of gene set by sample. The gene set by sample matrix was then used for
study-level differential expression analysis, followed by meta-analysis using the same methods as described
above for individual genes. Gene sets for analysis were collected from Enrichr (http://amp.pharm.mssm.
edu/Enrichr/) [20, 21] and include Kyoto Encyclopedia of Genes and Genomes (KEGG) and Biocarta
pathways, transcription factor targets from the Encyclopedia of DNA Elements (ENCODE) and many
others (supplementary material).

Results
Study-level analyses
We obtained gene expression and covariate data for 355 cases and 193 controls from eight studies (table 1).
Demographic variables differed considerably between studies. For example, two studies included only
children, whereas the remaining studies largely included adults of a wide age range (20–74 years). Across
studies, the percentage of study subjects that were female ranged from ∼40% to 70%. While most study
subjects were Caucasian, some studies involved African-Americans, Hispanics, Asians or other racial/
ethnic categories. Except for two studies, most studies involved exclusively non-smoking subjects.

For each study, we conducted an analysis to identify DEGs after the exclusion of outliers (supplementary
figure S2). Because different studies utilised different array platforms (or RNA-sequencing) with different
numbers of genes tested, we compared the eight studies by plotting the fraction of genes identified as DE
(supplementary figure S3, supplementary table S2). These values ranged from 0.01% to 27%, with no
obvious correlation between sample size and the fraction of DEGs detected.

Meta-analysis
We then applied a meta-analysis approach, using a random effects model to allow for heterogeneity in
effect sizes across studies. We identified 1273 genes that were DE with q-values <0.05 (figure 1,
supplementary table S3), the majority (64%) of which were upregulated. Notably, more than one third of
these DEGs (n=431, 34%) were not identified as DE in any single study (at FDR q<0.05), highlighting the
utility of the approach to reveal genes of interest. In terms of effect size, CST1 (upregulated) and APELA
(downregulated) were the most extreme genes; in terms of statistical significance, CEACAM5 (upregulated)
and C3 (downregulated) were the most affected genes.

As expected, the three Th2 biomarker genes (POSTN, CLCA1 and SERPINB1) were consistently
upregulated, though with some heterogeneity in effect size across studies (figure 2). Likewise, genes
positively associated with mucus production (e.g. IL13, FOXA3 and MUC5AC) were significantly
upregulated, while MUC5B and FOXA2 were downregulated. Genes related to endoplasmic reticulum
stress (e.g. AGR2 and ERN1), which has been linked to mucin hyper-secretion [22, 23], were also
upregulated, though XBP1 was not (supplementary figure S4).
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We noted an obvious enrichment of genes involved in protease/antiprotease pathways, including serine
protease inhibitors (SERPINB2, SERPINB4, SERPINB8 and SERPINB10), cathepsins (CTSC and CTSG
were upregulated whereas CTSL was downregulated) and cystatins (CST1, CST2, CST3, CST4, CST6 and
CSTA) (figure 2, supplementary figure S4). In contrast, genes involved in barrier function (including
CLDN1, CLDN18, CLDN4, TJP1, TJP2, TJP3, OCLN and CDH1) were not DE, with the sole exception of
TJP1 (ZO1). Six genes reflective of recruited leukocytes were DE, including CCL26 and CLC (markers of
eosinophils) and TPSAB1, CPA3, MS4A2 and HDC (markers of mast cells and/or basophils)
(supplementary figure S4).

Seventeen genes implicated by GWAS were in the list of DEGs (supplementary table S4). While
overall there was no over-representation of upregulated versus downregulated genes in this list, the
five genes showing the most differential expression in terms of effect size (LRRC8A, ALOX15, IL18R1,
IL1RL1, ADAMTS9) were all upregulated. Conversely, all three HLA genes (HLA-DOA, HLA-DPA1,
HLA-DRA) were downregulated. Surprisingly, we found decreased expression of the asthma-associated
gene CHI3L1 [24] among cases (figure 2). Genes identified by positional cloning, including ADAM33,
DPP10, PCDH1, HLA-G and SPINK5, were not DE, nor was CDHR3 [25], a gene associated with asthma
exacerbations.

A large number of genes (n=450) were consistently DE across many of the eight studies and had large
effect sizes, which we defined as pooled effect size (Hedges’ g) values >0.5 (figure 3, supplementary table
S5). These findings indicate that differential expression of these genes is robust to differences in age, sex,
smoking status, race/ethnicity, exacerbations and tissue type (bronchial versus nasal). We further examined
the commonality of differential gene expression between bronchial and nasal epithelia by comparing the
pooled effect size from the six studies involving bronchial epithelia versus the pooled effect size from the
two studies involving nasal epithelia (figure 4). This analysis revealed that the pattern of differential gene
expression across tissue types was completely consistent for these 450 genes, and the magnitude of
differential expression for most genes was only marginally decreased in nasal compared to bronchial
epithelia (slope=0.91, p<0.01 for test that slope=1), though CST1 was more pronounced in nasal epithelia
than in bronchial epithelia.

Heterogeneity
While the consistency of differential gene expression signal in asthma cases versus controls was clear for
many genes, in particular the Th2 marker genes POSTN, CLCA1 and SERPINB1, this level of analysis
obscures potential heterogeneity that could inform disease mechanism and treatment [6]. To examine this,
we plotted the distribution of aggregate expression scores for POSTN, CLCA1 and SERPINB1 (figure 5).
We found that while on average cases had higher levels of expression of these genes in aggregate, within
each study the distribution ranged widely and was in some cases bimodal (e.g. GSE67472). Additionally, in
some studies there were cases with lower Th2 gene expression than controls (e.g. GSE63142).
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FIGURE 1 Differentially expressed genes identified by meta-analysis. Genes are colour-coded by the number
of studies (k) in which they were evaluated, and those with adjusted p-values <1×10−5 and pooled effect size
>0.7 are labelled.
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Effect of steroids
The lack of data on medication use precluded a systematic analysis of inhaled corticosteroid (ICS) effect.
Hence, we compared our list of DEGs to previous studies which examined the effect ICSs have on airway
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FIGURE 2 Differential gene expression across studies for emblematic genes. Forest plots for a) genes related to Th2-mediated inflammation
(POSTN, CLCA1 and SERPINB1) and mucin production (IL13, MUC5AC and MUC5B); b) protease antiprotease balance (CST1, CST2 and CTSG); and
c) genes with variants associated with asthma (IL1RL1, ADAMTS9 and CHI3L1). White whiskers (for CST1) indicate that the confidence interval is
completely contained within the box representing the point estimate. Additional forest plots are provided in supplementary figure S4.
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epithelia transcriptomes [5, 26], which in aggregate identified 111 genes. This list of ICS-responsive genes
included 15 asthma DEGs, including ALOX15B, POSTN, CLCA1, SERPINB1 and CST1 (supplementary
table S6).

Pathway meta-analyses
To examine the effect of differential gene expression at the level of biological pathways, which could reveal
additional disease-associated effects that are not apparent at the single-gene level, we conducted a
meta-analysis of pathway enrichment. First, we conducted study-level pathway analysis using the GSVA
method [19] to examine variation in the expression of defined gene sets (e.g. KEGG pathways and other
predefined gene sets) between cases and controls in each study. In this analysis, genes that were not called
DE in either the single study analysis or meta-analysis could still contribute to pathway enrichment. That
is, because GSVA works by combining expression scores across a predefined set of genes, modest
differences in the expression of genes that would not reach statistical significance (for each gene
individually) can still cumulatively result in differential expression of a gene set. Following single study
analysis, we conducted a meta-analysis of pathway expression scores across all eight studies to identify
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consistently altered pathways (figure 6, supplementary table S7, supplementary table S8). Some of the most
prominent pathways with increased expression in cases were linked to mucin synthesis and
post-translational modification of mucins. Pathways related to the synthesis of prostaglandins,
thromboxanes and eicosatetraenoic acid derivatives also showed increased expression. In controls,
interferon gamma signalling, tryptophan metabolism, NOTCH and Hedgehog signalling were among the
more highly expressed pathways. Additionally, this analysis identified TCF12, XBP1 and FOSL2 as putative
transcriptional regulators of upregulated genes, and miR-380–5p as a post-transcriptional regulator of
genes that are more highly expressed in controls. We also queried three protein interaction databases and
identified 335 putative protein interaction partners (at FDR q-values <0.05) of the asthma DEGs
(supplementary table S9), the majority of which have not previously been linked to asthma.

Discussion
Our meta-analyses of eight studies revealed that 1273 genes, roughly 5% of the protein-coding genes in the
human genome, are consistently dysregulated in the airway epithelium of patients with asthma, and more
than one third of these DEGs had large effect sizes. The robustness of our meta-analysis results is largely a
function of the similarity of differential gene expression across each of the eight studies; the fact that the
eight studies utilised different expression measurement platforms makes the results particularly convincing.
Part of the utility of this analysis is the identification of genes that did not stand out in any single study,
which comprised 34% of the total number of DEGs. PPP1R3B is one such example. This gene was
nominally differentially expressed in four out of the eight studies but after correction for multiple testing
was not called DE in any single study. This gene is associated with lipid metabolism [27] and Alzheimer’s
disease [28], but has not previously been linked to asthma.

The results of our pathway meta-analysis clearly indicate that multiple pathways are consistently
dysregulated in asthma, though we cannot infer whether these pathways are causally related to the
development of disease or are a consequence of disease. Genes related to Th2-mediated inflammation,
MUC5AC production and post-translational modification of mucins were consistently and strongly
upregulated in asthma cases. The pathway analysis also implicated endoplasmic reticulum stress (IRE1 and
XBP1 pathways), which is a known consequence of exaggerated mucin production [22, 23]. While XBP1
was identified as a putative regulator of asthma DEGs, XBP1 gene expression did not differ by case–
control status, suggesting that activation of XBP1 function may occur independently of XBP1 transcription.
In contrast to heightened mucin gene expression, genes involved in NOTCH signalling were more highly
expressed in controls. Collectively, these particular pathway enrichment results seem to point to both
alterations in mucus production and changes in goblet versus ciliated cell numbers in the airways.

The clear enrichment of genes from the serpin, cystatin and cathepsin gene families in the list of DEGs
highlights the role of protease–antiprotease imbalance and the consequences thereof, perhaps most
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prominently extracellular matrix remodelling. Previous findings suggest that some of the protease
expression is likely derived from recruited white blood cells, such as mast cell tryptase and
carboxypeptidase, and neutrophil-derived cathepsin G and elastase. It is worth noting that heightened
expression of such proteases has also been linked to altered biophysical properties of mucins in the airway,
potentially leading to mucus plugging [29]. The upregulation of cystatins, which are protease inhibitors,
may also be indicative of a compensatory response to exposure to protease-containing allergens such as the
house dust mite, as has been suggested in the case of eosinophilic chronic rhinosinusitis [30]. However, we
did not find strong evidence in support of a barrier defect in the asthmatic airway epithelium, as one
would expect based on the known effect of proteases on epithelial integrity [3]. Nor did we find evidence
of a pervasive effect of steroids on DEGs, but this result was based on a limited analysis of previous data
and therefore a more robust analysis is merited.

One of our key findings was that dysregulated gene expression in asthma is reflected in the nasal
epithelium at a magnitude that is highly similar to the bronchial epithelium. This result corroborates
earlier findings of similarities in gene expression [31] and DNA methylation [8] based on comparisons of
matched samples. Because our results are based on comparisons across studies, we conclude that this
commonality of expression patterns is generalisable to multiple study populations. Notably, this
commonality of differential expression includes genes that likely represent leukocyte infiltration, i.e.
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CCL26, CLC, TPSAB1, CPA3, MS4A2 and HDC). Heightened expression of CLC and HDC has also been
observed in allergic rhinitis [32] and eosinophilic esophagitis [33] (more details are provided in the
supplementary material), suggesting this is a common feature of eosinophilic inflammation across tissues.

We found 17 genes implicated by GWAS that were DE in the airway epithelium of patients with asthma.
Caution must be exerted when interpreting this result because the assignment of a gene from an
association signal (in the GWAS) based on physical proximity is not proof positive of causality. With
regards to IL1RL1 and CHI3L1, however, there is ample evidence from other studies that these two genes
are causally related to asthma. For these two genes, our meta-analysis indicated an apparent discrepancy
between the directionality of gene expression and case status and how genetic variants at these loci affect
gene expression in relation to disease risk. For IL1RL1, expression is upregulated in asthma, yet the risk
variants associated with asthma (as well as serum IgE and peripheral blood eosinophil counts) [34] are
associated with lower gene expression [35]. This suggests that asthma status may cause an increase in
IL1RL1 gene expression in airway epithelia and/or that recruited white blood cells present in the asthmatic
airway epithelium express IL1RL1. For CHI3L1, which encodes YKL-40, genetic variants associated with
increased risk of asthma are strongly associated with higher levels of serum YKL-40 [24] and gene
expression in whole lung tissue [36], and YKL-40 is expressed in the bronchial epithelium, macrophages
and neutrophils of patients with severe asthma [37]. Yet, our results show that the gene was expressed at
lower levels in cases versus controls overall. It is unclear whether this discrepancy is attributable to
variation in cell type composition of the airways or disease severity, or whether there is a distinction
between gene expression in the airway epithelium before and after disease onset that may affect this
relationship. Lastly, genetic variants downstream of ALOX15 are associated with asthma [38] and this gene
was also significantly and highly upregulated in patients with asthma. This gene encodes arachidonate
15-lipoxygenase, an enzyme that converts arachidonic acid into several eicosatetraenoic acid species (which
was also identified in the pathway meta-analysis), some of which have been shown to affect mucin
production by bronchial epithelial cells [39, 40]. Thus, the expression and GWAS data contribute to a
biologically coherent argument in favour of a role for this gene in asthma.

While our results clearly indicate that a sizeable number of genes are DE in asthma, this is not to say there
are not differences between studies or heterogeneity among patients with asthma. Indeed, some studies
identified a comparatively large number of DEGs compared to others, and this was not simply a function
of sample size. This result suggests that real biological differences between study populations led to the
observed differences in gene expression signals. It seems possible that the presence of different asthma
subtypes could lead to either increased or decreased power. The presence of Th2-low asthma cases, for
example, could act to dilute differences between cases and controls for Th2-related genes. Alternatively,
Th2-low cases could provide power to detect non-Th2-related expression differences. Variation in the
three-gene marker of Th2-mediated inflammation (POSTN, CLCA1 and SERPINB1) among cases was
indeed present. In at least three studies, the distribution of aggregate Th2-gene expression was bimodal,
and some patients with asthma had lower expression of these genes than any control. It is clearly
imperative that the genetic and clinical correlates of this asthma subtype be identified. More broadly, the
use of gene expression data to identify biological underpinnings of asthma subtypes (or endotypes) is a
promising approach [6, 41]. This approach will depend in large part on the availability of study subject
data (clinical and/or biomarker) that can be used to assess correlations with gene expression. The
identification of 1273 consistently dysregulated genes in the airways of patients with asthma represents one
starting point for these analyses in the future.
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