
T-helper cell type 2 (Th2) and non-Th2
molecular phenotypes of asthma using
sputum transcriptomics in U-BIOPRED

Chih-Hsi Scott Kuo1,2,3, Stelios Pavlidis4, Matthew Loza4, Fred Baribaud4,
Anthony Rowe4, Iaonnis Pandis3, Ana Sousa5, Julie Corfield6,7,
Ratko Djukanovic8, Rene Lutter9, Peter J. Sterk9, Charles Auffray8,10, Yike Guo3,
Ian M. Adcock1,2,11 and Kian Fan Chung1,2,11 on behalf of the U-BIOPRED
Study Group12

Affiliations: 1Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK.
2Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK. 3Dept of Computing and
Data Science Institute, Imperial College London, London, UK. 4Janssen R&D, High Wycombe, UK. 5Respiratory
Therapeutic Unit, GSK, Stockley Park, UK. 6AstraZeneca R&D, Mölndal, Sweden. 7Areteva R&D, Nottingham,
UK. 8Faculty of Medicine, Southampton University, Southampton, UK. 9Faculty of Medicine, University
of Amsterdam, Amsterdam, The Netherlands. 10European Institute for Systems Biology and Medicine, CNRS-
ENS-UCBL, Université de Lyon, Lyon, France. 11These authors contributed equally to this work. 12A full list
of the U-BIOPRED Consortium project team member and their affiliations can be found in the
Acknowledgements section.

Correspondence: K.F. Chung, National Heart and Lung Institute, Imperial College London, Dovehouse Street,
London SW3 6LY, UK. E-mail: f.chung@imperial.ac.uk

@ERSpublications
Clustering of transcriptomic genes from sputum cells defined one Th2- and two non-Th2-associated
phenotypes http://ow.ly/UEkA3069ZYL

Cite this article as: Kuo C-HS, Pavlidis S, Loza M, et al. T-helper cell type 2 (Th2) and non-Th2 molecular
phenotypes of asthma using sputum transcriptomics in U-BIOPRED. Eur Respir J 2017; 49: 1602135
[https://doi.org/10.1183/13993003.02135-2016].

ABSTRACT Asthma is characterised by heterogeneous clinical phenotypes. Our objective was to
determine molecular phenotypes of asthma by analysing sputum cell transcriptomics from 104 moderate-
to-severe asthmatic subjects and 16 nonasthmatic subjects.

After filtering on the differentially expressed genes between eosinophil- and noneosinophil-associated
sputum inflammation, we used unbiased hierarchical clustering on 508 differentially expressed genes and
gene set variation analysis of specific gene sets.

We defined three transcriptome-associated clusters (TACs): TAC1 (characterised by immune receptors
IL33R, CCR3 and TSLPR), TAC2 (characterised by interferon-, tumour necrosis factor-α- and
inflammasome-associated genes) and TAC3 (characterised by genes of metabolic pathways, ubiquitination
and mitochondrial function). TAC1 showed the highest enrichment of gene signatures for interleukin-13/
T-helper cell type 2 (Th2) and innate lymphoid cell type 2. TAC1 had the highest sputum eosinophilia
and exhaled nitric oxide fraction, and was restricted to severe asthma with oral corticosteroid dependency,
frequent exacerbations and severe airflow obstruction. TAC2 showed the highest sputum neutrophilia,
serum C-reactive protein levels and prevalence of eczema. TAC3 had normal to moderately high sputum
eosinophils and better preserved forced expiratory volume in 1 s. Gene–protein coexpression networks
from TAC1 and TAC2 extended this molecular classification.

We defined one Th2-high eosinophilic phenotype TAC1, and two non-Th2 phenotypes TAC2 and
TAC3, characterised by inflammasome-associated and metabolic/mitochondrial pathways, respectively.
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Introduction
Severe asthma is defined as asthma that remains partly or totally unresponsive to asthma treatments [1]. The
inflammatory mechanisms underlying severe asthma involve multiple cellular compartments with a diversity of
disease-driving mechanisms. The CD4 T-helper cell type 2 (Th2)-mediated pathway orchestrated by the airway
epithelium has been recognised as a driving force in allergic asthma [2, 3]. The eosinophil count in induced
sputum has been used as a surrogate biomarker for this pathway [4]. However, eosinophilic (EOS) asthma can
also be underlain by a non-Th2 mechanism involving innate lymphoid cell type 2 (ILC2) [5, 6]. The driving
mechanism for non-EOS asthma such as neutrophilic asthma has been associated with altered innate immune
response and activation of Th17 cells [7, 8]. Gene expression analyses of sputum or blood cells from patients
with neutrophilic asthma have reported high expression of genes related to pathogen recognition, neutrophil
chemotaxis, protease activity and inflammasome assembly [9–11]. The disease driver(s) associated with
paucigranulocytic asthma remain largely unclear [12, 13].

Clustering using clinical features alone has not yielded information on the underlying biology as similar
inflammatory cell profiles have been seen between these clinical clusters [14]. We performed an unsupervised
clustering of differentially expressed genes (DEGs) on EOS versus non-EOS asthma to categorise driving
mechanisms that inform on the significance of the granulocytic inflammatory profile. We first defined a set of
genes expressed in the sputum of EOS and non-EOS inflammatory phenotypes. Clustering on these genes led
to the delineation of three new clusters distinguished by distinct sets of gene signatures. We define an
interleukin (IL)-13/Th2-high predominantly EOS cluster and two non-Th2 phenotypes, which were
characterised by interferon (IFN)/tumour necrosis factor (TNF)-α/inflammasome-associated, and metabolic
and mitochondrial pathways, respectively.

Methods
A full description of methods is provided in the online supplementary material.

Study design
We obtained transcriptomic data from sputum cells obtained from 104 participants (online supplementary
table S1) with moderate-to-severe asthma and 16 healthy volunteers (HV group) from the U-BIOPRED
cohort [15]. The study was approved by the ethics committees of the recruiting centres. All participants
gave written informed consent.

Analysis of sputum “omics”
Sputum was induced by inhalation of hypertonic saline solution and sputum plugs were collected from
which sputum cells and sputum supernatants were obtained, as described previously [16]. Expression
profiling was performed using Affymetrix U133 Plus 2.0 (Affymetrix, Santa Clara, CA, USA) microarrays
with RNA extracted from sputum cells. Proteomic profiling of sputum supernatants was performed using
the SOMAscan proteomic assay [17, 18].

Computational analysis of transcriptomic features
Data were uploaded and curated in the tranSMART system [19]. We analysed 508 DEGs from a pairwise
comparison of gene expression in asthmatic subjects with high sputum eosinophil counts (⩾1.5%), in
asthmatic subjects with low eosinophil counts (<1.5%) and in the HV group (figure 1a and b, and online
supplementary table S1). The intensity of the raw probe sets were log2 transformed and normalised by the
robust multiarray average method [20]. A regression-based method (R package limma; www.r-project.org)
was used to analyse DEGs with respect to the groups of interest, and batch/technical effects, age, sex and
administration of oral corticosteroid were adjusted for as covariates in the linear model. The false discovery
rate using the Benjamini–Hochberg method was applied for p-value adjustment in relation to multiple tests.
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Hierarchical clustering based on Euclidean distance was used for cluster exploration. A supervised learning
algorithm using the shrunken centroid method [21] was applied to the cluster findings to determine the
predictive signatures for each cluster and feature reduction methods were implemented along with learning
algorithms to obtain a sparse model to facilitate interpretation. Consensus clustering, a resampling
technique taking into account the cluster consensus across multiple runs of a clustering algorithm, was
used to determine the optimal cluster number by finding a cluster number k where the consensus matrix
histogram approximates a bimodal distribution at the k cluster and a relative small increase of the area
under curve of the cumulative distribution function at the k+1 cluster [22–24]. The nearest shrunken
centroid method [22] was used as a supervised learning algorithm to refine the signatures for the
identified transcriptome-associated clusters (TACs).

Signatures summarised by gene set variation analysis
Gene set variation analysis (GSVA) calculates sample-wise enrichment scores (ESs) [25, 26]. We compiled
nine gene sets each related to a specific aspect of asthma (online supplementary table S4) and the ES was
calculated for each gene set for each subject. ANOVA was used to analyse the ES differences among group
means and the t-test was applied to compare the ES differences between the two means.

Validation study
The sputum signature findings predictive of each TAC from U-BIOPRED were applied to sputum
transcriptomic data obtained from a study for disease profiling of asthma and chronic obstructive
pulmonary disease (ADEPT (Airways Disease Endotyping for Personalized Therapeutics)) cohort) [27]
using GSVA (online supplementary table S5). Sputum samples from 38 asthmatic subjects and nine HV
group subjects were analysed by Affymetrix U133 microarray.

Data deposition
The transcriptomic data have been deposited in the GEO (Gene Expression Omnibus) database
(www.ncbi.nlm.nih.gov/geo) with accession number GSE76262.

Results
Pathway analysis of transcriptomic features
We defined subgroups of asthmatic patients by analysing 508 DEGs from a comparison of the three
groups of the U-BIOPRED cohort defined by EOS (⩾1.5%) versus non-EOS, EOS versus HV and non-EOS
versus HV (figure 1a and b, and online supplementary table S1). Online supplementary table S2 shows the
top 10 significant pathways for the three sets of DEGs from available public ontology databases [28]. Most
of the DEGs in each comparison set were enriched in biological processes or pathways related to immune
activation and cytokine production, while DEGs from EOS versus non-EOS presented enrichment in some

Data pre-processing

1) Quality control

2) Technical/batch effect

Sputum DEG analysis from EOS, 

non-EOS and HV groups

Determination of sputum 

signature model for TACs

Validation of sputum signature 

model in ADEPT cohort n=47

Identify TACs from sputum DEGs

a) EOS versus HV

99 29
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Non-EOS versus EOS
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FIGURE 1 Clustering approach. a) Workflow for identification of transcriptome-associated clusters (TACs),
determination of signature classifiers, and validation of findings of signature and clinical feature of clusters.
DEG: differentially expressed gene; EOS: eosinophilic; ADEPT: Airways Disease Endotyping for Personalized
Therapeutics. b) Number of DEGs derived from comparison of EOS, non-EOS and healthy volunteer (HV)
groups displayed using a Venn diagram.
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specific categories, such as regulation of cysteine-type endopeptidase activity (p=1.19×10−6), pattern
recognition receptor signalling pathway (p=1.55×10−5), response to IFN-γ (p=0.001), IPAF inflammasome
complex (p=0.002) and NOD-like receptor signalling pathway (p=0.004).

Definition of three transcriptomic-associated clusters
The consensus matrices for clusters between k=2 and k=5 (figure 2a–d) showed that the cumulative
distribution function curve of the consensus index at cluster k=2 approximated a bimodal distribution
(figure 2e), yet the increase of the area under the curve at k=3 (figure 2f) was very large.

e) 1.0

0.8

0.6

0.4

0.2

0.0
0.0

2
3
4
5
6

0.2 0.4

Consensus index

C
D

F

0.6 0.8 1.0

f)
0.7

0.6

0.5

0.4

0.3

0.2

0.1

2 3 4

k

R
e

la
ti

ve
 c

h
a

n
g

e
 i

n
 A

U
C

 o
f 

C
D

F

5 6

b)

d)

1

2

3

1

2

3

4

5

a)

c)

1

2

1

2

3

4

FIGURE 2 Consensus clustering to determine optimal number of matrices. AUC: area under the curve; CDF:
cumulative distribution function. The optimal cluster number was determined by finding a cluster number k
where the consensus matrix histogram approximates a bimodal distribution at the k cluster and a relative
small increase of the AUC of the CDF at the k+1 cluster. a–d) Consensus matrices for clusters number a) k=2,
b) k=3, c) k=4 and d) k=5. e) CDF curves of the consensus index for k=2–6, where k=2 approximated a bimodal
distribution, while f ) the increase of AUC at k=3 was maximal. Cluster number k=3 was the optimal choice.
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Hierarchical clustering (figure 3) and resampling (figure 2) yielded three TACs. TAC1, with the highest
eosinophilia, exhaled nitric oxide fraction (FeNO) and serum periostin, defined exclusively severe asthma
patients with high oral corticosteroid dependency, acute exacerbation, nasal polyps and severe airflow
obstruction (table 1). The shrunken centroid algorithm [21] (figure 4 and online supplementary figure S1)
defined 20 genes for TAC1 related to multiple cytokine receptors and signalling (IL1RL1, SOCS2, CCR3,
CRLF2), enzymes found in macrophages, mast cells and eosinophils (PRSS33, CLC, ALOX15, TPSB2,
CPA3), and a cell adhesion molecule on granulocytes and B-cells involved in the damaged-induced adaptive
immune response (CD24) [29]. TAC2 was characterised by the highest sputum neutrophil counts, serum
C-reactive protein (CRP) and greater prevalence of eczema, and was defined by 39 genes associated with
the IFN and TNF superfamilies (IFIT2, TNFSF10, IFIH1, TNFAIP3, IFITM1, IL18RAP), leukocyte surface
receptors mediating innate immunity (FPR2, TREML2, TLR1), neutrophil chemotaxis and migration
(CXCR1, CXCR2, VNN2, VNN3), inflammasomes (CASP4, MEFV, NAIP), and pattern recognition
(CLEC4D, CLEC4E). TAC3 had normal to moderately high sputum eosinophils, better preserved forced
expiratory volume in 1 s, the lowest prevalence of severe asthma and the least oral corticosteroid
dependency. The TAC3 signature comprised 17 genes linked to glucose and succinate metabolism
(SUCLG2, TBC1D4), ubiquitination (ZYG11B), mitochondrial function (MRPL57, PDCD2), energy
consumption (ATP1B1), and endo/lysosomal function and transport (SCARB2, TGOLN2, SCOC) (figure 4).

Using GSVA [25], there was a significant difference in the enrichment of the nine signatures associated
with asthma (figure 5), i.e. the activation of IL-13/Th2, ILC1, ILC2, ILC3, Th17, neutrophil activation,
inflammasome, oxidative phosphorylation (OXPHOS) and ageing signatures. TAC1 showed the highest
ESs for IL-13/Th2 and ILC2, and low ESs for Th17, neutrophil activation, inflammasome, OXPHOS and
ageing signatures, while TAC2 had the highest ESs for ILC1, neutrophil activation and inflammasome
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FIGURE 3 Heatmap of hierarchical clustering on 104 asthmatic subjects (columns) with 508 transcriptomic
features (rows). Clustering results in three transcriptome-associated clusters: TAC1, TAC2 and TAC3. The sputum
granulocyte status for each participant is mapped underneath the column dendrogram. EOS: eosinophilic.
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signatures. TAC3 showed the highest ESs for ILC3, Th17, OXPHOS and ageing signatures, but low ESs for
IL-13/Th2, ILC1, neutrophil activation and inflammasome signatures (figure 5).

TACs and sputum granulocytic inflammation
EOS inflammation was present in all three TACs, with 96.7% (29 out of 30) of TAC1 with high levels of
sputum eosinophilia, and with 36.4% (eight out of 22) of TAC2 and 40.4% (21 out of 52) of TAC3. The
TAC1 subtype was enriched for both IL-13/Th2 and ILC2 signatures (p=10−7 and p=0.01, respectively;
figure 6a and b). Neutrophilic inflammation was found mainly in TAC2 and also in TAC3 (figure 6a and
b), and the paucigranulocytic group was mainly TAC3 (figure 6a). In neutrophilic inflammation, the
neutrophil and inflammasome signatures were highest for TAC2 compared with TAC3 (p=0.01 and
p<0.02, respectively). Mixed inflammation was composed of TAC1 and TAC2, with TAC1 patients in this
mixed group showing enrichment for IL-13/Th2, but TAC2 subjects were relatively enriched for neutrophil
and inflammasome signatures (p<0.01 and p=0.002, respectively; figure 6a and c). These findings support
the view that the mixed granulocytic phenotype is less biologically distinct [12, 13], but dependent on the
pathobiological drive determined by each TAC.

Analysis of TAC signatures in the ADEPT cohort
The ES of TAC1 signatures (online supplementary figure S2) was significantly higher in moderate asthma
compared with mild asthma (mean difference −0.52, p=0.010) or healthy controls (mean difference −0.48,
p=0.030) in the ADEPT cohort. The TAC2 and TAC3 signatures (online supplementary figure S2) among
healthy controls, mild-to-moderate and severe asthma were similar. When subjects were classified according to
granulocytic inflammatory phenotypes, the ADEPT samples recapitulated the findings from the U-BIOPRED
cohort. We confirmed for the eosinophil-predominant phenotype that the mean ES was positive for both
TAC1 and TAC3 signatures, but not for TAC2 (figure 7). The mixed granulocytic phenotype was enriched for
TAC1 and TAC2 signatures, but not for TAC3 (figure 7). In addition, the neutrophil-predominant phenotype
was enriched for the TAC2 signature, but not for TAC1 or TAC3, and the paucigranulocytic phenotype was
enriched for the TAC3 signature, but not for TAC1 or TAC2 (figure 7).

TABLE 1 Comparison of the clinical features of the three sputum transcriptome-associated clusters (TACs)

TAC1 TAC2 TAC3 p-value#

TAC1
versus TAC2

TAC1
versus TAC3

TAC2
versus TAC3

Subjects 30 22 52
Age years 56.5±11.3 49.6±13.6 49.1±13.8 0.059 0.011 0.907
Age of onset years 35.0±19.2 17.3±16.2 23.5±19.5 7.3×10−4 0.012 0.163
Female 17 (56.7) 15 (68.2) 28 (53.8) 0.579 0.987 0.376
BMI kg·m–2 27.3±5.0 28.5±5.4 27.8±5.4 0.396 0.646 0.606
Smoker 7 (23.3) 3 (13.6) 13 (25.0) 0.603 1.000 0.437
Nasal polyps 14 (46.7) 6 (27.3) 14 (26.9) 0.258 0.115 1.000
Allergic rhinitis 12 (40.0) 10 (45.5) 20 (38.5) 0.913 1.000 0.763
Eczema 7 (23.3) 13 (59.1) 13 (25.0) 0.020 1.000 0.110
Severe asthma 29 (96.7) 18 (81.8) 37 (71.2) 0.187 0.012 0.503
Oral corticosteroid use 17 (56.7) 8 (36.4) 13 (25.0) 0.243 0.009 0.478
Atopy 21 (70.0) 14 (63.6) 38 (73.1) 0.854 0.965 0.593
Exacerbations year–1 2.0 (1.0–3.0) 1.0 (1.0–2.8) 1.0 (0.0–2.0) 0.144 0.012 0.328
FEV1 % pred 55.1 (41.9–74.1) 62.9 (47.1–83.5) 74.2 (63.7–89.8) 0.303 3.1×10−4 0.025
Total IgE IU·mL−1 152.0 (70.5–272.2) 90.5 (31.3–187.5) 89.4 (43.0–170.0) 0.241 0.091 0.852
Blood leukocytes ×103 μL−1 9.04 (7.07–10.82) 7.60 (6.15–9.87) 6.81 (6.00–8.45) 0.266 0.006 0.248
Blood eosinophils ×103 μL−1 0.43 (0.25–0.58) 0.25 (0.10–0.40) 0.20 (0.12–0.30) 0.013 3.9×10−4 0.532
Blood neutrophils ×103 μL−1 5.12 (3.89–7.41) 4.46 (3.90–6.48) 4.01 (3.32–4.90) 0.613 0.016 0.111
Sputum eosinophils % 30.9 (15.0–51.4) 0.6 (0.2–2.4) 1.0 (0.2–4.5) 3.2×10−8 9.2×10−11 0.593
Sputum neutrophils % 49.0 (25.9–70.5) 90.9 (84.9–94.4) 48.8 (33.3–63.5) 7.4×10−8 0.784 3.4×10−10

Sputum eosinophils >10% 25 (83.3) 0 6 (11.5) 1.5×10−8 4.9×10−10 0.232
FeNO ppb 29.5 (20.0–57.5) 22.0 (14.0–26.0) 27.5 (18.1–42.4) 0.090 0.421 0.110
Serum periostin ng·mL−1 60.2 (50.2–72.4) 49.9 (43.2–52.9) 42.6 (37.0–53.2) 0.051 8.8×10−4 0.076
CRP mg·L−1 2.5 (1.0–3.6) 5.4 (3.0–7.2) 1.9 (1.0–5.0) 0.022 0.756 0.010

Data are presented as n, mean±SD, n (%) or median (interquartile range), unless otherwise stated. BMI: body mass index; FEV1: forced
expiratory volume in 1 s; FeNO: exhaled nitric oxide fraction; CRP: C-reactive protein. #: Kruskal–Wallis or ANOVA test.
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Network of each TAC-related gene and protein
As biological processes are commonly regulated by coexpressed genes, each TAC signature only represents
the most characteristic genes as a subset of all the genes involved in each biological process. We therefore
attempted to understand the coexpression relationship of all TAC-related genes and proteins potentially
functioning in the biological processes associated with asthma. We first filtered the individual genes based
on a moderate-to-high positive correlation with the GSVA ES of each TAC gene signature. This produced
three sets of TAC-related genes, containing 153 TAC1-related genes, 194 TAC2-related genes and 312
TAC3-related genes. A similar filtering scheme for individual proteins led to the identification of three sets
of TAC-related proteins, containing 91 TAC1-related proteins, 98 TAC2-related proteins and 42 TAC3-
related proteins. Following this, each TAC-related gene–protein network was displayed as a correlation
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FIGURE 4 Heat map showing the signature of genes that best discriminate each transcriptome-associated
cluster (TAC) derived using the shrunken centroid method. Columns represents 104 asthmatic subjects and
rows represent 76 genes. The signatures of genes in the corresponding colours of each TAC (TAC1: 20 genes;
TAC2: 39 genes; TAC3: 17 genes) are shown.
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matrix (online supplementary figure S3). We found that the three TAC-related gene–protein networks
presented mild-to-moderate mean gene–protein correlations (online supplementary figure S3, blue frame;
mean Pearson’s correlation: TAC1 r=0.292, TAC2 r=0.416 and TAC3 r=0.403), suggesting a functional
coherence of the three sets of TAC-related genes and proteins.

Gene–protein relationships in TACs
We dissected the mechanistic implication of the gene signatures and the related proteins in sputum using the
shrunken centroid algorithm. We defined 10 proteins for TAC1 (including a metalloproteinase (PAPPA), a
chemokine (CCL4L1) and a sulfatase (ARSB)), 16 proteins for TAC2 (including those related to the
proteasome (PSMA1), phospholipase (PLCG1) and TNF-α (TNFAIP6)) and two proteins (cathepsins CTSG
and CTSB) for TAC3 (online supplementary table S3). We established three coexpression networks using
each TAC signature (figure 8) and showed that the mean gene–protein correlations of the TAC1 (r=0.49,
p<0.001) and TAC2 (r=0.46, p<0.005) networks were significantly higher than random gene–protein
relationships (online supplementary figure S4), indicating that the genes and proteins of TAC1 and TAC2 are
regulated by similar mechanisms. Highly coexpressed IL33R/ARSB (r=0.78, p=4.2×10−16), IL33R/PAPPA
(r=0.73, p=2.3×10−13) and CLC/PAPPA (r=0.79, p=9.7×10−17) featured in TAC1, and IFITM3/PGLYRP1
(r=0.67, p=9.0×10−11), IFITM1/PGLYRP1 (r=0.63, p=2.3×10−9) and MEFV/PLCG1 (r=0.67, p=9.0×10−11)
featured in TAC2. The mean gene–protein correlation of the TAC3 network was similar to random gene–
protein relationships (r=0.40, p=0.566; online supplementary figure S4), suggesting that TAC3 signatures
were underlain by more diverse mechanisms, particularly post-transcriptional mechanisms.

Discussion
We have described three new TACs of severe asthma derived from a semibiased analysis of sputum
transcriptomics using hierarchical clustering. TAC1 contains a greater enrichment for IL-13/Th2 and ILC2
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signatures, and is associated with blood and sputum eosinophilia, reflecting severe asthma characterised by
mast cell and eosinophil activation and upregulation of receptors for TSLP, IL-33, IL-3 and CCL11
(CCR3). TAC2 is inflammasome-dominant with IFN and TNF superfamily upregulation and high
expression of DAMPs (damage-associated molecular patterns), and is associated predominantly with
neutrophilic inflammation and highest CRP levels and with chronic airflow obstruction of a lesser severity
than that found in TAC1. The molecular signature for TAC3 highlighted metabolic, ubiquitination
enzymes and mitochondrial energy metabolic genes, with the highest expression scores for mitochondrial
oxidative stress (OXPHOS) and ageing gene signatures associated with paucigranulocytic and mild EOS
inflammation. TAC3 is characterised by the lowest oral corticosteroid use, mild airflow obstruction and
less frequent exacerbations than TAC1. Thus, the molecular phenotyping based on sputum cells yielded
three distinct clinical clusters.

The gene signatures for TAC1 and TAC2 were highly coexpressed with the corresponding protein signature,
indicating that similar levels of linked transcription–translation occur in each of the two classifications, and
provided both gene and/or protein biomarkers and targets for potential new therapies for severe asthma.
The highly coexpressed IL33R/ARSB, IL33R/PAPPA and CLC/PAPPA found in TAC1 emphasise the link
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between IL-33R and eosinophil activation markers, which is in accord with the alarmin IL-33 being able to
exacerbate eosinophil-mediated airway inflammation through the release of the Th2-based cytokines IL-5
and IL-3 [30]. In the TAC2 phenotype, the highly coexpressed IFITM3/PGLYRP1, IFITM1/PGLYRP1 and
MEFV/PLCG1 reflect innate host defence responses to viruses and bacteria [31, 32].

This highly coexpressed relationship was not seen in the gene–protein signature of TAC3, indicating that it
was likely driven by more complex regulatory factors such as post-translational modifications and altered
metabolic enzyme activity rather than by classical cellular activation mechanisms. Sputum cells comprising
macrophages and granulocytes are at the interface between the environment and the lung epithelial cell
layer, and these TACs may reflect this interaction that is prominent in TAC2 with inflammasome
activation, as reported previously [33]. Finally, these signatures were only partly validated in a separate
smaller asthma cohort (ADEPT), thus extending the applicability of these signatures.

To try and understand the biological basis of these inflammatory phenotypes, we examined the distribution of
the three TACs in relation to their sputum inflammatory phenotypes. The eosinophil-predominant (TAC1 or
TAC3), neutrophil-dependent (TAC2 or TAC3) and mixed granulocytic-dominant (TAC1 or TAC2)
phenotypes were split into two main biological classifications, whereas the paucigranulocytic-dominant (TAC3)
phenotype was representative of only one TAC, i.e. TAC3. A major finding of this study was that at least two
distinct transcriptional signatures were associated with sputum eosinophilia. The eosinophil-predominant
TAC1 had a higher expression of IL-13/Th2 and ILC2 signatures, while the eosinophil-associated TAC3 was
higher in the inflammasome signature, indicating a similarity of TAC1 to Th2-mediated allergic asthma and
ILC2-mediated EOS asthma. This was also reflected by some of the genes (e.g. IL33R, TSLPR) involved in the
ILC2 mechanism [34, 35] being in the top ranks of the TAC1 signature.

TAC1 was differentiated by higher blood eosinophils and serum periostin, but not by FeNO. We did not
see a correlation with the traditional Th2 cytokines IL-4, IL-5 and IL-13, but TAC1 did associate with the
signature obtained from IL-13-stimulated epithelial cells. However, this signal enrichment was only one
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component of the TAC1 phenotype. Although TAC1 was uniquely EOS, which was not surprising
considering that the clustering analysis was performed on DEGs from EOS compared with non-EOS and
healthy subjects, EOS inflammation was found to different extents in all three TACs. This is likely to be
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due to the fact that the signatures were driven by macrophage-derived genes in the sputum cells rather
than eosinophils alone.

A higher enrichment of the inflammasome signature was observed in the TAC3 patients with
eosinophil-predominant asthma compared with the TAC1 eosinophil-high patients. This was in line with
our finding of ubiquitination enzyme genes that are essential for inflammasome assembly [36]. Moreover,
activation of the inflammasome pathway can lead to the suppression of IL-33-associated EOS
inflammation [37]. The gene set encoding multiple metabolic enzymes in the TAC3 signature was also
echoed by a recent study linking NLRP3 inflammasome activation to the dysregulated metabolism of fatty
acid and cholesterol in a mouse obesity-associated asthma model [38].

The TAC2 phenotype within the mixed granulocytic phenotype had a greater enrichment of neutrophil
and inflammasome signatures, while the TAC1 subjects with mixed granulocytic asthma had a trend
towards higher expression of the IL-13/Th2 signature. This suggests that TAC2 is dominated by
neutrophil-driving mechanisms [39]. In contrast, TAC1 revealed a dominant IL-13/Th2 signature with a
high EOS component. However, the mixed granulocytic TAC1 revealed a higher Th2 signature expression,
suggesting that its EOS component was relatively dominant over its neutrophilic component, acting
biologically in a similar way to the predominantly EOS phenotype. The biological distinction of a mixed
granulocytic phenotype has been considered as a transitional phenotype with less stability [12, 13]. Our
study supports the view that a mixed granulocytic phenotype is less biologically distinct, but rather
dependent on the biology determined by either neutrophils or eosinophils.

The definition of TAC3 as being associated with mitochondrial oxidative stress and with ageing genes is
new, and is of considerable interest because of the potential contribution of mitochondria to aspects of the
ageing process, including cellular senescence and chronic inflammation [40]. Mitochondrial dysfunction
has been reported in airway smooth muscle cells from patients with severe asthma, with evidence of
oxidative phosphorylation [41], but how mitochondrial oxidative stress and ageing signatures drive asthma
with little evidence of inflammation (paucigranulocytic inflammation and low serum CRP) is unclear.
Further research examining the role of other cell types (e.g. macrophages and epithelial cells) may help
determine these mechanisms.

In summary, our approach provides a fresh framework on which to phenotype asthma and a more precise
targeting of specific treatments [42]. Future work is required to validate the biology of the non-Th2
pathways demonstrated here. As the stratification of these TACs is not entirely predicted by measuring
sputum granulocytic inflammation and not all subjects were able to produce sputum, a point-of-care,
preferably blood-based, biomarker of these TACs will be needed.
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