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ABSTRACT: Like cancer, pulmonary arterial hypertension (PAH) is characterised by a pro-

proliferative and anti-apoptotic phenotype. In PAH, pulmonary artery smooth muscle cell (PASMC)

proliferation is enhanced and apoptosis suppressed. The sustainability of this phenotype requires the

activation of pro-survival transcription factors, such as signal transducer and activator of trans-

cription (STAT)3 and nuclear factor of activated T-cells (NFAT). There are no drugs currently

available that are able to efficiently and safely inhibit this axis. We hypothesised that plumbagin

(PLB), a natural organic compound known to block STAT3 in cancer cells, would reverse

experimental pulmonary hypertension.

Using human PAH-PASMC, we demonstrated in vitro that PLB inhibits the activation of the

STAT3/NFAT axis, increasing the voltage-gated K+ current bone morphogenetic protein receptor

type II (BMPR2), and decreasing intracellular Ca2+ contentration ([Ca2+]i), rho-associated coiled-

coil containing protein kinase (ROCK)1 and interleukin (IL)-6, contributing to the inhibition of

PAH-PASMC proliferation and resistance to apoptosis (proliferating cell nuclear antigen (PCNA),

TUNEL, Ki67 and anexine V). In vivo, PLB oral administration decreases distal pulmonary artery

remodelling, mean pulmonary artery pressure and right ventricular hypertrophy without affecting

systemic circulation in both monocrotaline- and sugen/chronic hypoxia-induced PAH in rats.

This study demonstrates that the STAT3/NFAT axis can be therapeutically targeted by PLB in

human PAH-PASMC and experimental PAH rat models. Thus, PLB could be considered a specific

and attractive future therapeutic strategy for PAH.
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P
ulmonary arterial hypertension (PAH) is a
devastating disease of the pulmonary vas-
culature defined by an increase in pul-

monary artery pressure (Ppa) due to a sustained
elevation of the pulmonary vascular resistance,
which rapidly induces the failure of the right
ventricle [1]. At the cellular level, PAH is charac-
terised by enhanced inflammation [2], prolifera-
tion and resistance to apoptosis of the pulmonary
artery smooth muscle cells (PASMCs) [3, 4]. The
sustainability of this phenotype is due in part to
the activation of the transcription factor signal
transducer and activator of transcription (STAT)3
[5, 6]. This suggests that STAT3 inhibition could be
of a great therapeutic interest for PAH. In a similar
way to cancer, STAT3 activation in PAH has been
associated with the upregulation of the oncogene
provirus integration site for the moloney murine

leukaemia virus (Pim-1), promoting the activation
of the transcription factor of the nuclear factor of
activated T-cells (NFATc2) [6]. NFATc2 activation
has been shown to account for both proliferation
and resistance to apoptosis in cancer and PAH
[4, 7]. Indeed, by downregulating K+ channels,
such as Kv1.5, NFATc2 causes cell depolarisation,
increasing intracellular Ca2+ concentration ([Ca2+]i)
and promoting cell proliferation; by upregulating
Bcl-2, NFATc2 activation leads to mitochondrial
hyperpolarisation and apoptosis resistance [4].
Moreover, STAT3 axis is implicated in tumoral
upregulation of survivin [8, 9], described as an
important protein in the pathogenesis of PAH [10].
Finally, STAT3 has also been associated with bone
morphogenetic protein receptor type II (BMPR2)
downregulation, further promoting the pro-pro-
liferative, anti-apoptotic PAH phenotype [11]. For
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all these reasons, the STAT3/NFAT axis can be considered a
major signalling hub for PAH.

Taken together, previous studies suggest that STAT3 axis
inhibition might represent an attractive therapeutic strategy for
PAH. Nevertheless, no clinically available drugs that target
STAT3 axis are currently available.

Plumbagin (PLB), or 5-hydroxy-2-methyl-1,4-naphthoquinone,
is a natural product found in the plants of the Plumbaginaceae,
Droseraceae, Ancestrocladaceae and Dioncophyllaceae families.
PLB has been shown to exert anticancer activities against a
wide variety of tumour cells, including breast cancer and lung
cancer, in which NFAT is activated [4, 12–15]. However, the
mechanisms accounting for PLB anticancer effects remain
unknown. Recent studies have shown that PLB downregulates
the expression of survivin and growth factor receptor [16],
which are implicated in PAH [9, 17] and modulated by STAT3
[18, 19] and NFAT [4]. More importantly, PLB was found to be
an efficient STAT3 inhibitor in cancer cells [20], thus promoting
apoptosis [21]. We therefore hypothesised that inhibition of the
STAT3/NFAT axis by PLB would decrease PAH-PASMC pro-
proliferative and anti-apoptotic phenotypes, thus preventing
and reversing established PAH.

MATERIALS AND METHODS
All the experiments were performed with the approval of the
Laval University Ethic and Biosafety Committee (Laval Univer-
sity, Quebec, Canada). The study was performed in accordance
with the Guide for the Care and Use of Laboratory Animals [22]. It
conforms to the principles outlined in the Declaration of Helsinki.
All patients gave informed consent before the study (ethic
committee protocol number 20142).

Cell culture
Human PAH-PASMCs were isolated from the ,1,5 mm-diameter
small pulmonary arteries of three PAH patients. Human healthy
PASMCs (n55) were purchased (#302K-05a; Cell Application,
San Diego, CA, USA). PASMCs were grown in high-glucose
Dulbecco’s modified Eagle medium (DMEM) supplemented
with 10% FBS (Gibco, Invitrogen, Burlington, Canada) and 1%
antibiotic/antimytotic (Gibco) [7] and used until the fifth passage.
Plumbagin (PLB) was purchased from Sigma-Aldrich (Ontario,
Canada) and dissolved in ,1% of dimethyl sulfoxide (DMSO).
For all of the experiments, PAH-PASMC and PASMC were treat-
ed for 48 h. Platelet-derived growth factor (PDGF; 30 ng?mL-1),
endothelin (ET)-1 (10 nM) and angiotensin II (200 nM) were all
from EMD Biosciences, Mississauga, Canada.

Immunofluorescence
Measurements of the mitochondrial membrane potential
(DYm) and [Ca2+]i in live PASMC (37uC) were performed
using tetramethylrhodamine methyl-ester perchlorate (TMRM)
and Fluo-3AM from Invitrogen (Branchburg, NJ, USA) at a
final concentration of 5 mM, as previously described [4, 23].
TMRM and Fluo-3 fluorescence intensity were measured (20–
50 cells per patient in three PAH and five healthy patients).
PASMC apoptosis rates were measured using TUNEL and
annexin V (Millipore, Temecula, CA, USA) after serum star-
vation (0.1% FBS in 48 h) and proliferation using Ki67 and the
proliferating cell nuclear antigen (PCNA) antibody (DAKO,
Carpinteria, CA, USA) according to the manufacturers’

instructions [4, 23]. The percentage of cells that was nuclei
positive for TUNEL, annexin V, PCNA or Ki67 was deter-
mined (20–50 cells per patient in three PAH and five healthy
patients, or five arteries per animal in five animals). PY705-
STAT3 (Cell Signalling, Danvers, MA, USA; diluted 1/250) and
NFATc2 (Abcam, Cambridge, MA, USA; diluted 1/250) stain-
ing were performed as previously described [4]. The number
of cells presenting a nuclear localisation of the protein was
measured in 20–50 cells per patient in three PAH and five
healthy patients, or five arteries per animal in five animals.
Alexa Fluor 488 or 594 (Invitrogen; diluted 1/1,000) were used as
secondary antibodies.

Quantitative RT-PCR
To measure NFATc2 and BMPR2 expression (Taqman Gene
Expression Assay; Applied Biosystem, Foster, CA, USA), total
mRNA was extracted from PAH-PASMC or control PASMC
using trizol protocol, as previously described [4, 22]. 18S was
used as housekeeping gene for quantitative RT-PCR.

Western blot
Total protein fraction was extracted from either PASMC or distal
PA as indicated. PY705-STAT3 and STAT3 (both Cell signalling,
diluted 1/1,000) were quantified and normalised to the smooth
muscle actin (Santa Cruz Biotechnology Inc., Santa Cruz, CA,
USA; 1/400), as previously described [7]. BMPR2 (Abcam, diluted
1/1,000), rho-associated coiled-coil containing protein kinase
(ROCK)1 (BD Biosciences, Mississauga, Canada; 1/1,000) and
PKCe (Santa Cruz Biotechnology, diluted 1/100) were normal-
ised to Ponceau S (Fisher Scientific UK, Loughborough, UK).
Evaluation for PY705-STAT3/STAT3 were obtained from the
same gel after striping (30 min at 50uC).

Electrophysiology
Standard whole-cell patch clamping was realised on voltage-
clamped cells at a holding potential of -70 mV, with solutions
permitting potassium current [23]. Currents were evoked using
200-ms test pulses from -70 mV to +70 mV, with 10-mV steps, as
previously described (filtered at 1 kHz and sampled at 2–4 kHz)
[23]. The results are shown with the current density, as the
observed cell current was normalised with its own cellular
capacity. The results are also shown with 4-AP sensitive current,
representing the amount of K+ current Kv channels dependent,
as 4-AP is a Kv channel blocker. PAH-PASMC or healthy
PASMC were chronically treated with PLB (48 h; 1 mM) and
with 4-AP (1 mM) during the patch clamping.

In vivo experiments
Male Sprague-Dawley rats were injected subcutaneously with
60 mg?kg-1 of monocrotaline (MCT; Sigma-Aldrich). PLB was
given orally (gavage) at a concentration of 4 mg?kg-1, either
every day for 4 weeks following MCT injection and before
PAH establishment (prevention protocol; n55), or every day
for 2 weeks after PAH establishment (haemodynamic measur-
ment), i.e 15 days after MCT injection (reversal protocol; n55).

Male Sprague-Dawley rats were injected s.c. with 20 mg?kg-1 of
sugen (#S8442-25MG; Sigma Aldrich) and maintained in hypoxia
(10% oxygen (O2)) for 3 weeks. 2 weeks after the end of the
hypoxia protocol, the rats were orally (gavage) treated with PLB
at 4 mg?kg-1 for 2 weeks.
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Haemodynamic measurements
All rats underwent haemodynamic and echocardiography
measurements, as previously described [4]. Briefly, pulmonary
arterial acceleration time (PAAT), known to decrease with the
PAH severity in both rats and patients, was measured using
echo Doppler [4, 24], and right ventricle thickness was measured
via echocardiography. Right catheterisations (closed chest) were
performed using science catheters.

Histology measurements
Pulmonary artery media wall thickness was assessed as
previously described [4]. Briefly, paraffin lung sections were
stained with haematoxylin–eosin, and pulmonary artery media
wall thickness was measured using Image ProPlus software
(Media Cybernetics, Bethesda, MD, USA). Two measurements
per artery in five animals for each group were performed.

Data analysis
Averaged data are presented as the mean¡SEM. Normality of
data was assessed by the Shapiro-Wilk normality test. All data
were normally distributed. For comparison between two means,
an unpaired t-test was used. ANOVA followed by the Dunn’s
post-test was used for comparison between more than two
means. For correlation, a Pearson’s test was performed.

RESULTS

PLB decreases PAH-PASMC proliferation and resistance to
apoptosis
To study the effects of PLB on PASMC proliferation and apo-
ptosis in vitro, human PAH-PASMCs were exposed to 10% FBS (a
condition that is known to promote proliferation) or 0.1% FBS (a
‘‘starvation’’ condition that promotes apoptosis) [4, 7, 25]. PAH-
PASMCs were treated with increasing doses (1 nM, 10 nM, 100

nM, 1 mM, 5 mM, 10 mM) of PLB or its proper vehicle (DMSO)
(fig. 1a). Compared with healthy PASMCs, PAH-PASMCs have a
greater proliferation rate and were more resistant to starvation-
induced apoptosis. PLB dose-dependently decreases proliferation
and promotes apoptosis. Based on the dose–response effects, we
decided to use PLB at 1 mM (which also corresponds with the dose
previously used in other studies [20]) and were able to significantly
decrease both proliferation and resistance to apoptosis. At 1 mM,
PLB in starved PAH-PASMCs (0.1% FBS) increased apoptosis
measured by both TUNEL and annexin V when compared with
vehicle-treated PAH-PASMCs (fig. 1). In PAH-PASMCs ex-
posed to 10% FBS, PLB (1 mM) decreased around two-fold of the
proliferation measured by PCNA and Ki67 (fig. 1). More-
over, PLB effects on apoptosis were confirmed by TUNEL in
staurosporine-treated PASMCs (fig. s1a) [26, 27].

The effects of PLB on proliferation were further confirmed in
healthy PASMCs treated for 48 h with PDGF (30 ng?mL-1),
angiotensin II (200 nM) and ET-1 (10 nM), all accepted STAT3
activators [28] and all known to be increased in PAH [29, 30] in
presence and absence of PLB. As expected, PLB significantly
decreases proliferation in PASMCs treated with Ang II, PDGF
and ET-1 (Fig. s1b).

PLB decreases the STAT3/NFAT axis activation in PAH-
PASMCs
We have previously shown that the pro-proliferative and anti-
apoptotic phenotype seen in PAH-PASMCs was most often
attributed to the activation of the STAT3/NFAT axis [4–6]. As
PLB significantly decreases PAH-PASMC proliferation and re-
sistance to apoptosis, we measured whether PLB affects STAT3
and NFATc2 activation in PAH-PASMCs. STAT3 and NFATc2
activations were measured in human PASMCs isolated from
control and non-familial PAH patients by quantitative RT-PCR
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FIGURE 1. a) Proliferating cell nuclear antigen (PCNA) showed a significant increase in pulmonary arterial hypertension (PAH)-pulmonary artery smooth muscle cell

(PASMC) proliferation compared with control-PASMC; plumbagin (PLB; 1 nM, 10 nM, 100 nM, 1 mM, 5 mM, 10 mM) dose-dependently decreased PAH-PASMC proliferation.

TUNEL assay revealed a significant resistance to apoptosis in PAH-PASMCs compared with healthy PASMCs, which was dose-dependently decreased by PLB (1 nM, 10 nM,

100 nM, 1 mM, 5 mM, 10 mM). n5100–150 cells per patient. Given these results, the PLB concentration for the following experiments was chosen to be 1 mM. b) PLB (1 mM for

48 h) reversed PAH-PASMC proliferation (Ki67) and resistance to apoptosis (annexin V). n5100–150 cells per patient. *: p,0.05; **: p,0.01; ***: p,0.001.

PULMONARY VASCULAR DISEASE A. COURBOULIN ET AL.

620 VOLUME 40 NUMBER 3 EUROPEAN RESPIRATORY JOURNAL



(NFATc2), immunoblot (PY705-STAT3/STAT3) and nuclear trans-
location assay (confocal microscopy). Compared with control
PASMCs, the PY705-STAT3/STAT3 ratio was increased around
two-fold in PAH-PASMCs (fig. 2a), which was associated with a
greater nuclear translocation (fig. 2b). Similarly, an approxi-
mately two-fold increase in NFATc2 expression and nuclear
translocation was also observed in PAH-PASMCs compared
with controls (fig. 2). PLB (1 mM for 48 h) decreased both STAT3
and NFAT activation in PAH-PASMCs. These findings suggest
a significant activation of STAT3 and NFATc2 in PAH-PASMCs
compared with control-PASMCs, which can be inhibited by PLB
(fig. 2b).

PLB reverses the activation of pathophysiological pathways
affected by the activation of the STAT3/NFAT axis
In PAH-PASMCs, STAT3/NFAT-mediated proliferation [4, 31]
has been linked with the downregulation of voltage-gated K+

(Kv) channels [32, 33], resulting in membrane depolarisation
[31, 33], the opening of voltage-dependent calcium channels,
and an increase in [Ca2+]i [4, 31, 34]. Using whole-cell patch
clamping, we demonstrated that PLB (48 h) restores the decrease
in total K+ current density observed in PAH-PASMCs (fig. 3a and
b). This increase in K+ current was attributed to the activation of
the Kv channels, as this increase was totally blocked by 4-AP, a
specific Kv channel blocker (fig. 3a and c) [35]. It is noteworthy

a) PLB decreased NFATc2 expression and STAT3 activation in PAH-PASMCs
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FIGURE 2. Plumbagin (PLB) reverses STAT3/nuclear factor of activated T-cells (NFAT) in human pulmonary arterial hypertension (PAH)-pulmonary artery smooth

muscle cells (PASMCs). a) NFATc2 expression was quantified by RT-PCR in human healthy and PAH-PASMCs. mRNA expression was normalised to 18S. As shown,

NFATc2 expression significantly increased in PAH-PASMCs compared with control-PASMCs. PLB (1 mM for 48 h) significantly decreased NFATc2 expression. PY705-

STAT3/STAT3 ratio, accounting for STAT3 activation, was assessed by immunoblot. As shown, STAT3 was upregulated in PAH-PASMCs compared with control-PASMCs,

and PLB (1 mM for 48 h) reversed this activation. n53 experiments per patient. b) NFATc2 and STAT3 activation were further assessed in PASMCs using nuclear

translocation assay. As shown, the percentage of NFATc2 and PY705-STAT3 translocated to the nucleus significantly increased in PAH-PASMCs compared with healthy.

PLB (1 mM for 48 h) significantly decreased both NFATc2 and STAT3 activation. n5100–150 cells per patient. DAPI: 49,6-diamidino-2-phenylindole. *: p,0.05;

**: p,0.01.
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that PLB has no effect on healthy PASMCs. These results are
consistent with previously published studies [4, 36], demonstrat-
ing that the STAT3/NFAT axis is implicated in Kv channel
regulation such as Kv1.5.

Using the Fluo-3AM technique, we investigated whether the
increases in Kv current caused by PLB decrease [Ca2+]i. As
expected, PLB decreases [Ca2+]i in PAH-PASMCs to a level
similar to that seen in healthy PASMCs (fig. 4a).

Because STAT3 and NFAT are implicated in DYm regulation [7,
37], the increase in apoptosis following PLB treatment might
result from the activation of mitochondrial-dependent apoptosis.
As the mitochondria transition pore is voltage-dependent [38],
the DYm depolarisation is a threshold index for mitochondrial-
dependent apoptosis. In fact, apoptosis is associated with
decreased DYm. To investigate the mechanism by which PLB
promotes apoptosis, we measured DYm using TMRM in PAH-
PASMCs treated with PLB. PLB caused a significant DYm
depolarisation (decreased TMRM, red fluorescence) compared

with vehicle-treated PAH-PASMCs. These data confirmed that
PLB affects the DYm and therefore enhances mitochondrial-
dependent apoptosis (fig. 4a).

In addition to both the Kv/calcium axis and DYm, other path-
ways are known to be implicated in PAH-PASMC proliferation
and resistance to apoptosis, including: BMPR2 protein and
mRNA expression [39]; ROCK1 activation [40]; and mRNA
interleukin (IL)-6 expression [41]. Although the importance of
each pathway in the aetiology of PAH remains to be esta-
blished (and is likely to be different among the different forms
of PAH), we provide evidence that PLB can affect all of them.
Indeed, PLB significantly increased BMPR2 expression and
decreased IL-6 and ROCK1 in PAH-PASMCs (fig. 4b). Although
the exact molecular mechanism by which PLB affects these
pathways remains unknown, the fact that all of them have been
shown to be affected by STAT3 reinforces the concept that the
STAT3/NFAT axis is an important integrative signal hub in
PAH and that its inhibition might represent a novel and
effective therapeutic strategy to improve PAH.
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PLB reverses experimental PAH in rats
To determine the putative therapeutic potential of PLB, we
determined in vivo whether PLB (4 mg?kg-1?day-1 per os) can
reverse establish PAH, in two accepted experimental rat PAH
models: the monocrotaline (MCT) induced-PAH and the sugen/
chronic hypoxia models. Longitudinal studies to assess the
efficiency of our treatments were performed using noninvasive

measurements (exercise capacity test; Doppler and echocar-
diography) [4]. In the prevention MCT model, PLB prevented
changes in pulmonary haemodynamics, right ventricle free
wall thickness, and general cardiac function (exercise capacity
on treadmill) seen in the vehicle-treated rats. When given
in rats with established PAH (2 weeks post-MCT injection
to reverse the disease), PLB was shown to increase PAAT
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FIGURE 4. Plumbagin (PLB) decreased intracellular Ca2+ concentration ([Ca2+]i) in pulmonary arterial hypertension (PAH)-pulmonary artery smooth muscle cells

(PASMCs) and mitochondrial hyperpolarisation; it reversed bone morphogenetic protein receptor type II (BMPR2) and rho-associated coiled-coil containing protein kinase

(ROCK)1 downregulation, and interleukin (IL)-6 upregulation. a) PAH-PASMCs showed a significant increase in [Ca2+]i compared with healthy PASMC, which was reversed

PLB (1 mM for 48 h). PAH-PASMCs displayed mitochondrial membrane potential (DYm) hyperpolarisation compared with healthy PASMCs. PLB (1 mM for 48 h) caused a

significant DYm depolarisation (decreased tetramethylrhodamine methyl-ester perchlorate (TMRM), red fluorescence) compared with vehicle-treated PAH-PASMCs.

b) Compared with healthy PASMCs (n55 patients), PAH-PASMCs (n53 patients) showed a significant decrease in BMPR2 expression (quantitative RT-PCR and Western blot,

n53 experiments) and an upregulation in ROCK1 (Western blot, n53), both of which were reversed by PLB (1 mM for 48 h). Finally, PLB (1 mM for 48 h) significantly

decreased IL-6 expression (quantitative RT-PCR, n53) in PAH-PASMCs. FU: fluorescence units. *: p,0.05; **: p,0.01; ***: p,0.001.
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(a Doppler parameter known to correlate well with Ppa in
both humans and rats; as the Ppa rises, PAAT shortens) [4, 42],
decrease right ventricle wall thickness and increase exercise
capacity (fig. 5a). These findings were invasively confirmed
by direct PA pressure measurements in close chest animals
(fig. 5b). Interestingly the cardiac output was not affected by
PLB treatment (fig. 5b).

In order to determine whether PLB would reduce pulmonary
artery remodelling in MCT-PAH rats, we measured pulmonary
artery media wall thickness using haematoxylin–eosin staining on
lung histological sections. PLB given in prevention or in attempt to
reverse established PAH in rats showed a significant reduction in
the percentage medial thickness in small and medium-sized
pulmonary arteries (fig. 5c). This finding was associated with a
significant decrease in STAT3 and NFATc2 activation (fig. 6a),
and also in Sarcoma (Src) activation (fig. 6b), which we have
previously shown to be the pathway activating STAT3 in PAH-
PASMC [5], decreasing PASMC proliferation (Ki67) and resis-
tance to apoptosis (TUNEL) in vivo (fig. 6c and fig. s2a).

Although the MCT-induced PAH model is a very robust model
of PAH, to further demonstrate the therapeutic effect of PLB,

we tested whether PLB improved PAH in rats injected (s.c.) with
sugen, a type 2 vascular endothelial growth factor receptor
antagonist [43, 44], exposed to chronic hypoxia (10% O2) for
3 weeks, and placed back under normoxic conditions for
an additional 4 weeks. PLB (4 mg?Kg-1?day1 per os) was given
once PAH was established (5 weeks post sugen injection) for
2 weeks.

PLB significantly decreased mean Ppa, right ventricular hyper-
trophy and distal pulmonary artery remodelling, though in a
less efficient way than in the MCT model (fig. 7a). As expected,
these effects were associated with decreased distal pulmonary
artery PASMC proliferation and increased apoptosis (fig. 7a and
Fig. s2b), associated with a significant decrease in STAT3 and
NFATc2 activation measured by nuclear translocation assay in
the distal pulmonary arteries (,300 mm; fig. 7b), and with a
significant decrease in Src activation (fig. 7c).

DISCUSSION
We have provided, for the first time, evidence showing that
PLB decreases the STAT3 constitutive activation seen in PAH.
We have shown that PLB-dependant STAT3 inhibition reverses
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PAH phenotype both in vitro and in vivo. Indeed, PLB restores
most of the molecular and cellular abnormalities seen in
human PAH-PASMC, including decreased activation of NFATc2,
STAT3, IL-6 and ROCK1, and upregulation of BMPR2 (figs 2 and
4). All of these demonstrated pathways contribute to the decrease
in human PAH-PASMC proliferation and resistance to apoptosis.
Using two independent experimental models of PAH (MCT and
sugen/chronic hypoxia) in vivo, we provide strong evidence that
PLB is able to reverse PAH, highlighting its possible efficiency
to treat this lethal pathology in PAH patients. Indeed, in both
models, PLB significantly improves Ppa, pulmonary artery
medial hypertrophy and right ventricular hypertrophy, without
affecting systemic pressure and cardiac output (figs s5, s6 and s7).

Although previous studies have reported a putative inotropic
effect of PLB in the isolated heart model, our in vivo study with
PLB given orally did not significantly affect global cardiac
function, such as cardiac output [45, 46]. Moreover, it was
shown to significantly improve exercise tolerance in rats with
PAH, without affecting systemic pressure (figs 5b and 7a).
Although several other measurements are needed to totally
exclude long-term toxicity or adverse effects, our findings open

up a new avenue of investigation and support a putative
therapeutic role for PLB in PAH.

We are the first group to report an improvement of PAH in the
sugen/chronic hypoxic rat model. The efficiency of PLB in two
independent PAH models, such as the MCT and the sugen
models, is a true indication that PLB is of great therapeutic
interest. Moreover, we demonstrated in both models that, as in
human PAH-PASMCs, both STAT3 and NFAT are upregulated
in the distal PA and their inhibitions significantly improve PAH
in the sugen-treated rats; this strongly reinforces the importance
of this pathway in the aetiology of PAH.

The activation of the STAT3/NFAT axis that we described is
likely to have a multifactorial aetiology in PAH. Indeed, both
STAT3 and NFAT may be critical integrators of multiple sig-
nalling pathways, and their downstream effects could explain
several important features of PAH. This could explain why
STAT3 inhibition may be efficient in reversing PAH. In vivo,
endothelial dysfunction and inflammation are recognised as
some of the earliest abnormalities in PAH, resulting in a well-
recognised imbalance of endothelium-derived vasoactive factors,
with increased vasoconstrictors (endothelin [47], thromboxane
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[48]), all of which lead to STAT3 activation and decreased vaso-
dilators (such as nitric oxide or prostacyclin [48]). In addition,
increased circulating growth factor [49] and cytokines [50] have
been reported in PAH, which also activate STAT3. Thus, it is
likely that circulating factors are implicated in STAT3 activation
in PAH. Due to the presence of the STAT3 binding sequence
within the NFATc2 promoter region [51], the increase in
NFATc2 expression seen in PAH-PASMCs has been attributed
to STAT3 activation [5, 6]. Moreover, STAT3 positively regulates
the NFAT activator Pim1, which could explain the increase in
NFAT activation [10]. Once activated, NFAT regulates multiple
genes, which might positively reinforce its own expression and
activation. For example, the downregulation of Kv1.5 leads to
PASMC depolarisation, opening of L-type Ca2+ channels and a
sustained increase in [Ca2+]i, (as shown in our study), and thus
calcineurin-dependent NFAT activation [4]. NFAT is not the
only mechanism affected by STAT3 in the PAH phenotype.

Indeed, it has been recently proposed that STAT3 activation
upregulates microRNAs (miR-17/92), accounting for the
downregulation of the receptor BMPR2 in PASMCs [11].
Moreover, several STAT3-related proteins have been impli-
cated in RhoA/ROCK activation [52], along with IL-6 expres-
sion [11]. This not only demonstrates the importance of the
STAT3 axis in PAH but also shows that STAT3 can be
considered as an integrator of the multiple pathways impli-
cated in PAH, including NFAT activation, BMPR2 down-
regulation RhoA/ROCK activation and IL-6 expression [39,
53]. We therefore believe that the PLB-dependant inhibition of
STAT3 could explain how a single drug such as PLB can affect
so many pathophysiological pathways and be efficient in
several experimental models (figs 5, 6 and 7).

We are not the first group to report the beneficial health effects
of PLB. In fact, this natural organic compound has been
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previously shown to have anti-proliferative and pro-apoptotic
properties (in part, through STAT3 inhibition [20]) in cancer
and vasoactive properties in bovine pulmonary arteries [54], all
of which agree with a positive therapeutic effect in PAH. In
this study, we have demonstrated an inhibitory effect of PLB
on STAT3 activation in human PASMCs and shown that it also
blocks NFAT expression and activation. Both effects induce
DYm depolarisation and decrease [Ca2+]i through the upregula-
tion of Kv channels, as previously described [4, 37]. These effects
are likely to be responsible for the inhibition of PAH-PASMC
proliferation and resistance to apoptosis in vitro and in vivo
in the reduction of the distal pulmonary artery remodelling
processes. Indeed, we and others have previously reported that
increasing Kv channels, such as Kv1.5 in PAH-PASMC, is
sufficient to decrease [Ca2+]i and PASMC proliferation [34, 55],
while depolarising mitochondria [9, 56] is sufficient to promote
apoptosis in PAH-PASMCs. As both mechanisms are controlled
by STAT3 and NFAT [4, 6], the inhibition of the STAT3/NFAT
axis by PLB should promote PAH-PASMC apoptosis and
decrease proliferation. This is supported by our findings.

The mechanism of action of PLB remains elusive. Whereas it is
likely that the mechanisms leading to NFAT inhibition by PLB
rely on STAT3 inhibition [5, 6], the mechanism accounting
for STAT3 inhibition remain to be established. We recently
showed that JAK2 (one of the most important STAT3 regu-
lators [57]) is not implicated in PAH-PASMCs [5]; thus, the
effect of PLB is unlikely to be mediated by JAK2 inhibition. The
second regulator of STAT3 activation is the Src pathway [58].
Src has been shown to be implicated in PAH [5, 31] and in the
activation of STAT3 in human PAH-PASMCs [5]. Although the
implication of Src in STAT3 activation in human PAH-PASMCs
has not been reassessed in the present study, we showed that Src
is activated in the distal pulmonary arteries of both MCT and
sugen rats, confirming our previous findings in humans. More-
over, we have demonstratede that Src activation is decreased in
PLB-treated animals (figs 6b and 7c). Thus, inhibition of the Src
pathway by PLB, as shown in cancer cells [20], could explain the
STAT3 inhibition by PLB seen in PAH.

As STAT3 is an integrator of multiple pathways implicated in
PAH, such as NFAT, BMPR2 and ROCK, it is not surprising
that its inhibition by PLB is sufficient to improve PAH in both
MCT and sugen models. Although several studies have shown
that PLB can also affect many other pathways, including Akt or
protein kinase (PK)Ce, which are implicated in systemic vascular
remodelling processes [22, 59], their implication in PAH none-
theless remains elusive. For example, Akt is not activated in PAH
[6]; thus, its putative inhibition by PLB should not affect PAH.
The role of PKCe in PAH has been suggested, particularly in the
contractile response and endothelial cell physiology; for exam-
ple, PKCe inhibition decreases acute hypoxic vasoconstriction
[60]. Nevertheless, PKCe knockout mice have a greater increase
in right ventricular ystolic pressure, and right ventricular mass in
response to chronic hypoxia than PKCe(+/+) mice [61]. Thus, if
PLB effects were mediated by PKCe inhibition, PLB should
worsen PAH and not improve it as shown in our study (fig. s3).
Although the implication of other pathways cannot be ruled out,
we believe that since PLB can affect most of the pathophysio-
logical pathways implicated in PAH (STAT3, NFAT, BMPR2,
ROCK, IL-6), it is already clinically very appealing.

Several other studies are needed to test the exact mechanism of
action of PLB along with putative toxicity effects (no side-
effects were observed in treated animals). Nevertheless, our
findings provide strong evidence that such investigations are
needed to eventually propose PLB as a new therapeutic tool for
PAH. We believe that it will also lead to a better understanding
of the regulation of apoptosis and proliferation by PLB, which
will benefit many other human diseases, such as cancers.
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