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ABSTRACT Pulmonary arterial hypertension (PAH) is characterised by excessive pulmonary vascular
remodelling involving deregulated proliferation of cells in intima, media as well as adventitia. Pulmonary
arterial endothelial cell (PAEC) hyperproliferation and survival underlies the endothelial pathobiology of
the disease.

The indispensable involvement of Notch1 in the arterial endothelial phenotype and angiogenesis
provides intriguing prospects for its involvement in the pathogenesis of PAH.

We observed an increased expression of Notch1 in lungs of idiopathic PAH (IPAH) patients and
hypoxia/SU5416 (SUHx) rats compared with healthy subjects. In vitro loss- and gain-of-function studies
demonstrated that Notch1 increased proliferation of human PAECs (hPAECs) via downregulation of p21
and inhibited apoptosis via Bcl-2 and Survivin. Inhibition of Notch signalling using the γ-secretase
inhibitor dibenzazepine dose-dependently decreased proliferation and migration of hPAECs. Notably,
Notch1 expression and transcriptional activity were increased under hypoxia in hPAECs and knockdown
of Notch1 inhibited hypoxia-induced proliferation of the cells. Furthermore, in vivo treatment with a
γ-secretase inhibitor (AMG2008827) significantly reduced the right ventricular systolic pressure and right
heart hypertrophy in SUHx rats.

Here, we conclude that Notch1 plays a critical role in PAH and Notch inhibitors may be a promising
therapeutic option for PAH.
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Increased Notch1 regulates endothelial proliferation, migration and survival in PAH, making it
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Introduction
Pulmonary arterial hypertension (PAH) is a progressive disease characterised by increased pulmonary vascular
resistance (PVR) leading to right heart hypertrophy and ultimately death of the patient due to right heart
failure. Pathogenesis of PAH involves a complex and multifactorial process in which endothelial cell dysfunction
appears to play an integral role in mediating the structural changes in the pulmonary vasculature [1]. Direct
evidence in support of a proliferative endothelial cell population resistant to apoptosis in vivo has been provided
by the detection of increased expression of various proliferation markers (Ki-67/MIB-1) [2] and angiogenesis
and survival-related molecules [3, 4], such as vascular endothelial growth factor (VEGF) and VEGF receptor
(VEGFR)-2 as well as hypoxia-inducible factor (HIF)-1α and -1β [4]. Endothelial cells have further been shown
to harbour mutations in the Bax gene, along with decreased expression of Bax and caspase-3 [5, 6].
Additionally, endothelial cells isolated from idiopathic PAH (IPAH) patients show increased proliferation in
response to various growth factors in vitro [5]. Thus, targeting the highly proliferative and apoptosis-resistant
endothelial cells could provide a therapeutic intervention for PAH.

Notch signalling has been implicated in vascular development, homeostasis and injury response [7–9].
Notch receptors (Notch1–4) are transmembrane proteins, displayed on the cell surface as heterodimers.
Interaction between Notch receptors and ligands ( Jagged or Delta-like ligands (DLL)) expressed on
adjacent cell membranes results in activation of signalling. Binding of the ligand triggers two proteolytic
cleavages in Notch receptor. Second cleavage mediated by γ-secretase releases Notch intracellular domain
(NICD), which then translocates to the nucleus. In the nucleus, NICD binds to the DNA-binding protein
CSL, also called recombination signal sequence binding protein Jκ (RBP-Jκ), leading to transcription of
Notch target genes, which in turn control numerous cellular processes, such as stem cell maintenance, cell
fate specification, differentiation, proliferation and apoptosis [10].

Previously, LI et al. [11] reported increased activation of Notch3 signalling in pulmonary artery smooth
muscle cells (PASMCs) from PAH patients, and mutations of Notch3 have been identified in patients with
PAH and shown to promote cell proliferation and viability [12]. However, several studies have also linked
Notch1 signalling to vascular development and injury. Notch1 knockout mice resulted in embryonic lethality
due to defects in somitogenesis and cardiovascular abnormalities [13]. Cre-mediated deletion of endothelial
Notch1 during embryonic development was also lethal, proving that arrested growth is associated with loss
of the gene in vessels/endocardium. Decreased neointima formation in heterozygous Notch1+/− mice [14]
and Hey2−/− [15] mice after carotid artery ligation provided strong evidence for its role in response to
vascular injury. Several reports have further linked Notch1 to endothelial proliferation [16–19]. Although
well characterised in the systemic vasculature [7] and vascular injury [8, 9], Notch1 is poorly understood in
the pulmonary vasculature. This led us to investigate the expression and potential contribution of Notch1
signalling in the pathogenesis of PAH. Specifically, we aimed to: 1) profile Notch1 expression in lungs from
patients with IPAH or from hypoxia/SU5416 (SUHx) rats, 2) determine Notch1 expression and function
under hypoxia in human PAECs (hPAECs), 3) investigate the effect of Notch1 gain- and loss-of-function on
proliferation and apoptosis of hPAECs, and 4) investigate the effect of a pan Notch inhibitor (γ-secretase
inhibitor) on hPAECs in vitro and SUHx rats in vivo.

Materials and methods
Primary cells and cell culture
hPAECs were purchased from Lonza (Basel, Switzerland).

Plasmids and small interfering RNA
pFLAG-CMV2-Notch1 intracellular domain (Notch1ICD) plasmid was a kind gift from Professor Cheol
O. Joe (Korea Advanced Institute of Science and Technology, Daejeon, South Korea). Notch1 promoter
plasmid was a kind gift from Professor G. Paolo Dotto (University of Lausanne, Lausanne, Switzerland).
Small interfering RNA (siRNA) targeting Notch1 mRNA (si-Notch1) and scrambled siRNA (si-Scr) were
purchased from SABiosciences (Frederick, MD, USA).

RNA isolation and real-time reverse transcriptase PCR
Total RNA from tissues and cells was transcribed using an ImProm-II Reverse Transcription System
(Promega, Madison, WI, USA), followed by real-time PCR analysis of various genes using the primers
described in online supplementary table S2.

Western blotting analysis
Tissues and hPAECs were lysed in radioimmunoprecipitation assay lysis buffer (Thermo Scientific, Waltham,
MA, USA) and the lysates were subjected to Western blots using various antibodies (online supplementary
table S3).
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Assessment of proliferation and apoptosis of hPAECs
Proliferation and apoptosis of hPAECs was assessed using a bromodeoxyuridine incorporation assay
(Roche, Basel, Switzerland) and in situ cell death detection kit (Roche) according to the manufacturer’s
instructions. The Bax/Bcl-2 ratio was used to assess the degree of apoptosis.

Assessment of migration and tube formation of hPAECs
Migration of hPAECs was assessed using a modified transwell Boyden chamber, while tube formation
assay was carried out using the Matrigel™ assay.

Luciferase assay
Human embryonic kidney (HEK) cells were transfected with the Notch1 promoter/reporter gene construct
followed by hypoxia exposure (1% O2) and measured for luciferase activity using a Dual Luciferase
Reporter Assay (Promega, Madison, WI, USA).

Immunohistochemistry
Paraffin-embedded tissue sections were stained for Notch1 using a NovaRED™ horseradish peroxidase
substrate kit (Vector, Burlingame, CA, USA) according to the manufacturer’s instructions. Serial section
staining with von Willebrand factor (an endothelial marker) and α-smooth muscle actin (α-actin; a
smooth muscle marker) was additionally carried out.

Echocardiography, haemodynamic and right ventricular hypertrophy measurements
Transthoracic echocardiography, haemodynamics and tissue preparations were performed as described
previously [20], and are described in detail in the online supplementary material.

Statistical analysis
Data are presented as mean±SEM. Unless otherwise stated, statistical comparisons of samples were
performed by one-way ANOVA followed by Dunnett’s post hoc test. Two samples were compared using
the t-test.

Results
Notch1 expression and localisation in IPAH and donor lungs
mRNA expression of Notch1 and protein expression of Notch1ICD was strongly upregulated in lung
homogenates from patients with IPAH compared with donors (figure 1a–c). Further Notch1 expression was
assessed in microdissected pulmonary vessels and plexiform lesions (figure 1d and online supplementary
figure S2). There was a significant increase in mRNA expression of Notch1 observed in microdissected
vessels from IPAH patients compared with donor tissues, but not in plexiform lesions. Similarly, at the
protein level, we observed a substantial increase in Notch1ICD expression in IPAH pulmonary arteries
(figure 1e and f). A strong immunoreactivity of Notch1 was observed in the intimal layer of pulmonary
arteries of IPAH lungs (figure 1g), which clearly colocalised with proliferating cell nuclear antigen (PCNA).
Significant changes, at both the mRNA and protein level, were not observed for other Notch receptors and
ligands in IPAH lung homogenates except for DLL1 ligand (online supplementary figure S1).

Expression of Notch1 in hPAECs under hypoxia and its effect on hypoxia-induced proliferation
Exposure of hPAECs to hypoxia (1% O2) resulted in upregulation of Notch1 mRNA expression (figure 2a)
and Notch1ICD protein expression (figure 2b and c). Based on the presence of hypoxia response element
sites in the Notch1 promoter (online supplementary figure S3), a dual luciferase assay was performed in
HEK cells with the pGL4-Notch1 promoter construct. Luciferase activity was significantly increased after
hypoxia exposure compared with normoxia (figure 2d). More interestingly, hypoxia-induced hPAECs
proliferation was decreased by Notch1 knockdown compared with si-Scr-transfected cells (figure 2e),
indicating a central role of Notch1 in the proliferative phenotype of hPAECs under hypoxia. Specific
knockdown of Notch1ICD (85% knockdown efficiency) along with decreased mRNA expression of the
Notch target Hes1 gene was achieved by Notch1 siRNA with no effect on Notch2ICD and Notch4ICD
(figure 3b and c, and online supplementary figure S4A–C).

Effect of Notch1 knockdown and overexpression on proliferation of hPAECs
In vitro studies were performed using Notch1 siRNA (si-Notch1) and Notch1ICD plasmid to investigate
the functional role of Notch1 in hPAECs. Importantly, Notch1 knockdown decreased growth
medium-induced proliferation (∼40%) compared with si-Scr-transfected hPAECs (figure 3a). Moreover
Notch1 knockdown increased expression of p21, an endogenous cell cycle inhibitor (figure 3b and c),
suggesting Notch1 is involved in cell cycle regulation.
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Functional overexpression of Notch1ICD, confirmed by a significant increase in mRNA expression of Hes1
(online supplementary figure S5B), led to a substantial increase in growth medium-stimulated proliferation
of hPAECs (77%) compared with empty vector-transfected cells (figure 3d) and a concomitant decrease in
expression of p21 (figure 3e and f). In addition to endothelial cells, Notch1 is reportedly expressed in
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FIGURE 1 Notch1 expression and localisation in human donor and idiopathic pulmonary arterial hypertension (IPAH) lungs. mRNA expression of
Notch1 in a) lung homogenates and d) pulmonary arteries of donors and IPAH patients. Regulation at the mRNA level was analysed by real-time
PCR using the cycle threshold (Ct) method (n=7). Western blot analysis of Notch1 intracellular domain (Notch1ICD) in b) lung homogenates and
e) pulmonary arteries of donors and IPAH patients, followed by c, f ) densitometric analysis. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
was taken as the loading control. *: p<0.05; ***: p<0.001 versus donors. g) Representative immunostaining micrographs of human lung sections
from donors and IPAH patients. Staining was undertaken for Notch1, proliferating cell nuclear antigen (PCNA), von Willebrand factor (vWF; brown;
endothelial cells) and α-actin (purple; smooth muscle cells). Scale bar: 20 μm.
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vascular smooth muscle cells [14, 21]; however, there was no change observed in growth
medium-stimulated proliferation of human PASMCs (hPASMCs) after knockdown or constitutive
expression of Notch1 (online supplementary figure S6A and F).

Effect of Notch1 knockdown and overexpression on apoptosis of hPAECs
Knockdown of Notch1 led to ∼20% increase in the number of apoptotic cells compared with
si-Scr-transfected cells measured by TUNEL (terminal deoxynucleotidyl transferase dUTP nick
end-labelling) assay (figure 4a and b). Additionally, Western blot analysis demonstrated a significant increase
of the Bax/Bcl-2 ratio in si-Notch1-transfected cells (figure 4c and d), indicative of increased apoptosis.
Transfection of hPAECs with the Notch1ICD expression plasmid led to a significant decrease in the Bax/
Bcl-2 ratio (figure 4e and f) compared with empty vector. mRNA expression of Survivin was decreased by
Notch1 knockdown while vice versa it was observed with Notch1ICD overexpression (figure 4g and h).

Effect of pharmacological inhibition of Notch signalling on proliferation, migration and angiogenic
response of hPAECs
Treatment with dibenzazepine (DBZ; a γ-secretase inhibitor) decreased γ-secretase activity by 50% after 8 h
in hPAECs as observed by the reduced protein levels of Notch1ICD (figure 5a and b) and decreased mRNA
expression of Hes1 (figure 5c). 5% Fetal calf serum (FCS) resulting in a marked increase in proliferation of
hPAECs (by 88%), which was reduced to less than half (up to 66%) by 20 μM DBZ (figure 5d).
Interestingly, proliferation induced by VEGF, a potent mitogen for hPAECs, was also reduced effectively by
20 μM DBZ by 56% (figure 5e). Furthermore, FCS-induced migration of hPAECs was significantly reduced
by DBZ in a dose-dependent manner with 20 μM DBZ showing a reduction by 50% (figure 5f and g),
although no effect of DBZ was observed on the tube formation response of the hPAECs (online
supplementary figure S7). Data from work dissecting Notch3 signalling in PAH revealed that DAPT
(N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester), another γ-secretase inhibitor, was
able to reduce proliferation of hPASMCs [11]. Similarly, DBZ significantly decreased DNA synthesis in
both 5% FCS- and platelet-derived growth factor (PDGF)-BB-stimulated hPASMCs in a dose-dependent
manner (online supplementary figure S8a and b).
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Notch1 expression in SUHx rats and therapeutic assessment of a γ-secretase inhibitor
(AMG2008827) in SUHx rats
Previous reports suggested that rats exposed to hypoxia after injection of the VEGFR-2 inhibitor SU5416
exhibit neointimal lesions, characterised by hyperproliferative and apoptosis-resistant endothelial cells [22].
We observed a strong upregulation of Notch1 at the mRNA and protein level in lungs of SUHx rats compared
with healthy rats (figure 6a–c), concomitant with our findings in IPAH lungs. Also, Notch3 expression was
found to be strongly upregulated (online supplementary figure S9). To assess the therapeutic potential of
Notch inhibition in SUHx pulmonary hypertension, rats were treated 3 weeks after Sugen injection and
hypoxia exposure with a γ-secretase inhibitor (GSI; AMG2008827; Amgen, Thousand Oaks, CA, USA),
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(Notch1ICD) plasmid for 48 h. hPAECs treated with transfection reagent alone is the mock. hPAEC proliferation
induced by growth medium as measured by bromodeoxyuridine (BrdU) incorporation 48 h after a) si-Notch1
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protein (GFP) control (n=5). Effect of b) si-Notch1 and e) Notch1ICD overexpression on cell cycle regulators as
analysed by Western blotting with antibodies against p21, followed by c, f ) densitometric analysis of the blots.
β-Actin was taken as the loading control. *: p<0.05; **: p<0.01; ***: p<0.001 versus mock. n=3 in each group.
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which inhibits Notch1 signalling in a cellular reporter assay with an IC50 (the half maximal inhibitory
concentration) of 1.28 nM (online supplementary figure S10), or placebo for 14 days. GSI treatment of SUHx
rats resulted in a remarkable decrease in right ventricular systolic pressure (figure 6d) and increase in cardiac

a)

b) 1.5

0 h 1 h 2 h 4 h 6 h 8 h

Notch1ICD

GAPDH

0.0
0 1 2

Time h
4 6 8

0.5

1.0

** **
***

N
o

tc
h

1
IC

D
/G

A
P

D
H

d)

2.0

2.5

0.0

1.0

0.5

1.5

#
*

#

#

B
rd

U
 i

n
c
o

rp
o

ra
ti

o
n

 f
o

ld
 c

h
a

n
g

e

c) 0

–5

DMSO

DBZ µM

+

–

+

5

+

10

+

20

–4

–3

–2

–1

*** ***

***

H
e

s
1

 m
R

N
A

 e
x
p

re
s
s
io

n
 

∆
C t

FCS 5%

DBZ µM

–

–

+

–

+

0

+

5

+

10

+

20

f) g) Nonstimulated

DBZ 5 µM DBZ 10 µM DBZ 20 µM

FCS 5%80

0

40

20

60

#

***

#

M
ig

ra
te

d
 c

e
ll

s
 n

FCS 5%

DBZ µM

–

–

+

–

+

5

+

10

+

20

e)

1.5

2.0

0.0

0.5

1.0

*

#

#

B
rd

U
 i

n
c
o

rp
o

ra
ti

o
n

 f
o

ld
 c

h
a

n
g

e

VEGF 10 ng·mL–1

DBZ µM

–

–

+

–

+

0

+

5

+

10

+

20

FIGURE 5 Effect of pharmacological inhibition of Notch signalling on serum or vascular endothelial growth
factor (VEGF)-induced proliferation and migration of human pulmonary arterial endothelial cell (hPAECs).
a) Western blot analysis of Notch1 intracellular domain (Notch1ICD) after treatment of hPAECs with
dibenzazepine (DBZ) with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the loading control.
b) Quantification of the Western blot. GAPDH was taken as the loading control. **: p<0.01; ***: p<0.001 versus
0 h. c) mRNA expression of Hes1 in hPAECs after 24 h treatment with DBZ as analysed by real-time PCR.
All values are expressed as ΔCt. ***: p<0.001 versus dimethylsuphoxide (DMSO) control. hPAECs were serum
starved and stimulated with d) 5% fetal calf serum (FCS) or e) 10 ng·mL−1 VEGF in the presence of various
concentrations of DBZ or DMSO (–) and measured for changes in proliferation by bromodeoxyuridine (BrdU)
incorporation. All data are expressed as fold increase of the nonstimulated group and represent mean±SEM (n=5).
f ) hPAECs were serum starved for 12 h and treated with 10 M mitomycin C for 2 h. Cells were then seeded on
transwell inserts and lower chambers were filled with 5% FCS in the presence of various concentrations of DBZ
or DMSO (–). After 16 h, cell migration was measured by counting the crystal violet-positive cells under a
microscope. *: p<0.05; ***: p<0.001 versus nonstimulated; #: p<0.05 versus d, f) FCS- or e) VEGF-treated group.
g) Representative images from the transwell migration assay. Scale bar: 100 μm.
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FIGURE 6 Notch1 expression and localisation in lungs from hypoxia/SU5416 (SUHx)-treated rats and effect of a
γ-secretase inhibitor (GSI; AMG2008827) on SUHx-induced pulmonary hypertension in rats. a) mRNA expression
of Notch1 in lung homogenates of healthy and SUHx rats. Regulation at the mRNA level was analysed by
real-time PCR using the cycle threshold (Ct) method (n=4). b) Western blot analysis of Notch1 intracellular
domain (Notch1ICD) in lung homogenates of healthy and SUHx rats, followed by c) densitometric analysis.
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was taken as the loading control. ***: p<0.001 versus
healthy. d–i) Influence of GSI on the haemodynamics and right heart function in SUHx rats. BW: body weight.
Echocardiography followed by physiological measurements was carried out on GSI-treated (3 mg·kg BW−1)/
placebo-treated SUHx rats and healthy rats 35 days after initiation of SUHx treatment. d) Right ventricular
systolic pressure (RVSP) as measured by right heart catheterisation, and e) cardiac index, f ) pulmonary arterial
acceleration time (PAAT)/pulmonary arterial ejection time (PAET), g) tricuspid annular plane systolic excursion
(TAPSE), h) right ventricular internal diameter (RVID) and i) total pulmonary vascular resistance index (TPVRi)
of the rats as measured by echocardiography. n=5 healthy, n=7 SUHx placebo, n=5 GSI-treated SUHx. *: p<0.05;
**: p<0.01; ***: p<0.001 versus SUHx+placebo.
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index (figure 6e) as compared with placebo-treated SUHx rats. Additionally, GSI treatment significantly
increased the pulmonary artery acceleration time/pulmonary arterial ejection time ratio and tricuspid annular
plane systolic excursion (figure 6f and g), and decreased the total pulmonary vascular resistance index and
right ventricular internal diameter (figure 6h and i) as measured by echocardiography. With respect to
vascular remodelling, GSI treatment led to a reduction in the neointima/media ratio and medial wall thickness
(online supplementary figure S11).

Discussion
Our investigation of the role of Notch signalling in PAH led us to the following key observations. 1) Notch1
expression and cleavage is increased in lungs and pulmonary arteries of IPAH patients and in lungs of
SUHx rats. 2) Notch1 positively regulates proliferation of hPAECs via p21, and negatively regulates
apoptosis via Bcl-2 and Survivin, with no effect on proliferation of hPASMCs, supporting
endothelial-specific effects of Notch1. 3) Hypoxia is one of the stimuli leading to increased Notch1
signalling in hPAECs. 4) Inhibition of Notch signalling in vitro by DBZ effectively attenuated proliferation
in both hPAECs and hPASMCs, and in vivo administration of GSI (AMG2008827) potently improved right
ventricular systolic pressure and right heart function of SUHx rats.

Endothelial cells in pulmonary arteries of PAH patients exhibit a hyperproliferative and anti-apoptotic
phenotype [5, 23]. Somatic mutations in bone morphogenetic protein receptor type II (BMPRII) and Bax
genes have been identified in patients with IPAH [6, 24], which may provide a growth advantage to
altered endothelial cells. However, BMPRII mutations are observed only in 70% of familial PAH and not
all intimal lesions harbour somatic mutations. Hence, other molecular players need to be investigated.
Based on our present study, it is compelling to speculate that Notch1 could qualify as one such
molecular mediator and that modulation of Notch1 signalling in the endothelium may be beneficial for
patients with PAH.

An initial hint about the relevance of Notch1 signalling in PAH was provided by our screening studies
which showed an increased expression and activation of Notch1 signalling in the pulmonary vasculature of
IPAH patients. Additionally, we observed increased Notch1 expression in endothelial cells in IPAH vessels
compared with donor vessels. This change was correlated with increased PCNA staining, suggesting that
Notch1 could be involved in endothelial proliferation and neointima formation. To the best of our
knowledge, this is the first study demonstrating increased Notch1 activation in the pulmonary vasculature
of IPAH patients. SUHx rats, reported to mirror the hyperproliferative endothelial cell aetiology of severe
human PAH [22, 25], exhibited increased Notch1 expression and cleavage in lungs compared with healthy
rats, further suggesting a role of Notch1 in endothelial proliferation and survival in vivo. Activation of
Notch receptor is dependent on the interaction with ligands displayed on adjacent cells [10]. Increased
expression of the DLL1 ligand in IPAH patients could represent one possible way of inducing Notch1
activation. However, certain reports have suggested ligand-independent activation of Notch signalling. An
in vitro study has demonstrated increased cleavage and activation of Notch1 in embryonic stem
cell-derived VEGFR-2+ cells under shear stress [26]. Hyperproliferative altered endothelial cells generally
observed at branching points of pulmonary arteries in IPAH patients are believed to be an outcome of
increased shear stress [23] and SUHx treatment in rats has also been shown to mirror these shear stress
conditions [22], implicating shear stress as a direct Notch1 activator. Furthermore, additional PAH
contributing factors such as reactive oxygen species or HIF-1α activation have also been linked to Notch1
activation. In order to define the mechanisms involved in Notch1 activation, we explored hypoxia as an
initial stimulus. Hypoxia has been described as an important trigger leading to remodelling of vessels in
pulmonary hypertension [27]. In our studies, Notch1 expression, cleavage and promoter activity were
strongly upregulated in hypoxia-exposed hPAECs and HEK cells (dual luciferase assay). This increase may
be attributed to HIF-1α, as HIF-1α-binding sites are present in the Notch1 promoter sequence.
Interestingly, elevated levels of HIF-1α have been detected in arterial lesions in IPAH lungs and in IPAH
PAECs [28]. A recent study has further revealed activation of Notch1 in cancer cell lines under hypoxia
via HIF-1α, contributing to increased proliferation, migration and survival of the cells [29]. Notch1
inhibition reversed hypoxia-induced proliferation in hPAECs. Hence, we conclude that hypoxia
potentiated Notch1 signalling in hPAECs, which in turn contributed to increased proliferation.

Similarities between cancerous cells and altered endothelial cells in PAH patients [3, 30], and the established
role of Notch1 as an oncogene [31, 32], led us to examine its contribution in endothelial proliferation and
apoptosis. In our studies, Notch1 downregulation resulted in ∼40% decrease in proliferation of hPAECs,
while Notch1ICD overexpression led to a significant ∼75% increase in proliferation. Earlier reports implicated
Notch1 in the regulation of endothelial proliferation, albeit with conflicting conclusions. In human aortic
endothelial cells, Notch1ICD overexpression was shown to inhibit proliferation of the cells via repression
of mitogen-activated protein kinase and phosphoinositide 3-kinase/Akt pathway [16] and p21 [17].
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Contradicting these reports, TAKESHITA et al. [18] demonstrated that Notch1 is essential for VEGF-induced
proliferation, migration and survival of endothelial cells. Another study linked reduced Notch1 cleavage to
decreased PCNA levels in endothelial cells, when cocultured with Jagged1-deficient vascular smooth muscle
cells [19]. To explore the mechanism involved, expression of cell cycle regulatory proteins was examined. We
observed a marked increase in protein levels of the cell cycle inhibitor p21 upon Notch1 knockdown, while
Notch1ICD overexpression was associated with decreased expression of p21. p21, a well-known
cyclin-dependent kinase inhibitor, has been described as a direct target of RBP-Jκ-dependent Notch1
signalling [17, 33], where the authors demonstrated repression of p21 promoter activity under Notch1
activation in human umbilical vein endothelial cells. Our results support a positive role of Notch1 in the
proliferation of hPAECs via an effect on p21 expression. Interestingly, siRNA-mediated Notch1 knockdown
or Notch1ICD overexpression did not show any effect on proliferation of hPASMCs, indicating that other
Notch homologs are more important in regulating the proliferative potential of PASMCs. Indeed, Notch3 has
been described to be essential for aberrant proliferation of PASMCs in IPAH patients [11]. This finding
further supports our hypothesis of endothelial-specific effects of Notch1.

Resistance to apoptosis is another important characteristic of altered endothelial cells found in patients
with PAH [5, 6]. Notch1 knockdown led to a small but significant (20%) increase in the number of
TUNEL-positive apoptotic endothelial cells. Many reports have proposed and further demonstrated that
the Bcl-2/Bax ratio might govern the sensitivity of cells to apoptotic stimuli [34]. Interestingly, we were
able to observe a significant decrease of the Bax/Bcl-2 ratio, indicative of increased apoptosis upon
treatment of hPAECs with si-Notch1. In agreement, constitutive expression of Notch1 ICD led to an
increase in the Bax/Bcl-2 ratio. Survivin, a member of the mammalian “inhibitor of apoptosis” family, is
shown to be expressed in cancers and remodelled pulmonary arteries of PAH patients [35, 36]. We
observed a positive effect of Notch1 on Survivin mRNA expression, indicating Survivin is a downstream
target of Notch1 signalling, in agreement with various studies suggesting Notch1 is an upstream regulator
of Survivin in cancer [37]. Previous studies have defined an anti-apoptotic role of Notch1 signalling in
both animal and in vitro cell models [38], in the field of development and cancer. However, not much is
known about the involvement of Notch1 in endothelial apoptosis. Our results suggest a role of Notch1 in
promoting survival of hPAECs by regulating expression of Bcl-2 and Survivin.

Pharmacological inhibition of Notch signalling achieved by γ-secretase inhibitors has been extensively used in
various studies utilising cell lines and animal models for different cancers [39, 40] to establish the potential
utility of γ-secretase inhibitor-based treatments. In order to examine the relevance of γ-secretase inhibitors as
a therapy in experimental pulmonary hypertension, we used DBZ for our in vitro studies. DBZ was able to
significantly reduce serum and VEGF-induced proliferation of endothelial cells. In fact, cross-talk between
VEGF and Notch signalling has already been reported. VEGF was shown to increase expression of Notch
receptors and ligands in endothelial cells [41]. Additionally, VEGF-induced postnatal angiogenesis involving
endothelial proliferation and migration is mediated via γ-secretase and Notch1 activation [18]. VEGF plasma
levels are elevated in patients with severe PAH, and VEGF as well as VEGFR-2 are strongly expressed in
plexiform lesions [4]. DBZ further exhibited a strong inhibitory effect on migration of hPAECs stimulated by
FCS, although there was no significant effect on the angiogenic response. It has been reported that IPAH
PAECs show increased migratory potential compared with control cells. However, no greater angiogenic
potential of IPAH PAECs was observed, but rather a less orderly tube formation with thinner branches.
Pulmonary angiogenesis during development of PAH may act as a protective mechanism against loss of the
pulmonary microvasculature due to endothelial injury and dysfunction, although severe PAH is characterised
by deregulated angiogenesis where endothelial cell proliferative lesions consist of disorganised, alternating
areas with a solid core of cells and other areas with variable stages of capillary/blood vessel formation [42].
The substantial effects of Notch modulation observed on the proliferation, migration and apoptosis of
hPAECs, but not angiogenesis, hint strongly towards a beneficial role of Notch inhibition for treating PAH
without having any negative effect on pulmonary angiogenesis. In line with previous findings [11], serum and
PDGF-induced proliferation of hPASMCs was effectively reduced by DBZ. The effect of DBZ on PDGF-BB
induced proliferation could be either due to a direct effect of Notch on cell proliferation markers or due to
cross-talk with PDGF signalling. Indeed, Notch3 is shown to regulate PDGF receptor β expression in vascular
smooth muscle cells [43].

Importantly, the therapeutic potential of GSI (AMG2008827; 3 mg·kg−1) in vivo on several disease
parameters of established SUHx-induced pulmonary hypertension in rats was assessed. The inhibitor
markedly improved the haemodynamic parameters (right ventricular systolic pressure and cardiac index)
and right heart function in SUHx rats compared with placebo-treated rats. Furthermore, reduction in
neointima formation and medial wall thickness with GSI treatment were also observed. However, a higher
dose of the inhibitor or prolonged administration may be needed to show further sustained effects. Taken
together, these data indicate a protective role of Notch inhibition in experimental PAH.
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Limitations of the study
The present study elucidates a clear mechanism of regulation of endothelial proliferation and survival by
Notch1 signalling in vitro and in vivo. Further studies are needed to dissect the molecular mechanism
(ligand dependent and independent) leading to Notch1 activation in the disease state and to assess the
efficacy of GSI treatment in combination with other compounds that have been previously reported to
reduce pulmonary hypertension in the SUHx model.

Conclusion
These data describe a novel pathway involving Notch1 signalling, which regulates a pro-proliferative and
pro-survival phenotype in PAECs (figure 7). This pathway appears to be further activated by hypoxia
stimulation. Both in vitro and in vivo data using pharmacological γ-secretase inhibitors suggest that
Notch1 is a potential therapeutic target in PAH.
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