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ABSTRACT: The release of potent pro-inflammatory mediators is crucial to mounting an efficient

host response during infection. However, excessive inflammation may lead to deleterious tissue

damage. This is highlighted in severe pneumococcal pneumonia, in which the delicate balance

between a robust inflammatory response necessary to kill pneumococci and the loss of organ

function determines the outcome of the disease.

We assessed the regulation of the potent anti-inflammatory cytokine interleukin (IL)-10 in

pneumococcal infection via Western blot, ELISA and chromatin immunoprecipitation analysis.

Streptococcus pneumoniae induced IL-10 expression in mouse lungs and human lung epithelial

cells. Pneumococcal infection resulted in a strong induction of Krueppel-like factor (KLF)4

expression in vivo and in vitro. The induction of both IL-10 and KLF4 is mediated by a pathway

involving bacterial DNA, Toll-like receptor (TLR)9, MyD88 and Src kinase. KLF4 is recruited to the

il10 promoter, and small-interfering RNA-mediated knockdown of KLF4 expression blocked IL-10

expression during pneumococcal infection.

In conclusion, KLF4 is induced in a bacterial DNA–TLR9–Src-dependent manner and regulates

IL-10 expression, linking the detection of bacterial DNA by TLR9 to the control of an inflammatory

response.
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A
rapid, robust and efficient innate immune

response defends mammals against invad-
ing pathogens. In combination with, for

example, pathogen-derived toxins, the pro-inflam-

matory and toxic agents released from human cells

impair tissue function. Thus, the innate immune

response must be sufficient to kill the pathogens,

but it also needs to be tightly controlled to ensure

minimal tissue damage and host survival. This

delicate balance is highlighted in pneumonia,

which represents the third leading cause of death

worldwide [1]. On the one hand, local elimina-

tion of bacteria by the host response prevents

the distribution of infection and inflammation

throughout the lung and body during pneumonia

[2]. On the other hand, efficient oxygenation of the

host must be guaranteed on, literally, a minute-to-

minute basis, despite the ongoing combat between

the host and the pathogen.

Most cases of community-acquired pneumonia
are due to infection with Streptococcus pneumoniae
(pneumococci) [3]. The activation of Toll-like
receptor (TLR)2, TLR4 and TLR9 seems to
contribute to the activation of the innate immune
response by pneumococci [4–6]. These receptors
initiate a strong release of cytokines, resulting in
the characteristic infiltration of the lung by
polymorphonuclear leukocytes [2]. Despite the
vital need for a balanced inflammatory reaction
in pneumonia, little is known about how inflam-
mation in pneumonia is controlled.

Krueppel-like transcription factors (KLFs) form a
subclass of 21 zinc finger-containing transcription
factors expressed in mammals [7]. KLF4 was first
identified as an important factor for the establish-
ment of the skin barrier [8]. Recent studies
suggest that KLF4 is involved in the regulation
of cytokine production in leukocytes [9, 10].
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By using S. pneumoniae infection as a model, we analysed the
regulation of anti-inflammatory interleukin (IL)-10 expression.
We report that KLF4 is induced in a bacterial DNA–TLR9–Src-
dependent manner and regulates IL-10 expression, linking the
detection of bacterial DNA by TLR9 to the control of an anti-
inflammatory response.

MATERIAL AND METHODS
Materials
The src kinase inhibitor, PP2, and its control, PP3, were
purchased from Calbiochem (Merck, Darmstadt, Germany).
ODN M362 and ODN TTAGGG were purchased from
InvivoGen (San Diego, CA, USA). All other chemicals used
were of analytical grade and obtained from commercial sources.

Bacterial strains and bacterial products
Pneumonia was induced in mice by infection with S. pneumoniae
serotype 3 strain PN36 (NCTC 7978). S. pneumoniae R6x and
R6xDply (pneumolysin (Ply)-deficient) strains used for the in vitro
studies are unencapsulated derivatives of serotype 2 strain D39.
Pneumococci were plated on blood agar plates overnight then
cultured in Todd Hewitt broth supplemented with 5% yeast
extract to midlog phase (optical density at 600 nm (OD600) 0.3),
harvested by centrifugation and resuspended as recommended
in cell culture medium. Heat inactivation of R6x was performed
for 1 h at 56uC. For the isolation of bacterial DNA, pneumococci
were cultured (OD600 1.0), harvested by centrifugation, resus-
pended in N-tris(hydroxymethyl)methyl-2-aminoethane sulfo-
nic acid, lysed and treated with lysozyme, mutanolysin, RNase,
pronase E and sarcosyl. DNA was extracted and precipitated
with phenol, sodium acetate and 2-propanol. Ply was a kind gift
from T. Mitchell (Biomedical Research Centre, University of
Glasgow, Glasgow, UK).

Human cell lines and DNA
Transformed human bronchial epithelial cells (BEAS)-2B cells
and human embryonic kidney (HEK)293 were purchased from
the American Type Culture Collection (Rockville, MD, USA).
Human primary small airway epithelial cells (SAECs) were
obtained from Clonetics/Cambrex (Taufkirchen, Germany).
Cells were cultured and infected as described previously [11].
Human DNA from BEAS-2B cells was prepared using the
QIAampDNA Mini Kit (Qiagen, Hilden, Germany) following
manufacturer’s instructions.

Mouse pneumonia model
All animal procedures were performed according to the
Helsinki convention for the use of animals and approved by
the State Office of Health and Social Affairs in Berlin (Germany).
6-week-old female C57BL/6 mice were anaesthetised, infected
and then sacrificed at the indicated time-points. Lung bacterial
load reaches its maximum 60 h, septic dissemination com-
mences ,24 h and mice become moribund 60–120 h after
infection [12]. Removed lungs were frozen in liquid nitrogen
and bronchoalveolar lavage (BAL) was performed.

IL-10 ELISA
IL-10 production in the supernatants or BAL was assessed by
commercial ELISA (Becton Dickinson GmbH, Heidelberg,
Germany). To achieve more sensitive IL-10 detection, we
generated standard dilutions from 3.9 ng to 250 ng for the in

vitro studies. For all ELISA data, cell viability was confirmed
by measurement of lactate dehydrogenase in the same super-
natants (data not shown).

Western blotting
Cells were stimulated as indicated, washed twice and harvested.
Mouse lungs were snap-frozen in liquid nitrogen and pul-
verised. Cell or lung homogenates were lysed in buffer contain-
ing NP40 and subjected to Western blotting. Membranes were
exposed to antibodies for IL-10 (Abcam, Cambridge, MA), KLF2,
KLF4, TLR9, MyD88, extracellular signal-regulated kinase
(ERK)2, actin (all Santa Cruz Biotechnology, Inc., Heidelberg,
Germany), cyclooxygenase (COX)2, focal adhesion kinase
(Upstate Biotechnology, Lake Placid, NY, USA) overnight at
4uC and subsequently incubated with secondary antibodies
(IRDye 800-labelled anti-mouse or anti-goat, or Cy5.5-labeled
anti-rabbit). Proteins were detected using an Odyssey infrared
imaging system (LI-COR Inc., Bad Homburg, Germany).

Plasmids and transfection procedures
HEK293 cells were co-transfected using the calcium phosphate
precipitation method according to the manufacturer’s instruc-
tions (Clonetech, Palo Alto, CA, USA). Luciferase reporters
dependent on KLF4 (Z-Y. Chen, Boston University School
of Medicine, Boston, MA, USA) or IL-10 (C. Wehner,
KKG Entzuendliche Lungenerkrankungen der GSF, Gauting,
Germany) (0.2 mg each), or 0.1 mg pRL-TK (Promega GmbH,
Mannheim, Germany) plasmid were used as indicated. BEAS-
2B cells were transfected using Fugene6 (Roche Applied
Science, Mannheim, Germany). Firefly and Renilla luciferase
activity was measured by using a Dual-Luciferase Reporter
Assay System (Promega GmbH, Mannheim, Germany).

RNA interference
Small interferring RNA (siRNA) lipoplexes were generated
with AtuFECT01 for transfection (Silence Therapeutics AG,
Berlin, Germany) using 2 mg siRNA per 106 cells [13]. siRNA
sequences purchased from Ambion (Ambion Ltd, Huntington,
Cambridge, UK) are shown in table S1.

Chromatin immunoprecipitation
BEAS-2B cells were stimulated as indicated, and chromatin
immunoprecipitation (ChIP) was performed as described pre-
viously [4, 6, 14] with a il10 promoter-specific primer pair
(forward: tcgaggcgaccgcgacagt; reverse: ggagcagcgcgtcgctga).
Immunoprecipitations were carried out with antibodies against
KLF4 and RNA polymerase II (Santa Cruz Biotechnology). Equal
amounts of input DNA were controlled by gel electrophoresis.

Statistics
Data are shown as mean¡SEM for at least three independent
experiments performed either in duplicate (in vitro) or five
times (in vivo). One-way ANOVA was used for the analysis of
the data, and the main effects were compared by Bonferroni’s
post-test. Figures 1a and 5f were analysed by unpaired t-test.

RESULTS
Pneumococci-induced IL-10 expression
We measured increased IL-10 protein expression in the BAL
(fig. 1a) as well as in the lung tissue (fig. 1b) of pneumococci-
infected mice. Furthermore, R6x pneumococci induced expression
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of IL-10 in BEAS-2B cells (fig. 1c and fig. S1). Similarly, the Ply-
deficient mutant (R6xDply) induced IL-10 expression in human
primary SAECs (fig. 1d) and in HEK293 cells (fig. 1e).

Pneumococci-induced expression of KLF4 in vitro and in
vivo
Exposure of BEAS-2B cells or SAEC to pneumococcus induced
a time- (fig. 2a and b) and dose-dependent (figs S2a and b)
expression of KLF4 in vitro. Moreover, increased KLF4
expression was also detected in infected mouse lungs (fig. 2c).

KLF4-reliant expression of IL-10

ChIP experiments were conducted to test the hypothesis that the
IL-10 expression is regulated by KLF4 in pneumococci-infected

human lung cells. Analysis of pneumococci-infected BEAS-2B
cells showed a recruitment of KLF4 and RNA polymerase II to
the il10 promotor (fig. 3a). Ablation of KLF4 expression by
specific siRNA (fig. S3) abolished pneumococci-induced IL-10
secretion (fig. 3b).

KLF4 expression in lung cells is induced by TLR9
Abolishment of the TLR-related adaptor molecule MyD88
by siRNA reduced pneumococci-related KLF4 expression
(fig. S4a and b). Ply-deficient pneumococci induced KLF4
protein expression in HEK293 cells (fig. S4c), which are known
to be unresponsive to TLR4 stimulation [6]. Additionally, Ply
and lipopolysaccharide (LPS) failed to induce KLF4 expression
but stimulated COX2 or KLF2 expression, respectively, in
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FIGURE 1. Pneumococci-induced interleukin (IL)-10 expression. Infection of mice with Streptococcus pneumoniae induced IL-10 expression in vivo in a) bronchoalveolar

lavage (BAL), five mice per group and b) mouse lung tissue (four control mice or mice infected with 56106 cfu PN36 for 48 h) as shown by a) ELISA or b) Western blot,

respectively. Infection of c) bronchial epithelial cells (BEAS)-2B cells with R6x (106 cfu?mL-1; Western blot) or d) small airway epithelial cells (SAECs) and e) human embryonic

kidney (HEK)293 with R6xDply for d) 12 h or e) 24 h resulted in increased IL-10 production in vitro. A total of 5 ng of recombinant IL-10 was loaded as a positive control in b).

Western blots represent one experiment out of three. Actin detection demonstrates equal protein loading. b.t.: below threshold. *: p,0.05; ***: p,0.001.

PULMONARY INFECTIONS J. ZAHLTEN ET AL.

386 VOLUME 41 NUMBER 2 EUROPEAN RESPIRATORY JOURNAL



BEAS-2B cells (fig. S4d and e). These results indicate that
neither Ply nor TLR4 activation contributed to KLF4 expres-
sion in lung epithelial cells. Furthermore, exposure of BEAS-2B
cells to heat-inactivated pneumococci failed to induce KLF4
expression while still inducing COX2 expression (fig. S4f),
indicating that viable pneumococci are required to trigger
KLF4 expression in lung cells. Assuming that killed pneumo-
cocci are still recognised by TLR2 [11] and that bacterium-
induced TLR9-dependent signalling is reduced by heat
inactivation [5], we tested TLR9 as a possible receptor for
KLF4 induction.

Both the TLR9 agonist ODN M362 (fig. 4a) and pneumococcal
DNA (fig. 4b) induced expression of KLF4 in BEAS-2B cells,
whereas the addition of the inhibitory CpG motif TTAGGG
blocked pneumococci-dependent induction of KLF4 expres-
sion (fig. 4c). Finally, the reduction of TLR9 expression by
siRNA (fig. S4g) abolished pneumococci-related KLF4 expres-
sion in BEAS-2B cells (fig. 4d).

Recognition of pneumococcal DNA-induced TLR9-
dependent IL-10 expression
Given that BEAS-2B and HEK293 cells express TLR9 (fig. S5a
and b), but HEK293 cells do not express TLR2 or TLR4 [15], the
exposure of these cells to the TLR9 agonist ODN M362 increased
IL-10 production (fig. 5a and fig. S5c). Pneumococci-related IL-
10 expression in HEK293 cells was dose-dependently blocked
by pre-incubation of epithelial cells with the ODN M362
antagonist TTAGGG (fig. 5b). Experiments using pneumococcal
DNA showed an increase in IL-10 expression in HEK293 cells,
whereas human DNA had no detectable effect (fig. 5c).
Pneumococci-related IL-10 release was abolished by siRNA-
mediated ablation of MyD88 (fig. S5D) or TLR9 (fig. 5d).

KLF4 induction and IL-10 expression are regulated by Src
kinase
1-h pre-incubation of cells with the Src inhibitor PP2 (but not
with its inactive control compound PP3) blocked KLF4
expression in R6x-infected cells (fig. 6a). Accordingly, PP2
(but not PP3) inhibited IL-10 expression in pneumococci-
infected HEK293 cells (fig. 6b).
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FIGURE 2. Pneumococci-induced Krueppel-like factor (KLF)4 expression.

Time-dependent induction of KLF4 protein expression in a) bronchial epithelial cells
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forming units (cfu))-infected mouse lungs is shown. An antibody against
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representative blot out of three independent experiments is shown.
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FIGURE 3. Krueppel-like factor (KLF)4-regulated interleukin (IL)-10 expression.

a) A time-dependent recruitment of KLF4 and RNA polymerase II (Pol II) to the il10

promoter is shown by chromatin immunoprecipitation in bronchial epithelial cells

(BEAS)-2B cells after R6x stimulation. One representative gel out of three

independent experiments is shown. b) Silencing of KLF4 expression (96 h post-

transfection) by specific small interfering (si)RNA (si-KLF4), but not control siRNA

(si-co), reduced R6xDply (102 colony-forming units (cfu)?mL-1, 24 h)-related IL-10

expression in human embryonic kidney (HEK)293 cells. Data are representative of

three independent experiments, each performed in duplicate. *: p,0.05.
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DISCUSSION
Herein, we demonstrate bacterial DNA-dependent expression
of KLF4 that subsequently induces anti-inflammatory IL-10
expression in human lung epithelial cells. Bacterial DNA or
CpG-recognition by TLR9 activated Src kinase-dependent
signalling, which subsequently increased KLF4 expression.
Thus, activation of a TLR9–Src–KLF4-dependent pathway may
be important for controlling inflammatory reactions.

The control and termination of an inflammatory reaction is
important for the maintenance of tissue integrity, but much less
emphasis is directed toward mechanisms controlling inflamma-
tion when compared with those initiating the innate immune
response. After antibiotic treatment, it could be speculated that
an ongoing strong innate immune response may be more
deleterious for the host than beneficial. Furthermore, selective
manipulation of anti-inflammation and resolution may allow for
the development of adjuvant therapies in severe infections such
as pneumonia.

Several reports indicated that pneumococci are recognised by
the host via TLR2, TLR4 and TLR9. Ply is an important virulence
factor of S. pneumoniae that activates host cells, at least in part, via
stimulation of TLR4 [4, 6]. The LPS–TLR4 pathway was shown to
induce KLF4 expression in macrophages [9, 10]. As shown in this
study, stimulation with TLR4 ligands (LPS or Ply) did not
promote KLF4 expression in lung epithelium. In addition, Ply-
deficient pneumococci induced KLF4 expression, and this
expression was also induced by these mutants in HEK293 cells,
which are known to be unresponsive to TLR4 ligands [6]. This
suggested that TLR4 is not involved in the pneumococci-
mediated KLF4 induction in human lung epithelium.
Remarkably, heat-inactivated pneumococci also failed to induce

KLF4 expression. Heat inactivation of pneumococci leads to the
destruction of Ply [4] and reduced sensitivity to TLR9 signalling
[5], although they are still able to activate cells via TLR2 [5, 11].
Given that the stimulation of TLR2 by Pam3Cys also failed to
induce KLF4 expression in embryonic stem cells [16], we
excluded this receptor as a possible KLF4 inducer. In contrast,
CpG-oligonucleotides mimicking bacterial DNA and pneumo-
coccal DNA induced KLF4, which could be inhibited by the
antagonising oligonucleotide TTAGGG. In line with these data,
knockdown of TLR9 or MyD88, which is involved in the TLR9
signalling cascade [17], also reduced KLF4 induction. Therefore,
KLF4 expression seems to be regulated in a highly cell- and
context-dependent manner. Overall, these data indicate that
pneumococcal DNA induces KLF4 protein expression in a TLR9-
dependent manner in human lung epithelial cells.

Members of the Src protein kinase family have been suggested
to participate in TLR9-related signalling [18, 19]. In accordance
with this suggestion, we observed that inhibition of Src by PP2
blocked KLF4 protein expression in pneumococci-infected
cells. Thus, KLF4 induction in pneumococci-stimulated lung
cells depended on a pneumococcus DNA–TLR9–MyD88–Src
kinase pathway. TLR9 stimulation, however, does not appear
to be solely anti-inflammatory, because intraperitoneal appli-
cation of CpG oligodeoxynucleotide induces an inflammatory
response in the lungs of mice [20]. Nevertheless, the observa-
tion that TLR9-deficient mice, but not knockout mice for TLR1,
TLR2, TLR4 or TLR6, showed higher mortality in pneumo-
coccal pneumonia points to an overall beneficial role of TLR9
in this disease [14].

Once induced, KLF4 was shown to bind to the il10 promoter,
and KLF4 knockdown by siRNA blocked IL-10 expression in
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FIGURE 4. Toll-like receptor (TLR)9-dependent expression of Krueppel-like factor (KLF)4. a) Stimulation of bronchial epithelial cells (BEAS)-2B with ODN M362

(1 mg?mL-1) and b) stimulation with different concentrations of R6x DNA (8 h)-induced KLF4 expression. c) Pre-incubation of BEAS-2B with TTAGGG reduced KLF4 protein

levels following R6x stimulation for 8 h, as did d) transfection of BEAS-2B with TLR9 siRNA for 96 h. All Western blots are representative blots out of three independent

experiments. Actin was used as a loading control. c: control.
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pneumococci-infected cells. In agreement with our data, LIU

et al. [10] reported that KLF4 regulated the expression of IL-10
in macrophages. We observed increased expression of IL-10 in
the BAL and lung tissue of pneumococci-infected mice and in
infected human epithelial cells. Furthermore, CpG oligonu-
cleotides and pneumococcal DNA induced IL-10 expression,
whereas inhibitory TTAGGG oligonucleotide or TLR9- and
MyD88 knockdown reduced IL-10 expression in our models.
These observations are in line with MyD88 knockout cells
producing less IL-10 following CpG DNA stimulation [21].

Finally, the inhibition of Src by PP2 also reduced pneumococci-
related IL-10 production. These observations confirmed the
critical role of the TLR9–Src–KLF4 pathway for the induction of
IL-10 (fig. 7). It maybe hypothesised that in vivo an IL-10
response is triggered by a preceding inflammatory reaction
initiated by TLR activation, including TLR9. However, although
an absence of TLR9 in mice reduced bacterial killing of

pneumococci, it does not lead to increased cytokine production
[14]. IL-10 is known to be increased in humans suffering from
severe infections, including pneumonia, but its role is still
discussed controversially. Early IL-10 application to humans
exposed to LPS resulted in a reduced overall inflammatory
response [22]. Experimental studies indicated that il-10 reduces
the antimicrobial capacity of phagocytotic cells and, therefore,
high IL-10 levels in early phases of, for example, pneumonia
may increase the risk of pathogen spread [23]. The observation
that IL-10-1082 gene promoter polymorphism in humans (which
is associated with early and high IL-10 levels) increases the risk
of deleterious outcome in pneumonia furthermore indicates that
early strong IL-10 release may be of disadvantage [24]. In severe
pneumonia and pneumonia-related sepsis, both IL-6 and IL-10
levels were higher compared with uncomplicated pneumonia.
One hypothesis is that, in these patients, increased IL-10 levels
reflect a counterbalancing mechanism to avoid overwhelming
inflammation. Thus, whereas extensive IL-10 expression may
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reduce the host’s capacity to respond appropriately to the
pathogen in early phases of pneumonia, it may be important to
reduce inflammation-related injury to the lung during the
course of the disease. As the herein described KLF4-related IL-
10 response occurs with a delay, it could be viewed as a part of
the counterbalancing IL-10 response in later phases.

In many organs, inflammation always bears the risk of causing
deleterious tissue damage induced by the host response in
addition to the damage caused by the pathogen itself. It would
be of interest to analyse the role of KL4 in in vivo models of
pneumococcal pneumonia. However, since conventional KLF4
knockout mice show a lethal phenotype [8], conditional KLF4
knockout mice may be used in these studies [25]. KLF4 seems
to be involved in the immune regulation of immune cells [9,
10]. Moreover, for example, monocytotic cells are of great
importance for lung tissue repair mechanisms [26, 27]. This
raises the question about the role of epithelial versus myeloid
KLF4 in pneumococcal pneumonia. Furthermore, it is impor-
tant to follow up the role of KLF4 for apoptosis regulation in
lung parenchyma cells, as well as myeloid-derived cells in
pneumonia. By using cell/tissue-specific conditional KLF4
knockout models or, for example, reciprocal bone-marrow
chimeric mice, these interesting questions will be addressed in
further studies.

In conclusion, bacterial DNA-mediated TLR9–Src kinase
activation induced KLF4 expression, thereby initiating expres-
sion of the central anti-inflammatory mediator IL-10. Thus, in
addition to activating the innate immune response, atypical
TLR-related signalling pathways may be important to control
the inflammatory response in severe infections.
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cells (BEAS)-2B cells with 0.1–1 mM Src kinase inhibitor PP2, but not 1 mM of its

inactive control PP3, for 1 h before infection reduced a) KLF4 expression and b) IL-

10 production in human embryonic kidney (HEK)293 cells. One representative blot

out of three independent experiments is shown. Data represent mean¡SEM of three

independent experiments arranged in duplicate, and differences are indicated as

follows: ***: p,0.001 compared with the specific effect of inhibitor.
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FIGURE 7. Pro- and anti-inflammatory signalling in lung epithelial cells.

Stimulation of lung epithelial cells with Streptococcus pneumoniae leads to

activation of different signalling pathways. Recognition of bacterial cell wall

components like lipoteichoic acids (LTA) and peptidoglycan (PG) by TLR2 results

in activation of the canonical nuclear factor (NF)-kB pathway and subsequent

release of, for example, pro-inflammatory cytokines and chemokines, such as

interleukin (IL)-8 [6]. A distinct pathway is triggered by recognition of bacterial DNA

by TLR9, followed by activation of Src kinase and binding of KLF4 to the il-10

promoter, which finally leads to the release of the anti-inflammatory cytokine IL-10

(this study).
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